Process Mining Data Science in Action

Size: px
Start display at page:

Download "Process Mining Data Science in Action"

Transcription

1 Process Mining Data Science in Action Wil van der Aalst Scientific director of the DSC/e Dutch Data Science Summit, Eindhoven,

2 Process Mining Data Science in Action https://www.coursera.org/course/procmin

3 statistics data mining machine learning stochastics process mining databases algorithms data science large scale distributed computing industrial engineering visualization visual analytics behavioral/ social sciences privacy domain knowledge

4 statistics data mining machine learning stochastics process mining databases algorithms data science large scale distributed computing industrial engineering visualization visual analytics behavioral/ social sciences privacy domain knowledge

5 business process management business process reengineering process science statistics stochastics data mining machine learning process mining databases algorithms data science large scale distributed computing industrial engineering visualization visual analytics behavioral/ social sciences privacy domain knowledge model checking formal methods concurrency Petri nets BPMN

6 Internet of Events

7 Internet of Events: 4 sources of event data Internet of Events

8 Internet of Events: 4 sources of event data Internet of Content Big Data Internet of Events

9 Internet of Events: 4 sources of event data Internet of Content Internet of People Big Data social Internet of Events

10 Internet of Events: 4 sources of event data Internet of Content Internet of People Internet of Things Big Data social cloud Internet of Events

11 Internet of Events: 4 sources of event data Internet of Content Internet of People Internet of Things Internet of Places Big Data social cloud mobility Internet of Events

12 Starting point for process mining: Event data student name course name exam date mark Peter Jones Business Information systems Sandy Scott Business Information systems Bridget White Business Information systems John Anderson Business Information systems Sandy Scott BPM Systems Bridget White BPM Systems Sandy Scott Process Mining Bridget White Process Mining John Anderson Process Mining case id activity name timestamp other data every row is an event (here: an exam attempt)

13 Another event log: order handling order number activity timestamp user product quantity 9901 register order Sara Jones iphone5s register order Sara Jones iphone5s register order Sara Jones iphone4s check stock Pete Scott iphone5s ship order Sue Fox iphone5s check stock Pete Scott iphone4s handle payment Carol Hope iphone5s check stock Pete Scott iphone5s cancel order Carol Hope iphone5s 2 case id activity name timestamp resource other data

14 Another event log: patient treatment patient activity timestamp doctor age cost 5781 make X-ray Dr. Jones blood test Dr. Scott blood test Dr. Scott blood test Dr. Scott CT scan Dr. Fox surgery Dr. Scott handle payment Carol Hope radiation therapy Dr. Jones radiation therapy Dr. Jones case id activity name timestamp resource other data

15 Let's play Case Activity Timestamp Resource 432 register travel request (a) :9.15 John 432 get support from local manager (b) :9.25 Mary 432 check budget by finance (d) :8.55 John 432 decide (e) :9.36 Sue 432 accept request (g) :9.48 Mary Play-In Play-Out Replay start register travel request (a) get support from local manager (b) get detailed motivation letter (c) check budget by finance (d) reinitiate request (f) decide (e) accept request (g) reject request (h) end

16 Play-Out Case Activity Timestamp Resource 432 register travel request (a) :9.15 John 432 get support from local manager (b) :9.25 Mary 432 check budget by finance (d) :8.55 John 432 decide (e) :9.36 Sue 432 accept request (g) :9.48 Mary get support from local manager (b) register travel request (a) get detailed motivation letter (c) decide (e) accept request (g) start check budget by finance (d) reject request (h) end reinitiate request (f)

17 Play Out: A possible scenario a b d e g XORsplit get support from local manager (b) XORjoin start register travel request (a) XORjoin ANDsplit get detailed motivation letter (c) check budget by finance (d) reinitiate request (f) decide (e) accept request (g) reject request (h) ANDjoin XORsplit XORjoin end Case Activity Timestamp Resource 432 register travel request (a) :9.15 John 432 get support from local manager (b) :9.25 Mary 432 check budget by finance (d) :8.55 John 432 decide (e) :9.36 Sue 432 accept request (g) :9.48 Mary

18 Play Out: Another scenario get support from local manager (b) start register travel request (a) get detailed motivation letter (c) check budget by finance (d) reinitiate request (f) decide (e) accept request (g) reject request (h) end a d c e f b d e h

19 Play Out: Process model allows for many more scenarios get support from local manager (b) adcefcdefbdefbdeg adceg adbeh adbeh abdeg acdefcdefbdeh abcefbdeh acdefcdefbdeh acbefbdeg abdeg abdeg acbefbdeh acdefcdefbdeh adbeh adceh acbefbdeg adcefcdefbdefbdeg adceh adcefcdefbdefbdeg abdeg start register travel request (a) get detailed motivation letter (c) check budget by finance (d) reinitiate request (f) decide (e) accept request (g) reject request (h) end

20 Case Activity Timestamp Resource 432 register travel request (a) :9.15 John 432 get support from local manager (b) :9.25 Mary 432 check budget by finance (d) :8.55 John 432 decide (e) :9.36 Sue 432 accept request (g) :9.48 Mary Play-In get support from local manager (b) register travel request (a) get detailed motivation letter (c) decide (e) accept request (g) start check budget by finance (d) reject request (h) end reinitiate request (f)

21 Loesje van der Aalst desire line

22 Play In: Simple process allowing for 4 traces abdeg adbeg adbeg adbeh abdeh abdeg abdeh abdeh abdeh abdeh adbeh adbeh adbeh get support from local manager (b) accept request (g) register travel request (a) decide (e) start check budget by finance (d) reject request (h) end

23 Play In: Process allowing for more traces adcefcdefbdefbdeg abdeg adcefcdefbdefbdeg abcefbdeh acbefbdeg acdefcdefbdeh adceg adbeh adbeh adcefcdefbdefbdeg abdeg abdeg abdeg acbefbdeh acdefcdefbdeh acbefbdeg adceh adbeh adceh acdefcdefbdeh get support from local manager (b) register travel request (a) get detailed motivation letter (c) decide (e) accept request (g) start check budget by finance (d) reject request (h) end reinitiate request (f)

24 No modeling needed!

25 Example Process Discovery (Dutch housing agency, 208 cases, 5987 events)

26 Example process discovery for hospital (627 gynecological oncology patients, events)

27 Replay Case Activity Timestamp Resource 432 register travel request (a) :9.15 John 432 get support from local manager (b) :9.25 Mary 432 check budget by finance (d) :8.55 John 432 decide (e) :9.36 Sue 432 accept request (g) :9.48 Mary get support from local manager (b) start register travel request (a) get detailed motivation letter (c) check budget by finance (d) reinitiate request (f) decide (e) accept request (g) reject request (h) end

28 process model event data

29 desire line very safe system

30 Replay a c d e g get support from local manager (b) register travel request (a) get detailed motivation letter (c) decide (e) accept request (g) start check budget by finance (d) reject request (h) end reinitiate request (f)

31 Replay a c get support from local manager (b) e g? check budget (d) is missing! register travel request (a) get detailed motivation letter (c) decide (e) accept request (g) start check budget by finance (d) reject request (h) end reinitiate request (f)

32 Replay a c h d e g get support from local manager (b)? reject request (h) is impossible register travel request (a) get detailed motivation letter (c) decide (e) accept request (g) start check budget by finance (d) reject request (h) end reinitiate request (f)

33 Conformance Checking (WOZ objections Dutch municipality, 745 objections, 9583 event, f= 0.988)

34 Replay with timestamps a 9.15 c 9.20 d 9.35 e g start 9.15 register travel request (a) get support from local manager (b) get detailed motivation letter (c) check budget by finance (d) reinitiate request (f) decide (e) accept request (g) reject request (h) end

35 Replay with timestamps for many traces frequencies of paths frequencies of activities get support from local manager (b) waiting times and other delays between activities register travel request (a) get detailed motivation letter (c) decide (e) accept request (g) start check budget by finance (d) reinitiate request (f) durations of activities reject request (h) end

36 Performance Analysis Using Replay (WOZ objections Dutch municipality, 745 objections, 9583 event, f= 0.988)

37 Overview world business processes people machines components organizations models analyzes Play-Out supports/ controls specifies configures implements analyzes software system records events, e.g., messages, transactions, etc. (process) model discovery conformance Play-In event logs enhancement Replay

38 Process mining toolbox

39

40

41

42

43

44 examine thoroughly register request examine casually decide pay compensation start check ticket reject request end reinitiate request Process models can be seen as "process maps"

45 What we can learn from maps abstraction: leaving out insignificant roads and towns aggregation: smaller entities are amalgamated into larger ones (suburbs and cities) layout: positioning of elements has a clear meaning size and color: highlight more important entities (e.g. highways have a different color)

46 Compare process models to maps get support from local manager (b) start register travel request (a) abstraction? get detailed motivation letter (c) check budget by finance (d) reinitiate request (f) decide (e) accept request (g) reject request (h) size and color? end b aggregation? start A a register request c1 c2 examine thoroughly A c examine casually d check ticket c3 c4 e decide f M c5 reinitiate request g pay compensation h reject request end layout?

47 Can we see what matters most? get support from local manager (b) metropolis or village? register travel request (a) get detailed motivation letter (c) decide (e) accept request (g) start check budget by finance (d) reject request (h) end reinitiate request (f) highway or dirt road?

48 "the map" does not exist

49 Zoom

50

51

52 Subway map

53 Bicycle map

54 a map is a view on reality map reality same for process models

55 Model provides a view on reality (event data), just like a map!

56 Multiple views depending on purpose (performance, compliance, training, etc.).

57 breathing life into process models otherwise they end up in some drawer

58 Project on maps: traffic jams real estate for sale location of trucks/trains crime rates Project on process models: bottlenecks deviations costs

59 Examples

60 Not that new Charles Minard's 1869 chart showing the number of men in Napoleon s 1812 Russian campaign army, their movements, as well as the temperature they encountered on the return path

61 Actively using process models

62 What can we lean from navigation devices? detect prediction recommendation

63 Driven by maps, historic information, and current information. Flexible: Adapts to circumstances and does not force the driver to take a particular route. Can your information system do this?

64 Conclusion Process models are like maps! Connecting event data and process models! better models live models

65 Positioning process mining process model analysis (simulation, verification, optimization, gaming, etc.) performanceoriented questions, problems and solutions process mining complianceoriented questions, problems and solutions data-oriented analysis (data mining, machine learning, business intelligence)

66 data science process science

Process Mining The influence of big data (and the internet of things) on the supply chain

Process Mining The influence of big data (and the internet of things) on the supply chain September 16, 2015 Process Mining The influence of big data (and the internet of things) on the supply chain Wil van der Aalst www.vdaalst.com @wvdaalst www.processmining.org http://www.engineersjournal.ie/factory-of-thefuture-will-see-merging-of-virtual-and-real-worlds/

More information

Data Science Betere processen en producten dankzij (Big) data. Wil van der Aalst www.vdaalst.com @wvdaalst www.processmining.org

Data Science Betere processen en producten dankzij (Big) data. Wil van der Aalst www.vdaalst.com @wvdaalst www.processmining.org Data Science Betere processen en producten dankzij (Big) data Wil van der Aalst www.vdaalst.com @wvdaalst www.processmining.org Data Science Center Eindhoven http://www.tue.nl/dsce/ DSC/e: Competences

More information

Using Process Mining to Bridge the Gap between BI and BPM

Using Process Mining to Bridge the Gap between BI and BPM Using Process Mining to Bridge the Gap between BI and BPM Wil van der alst Eindhoven University of Technology, The Netherlands Process mining techniques enable process-centric analytics through automated

More information

Chapter 4 Getting the Data

Chapter 4 Getting the Data Chapter 4 Getting the Data prof.dr.ir. Wil van der Aalst www.processmining.org Overview Chapter 1 Introduction Part I: Preliminaries Chapter 2 Process Modeling and Analysis Chapter 3 Data Mining Part II:

More information

Process Mining. ^J Springer. Discovery, Conformance and Enhancement of Business Processes. Wil M.R van der Aalst Q UNIVERS1TAT.

Process Mining. ^J Springer. Discovery, Conformance and Enhancement of Business Processes. Wil M.R van der Aalst Q UNIVERS1TAT. Wil M.R van der Aalst Process Mining Discovery, Conformance and Enhancement of Business Processes Q UNIVERS1TAT m LIECHTENSTEIN Bibliothek ^J Springer Contents 1 Introduction I 1.1 Data Explosion I 1.2

More information

Summary and Outlook. Business Process Intelligence Course Lecture 8. prof.dr.ir. Wil van der Aalst. www.processmining.org

Summary and Outlook. Business Process Intelligence Course Lecture 8. prof.dr.ir. Wil van der Aalst. www.processmining.org Business Process Intelligence Course Lecture 8 Summary and Outlook prof.dr.ir. Wil van der Aalst www.processmining.org Overview Chapter 1 Introduction Part I: Preliminaries Chapter 2 Process Modeling and

More information

Data Science. Research Theme: Process Mining

Data Science. Research Theme: Process Mining Data Science Research Theme: Process Mining Process mining is a relatively young research discipline that sits between computational intelligence and data mining on the one hand and process modeling and

More information

Model Discovery from Motor Claim Process Using Process Mining Technique

Model Discovery from Motor Claim Process Using Process Mining Technique International Journal of Scientific and Research Publications, Volume 3, Issue 1, January 2013 1 Model Discovery from Motor Claim Process Using Process Mining Technique P.V.Kumaraguru *, Dr.S.P.Rajagopalan

More information

Chapter 12 Analyzing Spaghetti Processes

Chapter 12 Analyzing Spaghetti Processes Chapter 12 Analyzing Spaghetti Processes prof.dr.ir. Wil van der Aalst www.processmining.org Overview Chapter 1 Introduction Part I: Preliminaries Chapter 2 Process Modeling and Analysis Chapter 3 Data

More information

BIS 3106: Business Process Management. Lecture Two: Modelling the Control-flow Perspective

BIS 3106: Business Process Management. Lecture Two: Modelling the Control-flow Perspective BIS 3106: Business Process Management Lecture Two: Modelling the Control-flow Perspective Makerere University School of Computing and Informatics Technology Department of Computer Science SEM I 2015/2016

More information

Process Mining and Visual Analytics: Breathing Life into Business Process Models

Process Mining and Visual Analytics: Breathing Life into Business Process Models Process Mining and Visual Analytics: Breathing Life into Business Process Models Wil M.P. van der Aalst 1, Massimiliano de Leoni 1, and Arthur H.M. ter Hofstede 1,2 1 Eindhoven University of Technology,

More information

Process Mining: Making Knowledge Discovery Process Centric

Process Mining: Making Knowledge Discovery Process Centric Process Mining: Making Knowledge Discovery Process Centric Wil van der alst Department of Mathematics and Computer Science Eindhoven University of Technology PO Box 513, 5600 MB, Eindhoven, The Netherlands

More information

Business Intelligence and Process Modelling

Business Intelligence and Process Modelling Business Intelligence and Process Modelling F.W. Takes Universiteit Leiden Lecture 7: Network Analytics & Process Modelling Introduction BIPM Lecture 7: Network Analytics & Process Modelling Introduction

More information

Process Modelling from Insurance Event Log

Process Modelling from Insurance Event Log Process Modelling from Insurance Event Log P.V. Kumaraguru Research scholar, Dr.M.G.R Educational and Research Institute University Chennai- 600 095 India Dr. S.P. Rajagopalan Professor Emeritus, Dr. M.G.R

More information

Business Process Modeling

Business Process Modeling Business Process Concepts Process Mining Kelly Rosa Braghetto Instituto de Matemática e Estatística Universidade de São Paulo kellyrb@ime.usp.br January 30, 2009 1 / 41 Business Process Concepts Process

More information

ProM 6 Exercises. J.C.A.M. (Joos) Buijs and J.J.C.L. (Jan) Vogelaar {j.c.a.m.buijs,j.j.c.l.vogelaar}@tue.nl. August 2010

ProM 6 Exercises. J.C.A.M. (Joos) Buijs and J.J.C.L. (Jan) Vogelaar {j.c.a.m.buijs,j.j.c.l.vogelaar}@tue.nl. August 2010 ProM 6 Exercises J.C.A.M. (Joos) Buijs and J.J.C.L. (Jan) Vogelaar {j.c.a.m.buijs,j.j.c.l.vogelaar}@tue.nl August 2010 The exercises provided in this section are meant to become more familiar with ProM

More information

Mercy Health System. St. Louis, MO. Process Mining of Clinical Workflows for Quality and Process Improvement

Mercy Health System. St. Louis, MO. Process Mining of Clinical Workflows for Quality and Process Improvement Mercy Health System St. Louis, MO Process Mining of Clinical Workflows for Quality and Process Improvement Paul Helmering, Executive Director, Enterprise Architecture Pete Harrison, Data Analyst, Mercy

More information

Dotted Chart and Control-Flow Analysis for a Loan Application Process

Dotted Chart and Control-Flow Analysis for a Loan Application Process Dotted Chart and Control-Flow Analysis for a Loan Application Process Thomas Molka 1,2, Wasif Gilani 1 and Xiao-Jun Zeng 2 Business Intelligence Practice, SAP Research, Belfast, UK The University of Manchester,

More information

Methods for the specification and verification of business processes MPB (6 cfu, 295AA)

Methods for the specification and verification of business processes MPB (6 cfu, 295AA) Methods for the specification and verification of business processes MPB (6 cfu, 295AA) Roberto Bruni http://www.di.unipi.it/~bruni 24 - Process Mining 1 Object We overview the key principles of process

More information

Supporting the Workflow Management System Development Process with YAWL

Supporting the Workflow Management System Development Process with YAWL Supporting the Workflow Management System Development Process with YAWL R.S. Mans 1, W.M.P. van der Aalst 1 Department of Mathematics and Computer Science, Eindhoven University of Technology, P.O. ox 513,

More information

CHAPTER 1 INTRODUCTION

CHAPTER 1 INTRODUCTION CHAPTER 1 INTRODUCTION 1.1 Research Motivation In today s modern digital environment with or without our notice we are leaving our digital footprints in various data repositories through our daily activities,

More information

Feature. Applications of Business Process Analytics and Mining for Internal Control. World

Feature. Applications of Business Process Analytics and Mining for Internal Control. World Feature Filip Caron is a doctoral researcher in the Department of Decision Sciences and Information Management, Information Systems Group, at the Katholieke Universiteit Leuven (Flanders, Belgium). Jan

More information

Process Mining Online Assessment Data

Process Mining Online Assessment Data Process Mining Online Assessment Data Mykola Pechenizkiy, Nikola Trčka, Ekaterina Vasilyeva, Wil van der Aalst, Paul De Bra {m.pechenizkiy, e.vasilyeva, n.trcka, w.m.p.v.d.aalst}@tue.nl, debra@win.tue.nl

More information

Business Process Discovery

Business Process Discovery Sandeep Jadhav Introduction Well defined, organized, implemented, and managed Business Processes are very critical to the success of any organization that wants to operate efficiently. Business Process

More information

Supporting the BPM lifecycle with FileNet

Supporting the BPM lifecycle with FileNet Supporting the BPM lifecycle with FileNet Mariska Netjes Hajo A. Reijers Wil. M.P. van der Aalst Outline Introduction Evaluation approach Evaluation of FileNet Conclusions Business Process Management Supporting

More information

Formal Modeling and Analysis by Simulation of Data Paths in Digital Document Printers

Formal Modeling and Analysis by Simulation of Data Paths in Digital Document Printers Formal Modeling and Analysis by Simulation of Data Paths in Digital Document Printers Venkatesh Kannan, Wil M.P. van der Aalst, and Marc Voorhoeve Department of Mathematics and Computer Science, Eindhoven

More information

Towards Cross-Organizational Process Mining in Collections of Process Models and their Executions

Towards Cross-Organizational Process Mining in Collections of Process Models and their Executions Towards Cross-Organizational Process Mining in Collections of Process Models and their Executions J.C.A.M. Buijs, B.F. van Dongen, W.M.P. van der Aalst Department of Mathematics and Computer Science, Eindhoven

More information

Towards a Software Framework for Automatic Business Process Redesign Marwa M.Essam 1, Selma Limam Mansar 2 1

Towards a Software Framework for Automatic Business Process Redesign Marwa M.Essam 1, Selma Limam Mansar 2 1 ACEEE Int. J. on Communication, Vol. 02, No. 03, Nov 2011 Towards a Software Framework for Automatic Business Process Redesign Marwa M.Essam 1, Selma Limam Mansar 2 1 Faculty of Information and Computer

More information

Title: Basic Concepts and Technologies for Business Process Management

Title: Basic Concepts and Technologies for Business Process Management Title: Basic Concepts and Technologies for Business Process Management Presenter: prof.dr. Manfred Reichert The economic success of an enterprise more and more depends on its ability to flexibly and quickly

More information

Implementing Heuristic Miner for Different Types of Event Logs

Implementing Heuristic Miner for Different Types of Event Logs Implementing Heuristic Miner for Different Types of Event Logs Angelina Prima Kurniati 1, GunturPrabawa Kusuma 2, GedeAgungAry Wisudiawan 3 1,3 School of Compuing, Telkom University, Indonesia. 2 School

More information

Intelligent Process Management & Process Visualization. TAProViz 2014 workshop. Presenter: Dafna Levy

Intelligent Process Management & Process Visualization. TAProViz 2014 workshop. Presenter: Dafna Levy Intelligent Process Management & Process Visualization TAProViz 2014 workshop Presenter: Dafna Levy The Topics Process Visualization in Priority ERP Planning Execution BI analysis (Built-in) Discovering

More information

WoPeD - An Educational Tool for Workflow Nets

WoPeD - An Educational Tool for Workflow Nets WoPeD - An Educational Tool for Workflow Nets Thomas Freytag, Cooperative State University (DHBW) Karlsruhe, Germany freytag@dhbw-karlsruhe.de Martin Sänger, 1&1 Internet AG, Karlsruhe, Germany m.saenger09@web.de

More information

Process simulation. Enn Õunapuu enn.ounapuu@ttu.ee

Process simulation. Enn Õunapuu enn.ounapuu@ttu.ee Process simulation Enn Õunapuu enn.ounapuu@ttu.ee Content Problem How? Example Simulation Definition Modeling and simulation functionality allows for preexecution what-if modeling and simulation. Postexecution

More information

Process Mining Tools: A Comparative Analysis

Process Mining Tools: A Comparative Analysis EINDHOVEN UNIVERSITY OF TECHNOLOGY Department of Mathematics and Computer Science Process Mining Tools: A Comparative Analysis Irina-Maria Ailenei in partial fulfillment of the requirements for the degree

More information

Analysis of Service Level Agreements using Process Mining techniques

Analysis of Service Level Agreements using Process Mining techniques Analysis of Service Level Agreements using Process Mining techniques CHRISTIAN MAGER University of Applied Sciences Wuerzburg-Schweinfurt Process Mining offers powerful methods to extract knowledge from

More information

Process Mining. Data science in action

Process Mining. Data science in action Process Mining. Data science in action Julia Rudnitckaia Brno, University of Technology, Faculty of Information Technology, irudnickaia@fit.vutbr.cz 1 Abstract. At last decades people have to accumulate

More information

Lluis Belanche + Alfredo Vellido. Intelligent Data Analysis and Data Mining. Data Analysis and Knowledge Discovery

Lluis Belanche + Alfredo Vellido. Intelligent Data Analysis and Data Mining. Data Analysis and Knowledge Discovery Lluis Belanche + Alfredo Vellido Intelligent Data Analysis and Data Mining or Data Analysis and Knowledge Discovery a.k.a. Data Mining II An insider s view Geoff Holmes: WEKA founder Process Mining

More information

3TU.BSR: Big Software on the Run

3TU.BSR: Big Software on the Run Summary Millions of lines of code - written in different languages by different people at different times, and operating on a variety of platforms - drive the systems performing key processes in our society.

More information

Software Visualization and Model Generation

Software Visualization and Model Generation Software Visualization and Model Generation Erik Doernenburg Software Developer ThoughtWorks, Inc. Gregor Hohpe Software Engineer Google, Inc. Where are the most defects? 2006 Erik Doernenburg & Gregor

More information

Combination of Process Mining and Simulation Techniques for Business Process Redesign: A Methodological Approach

Combination of Process Mining and Simulation Techniques for Business Process Redesign: A Methodological Approach Combination of Process Mining and Simulation Techniques for Business Process Redesign: A Methodological Approach Santiago Aguirre, Carlos Parra, and Jorge Alvarado Industrial Engineering Department, Pontificia

More information

Business process measurement - data mining. enn@cc.ttu.ee

Business process measurement - data mining. enn@cc.ttu.ee Business process measurement - data mining. enn@cc.ttu.ee Business process measurement Balanced scorecard Process mining - ProM Äriprotsessi konteksti perspektiiv Clear & measurable goals Effective solutions

More information

SOFTWARE PROCESS MINING

SOFTWARE PROCESS MINING SOFTWARE PROCESS MINING DR. VLADIMIR RUBIN LEAD IT ARCHITECT & CONSULTANT @ DR. RUBIN IT CONSULTING LEAD RESEARCH FELLOW @ PAIS LAB / HSE ANNOTATION Nowadays, in the era of social, mobile and cloud computing,

More information

Application of Process Mining in Healthcare A Case Study in a Dutch Hospital

Application of Process Mining in Healthcare A Case Study in a Dutch Hospital Application of Process Mining in Healthcare A Case Study in a Dutch Hospital R.S. Mans 1, M.H. Schonenberg 1, M. Song 1, W.M.P. van der Aalst 1, and P.J.M. Bakker 2 1 Department of Information Systems

More information

A Framework for Effective Alert Visualization. SecureWorks 11 Executive Park Dr Atlanta, GA 30329 {ubanerjee, jramsey}@secureworks.

A Framework for Effective Alert Visualization. SecureWorks 11 Executive Park Dr Atlanta, GA 30329 {ubanerjee, jramsey}@secureworks. A Framework for Effective Alert Visualization Uday Banerjee Jon Ramsey SecureWorks 11 Executive Park Dr Atlanta, GA 30329 {ubanerjee, jramsey}@secureworks.com Abstract Any organization/department that

More information

Using Trace Clustering for Configurable Process Discovery Explained by Event Log Data

Using Trace Clustering for Configurable Process Discovery Explained by Event Log Data Master of Business Information Systems, Department of Mathematics and Computer Science Using Trace Clustering for Configurable Process Discovery Explained by Event Log Data Master Thesis Author: ing. Y.P.J.M.

More information

MTAT.03.231 Business Process Management (BPM) Lecture 6 Quantitative Process Analysis (Queuing & Simulation)

MTAT.03.231 Business Process Management (BPM) Lecture 6 Quantitative Process Analysis (Queuing & Simulation) MTAT.03.231 Business Process Management (BPM) Lecture 6 Quantitative Process Analysis (Queuing & Simulation) Marlon Dumas marlon.dumas ät ut. ee Business Process Analysis 2 Process Analysis Techniques

More information

Professional Organization Checklist for the Computer Science Curriculum Updates. Association of Computing Machinery Computing Curricula 2008

Professional Organization Checklist for the Computer Science Curriculum Updates. Association of Computing Machinery Computing Curricula 2008 Professional Organization Checklist for the Computer Science Curriculum Updates Association of Computing Machinery Computing Curricula 2008 The curriculum guidelines can be found in Appendix C of the report

More information

Process Mining and Monitoring Processes and Services: Workshop Report

Process Mining and Monitoring Processes and Services: Workshop Report Process Mining and Monitoring Processes and Services: Workshop Report Wil van der Aalst (editor) Eindhoven University of Technology, P.O.Box 513, NL-5600 MB, Eindhoven, The Netherlands. w.m.p.v.d.aalst@tm.tue.nl

More information

Analytics for Performance Optimization of BPMN2.0 Business Processes

Analytics for Performance Optimization of BPMN2.0 Business Processes Analytics for Performance Optimization of BPMN2.0 Business Processes Robert M. Shapiro, Global 360, USA Hartmann Genrich, GMD (retired), Germany INTRODUCTION We describe a new approach to process improvement

More information

Improving Process Intelligence With Predictive Analytics

Improving Process Intelligence With Predictive Analytics Improving Process Intelligence With Predictive Analytics Understanding how processes behave over time is critical to both the active management and optimization of processes. During process modeling and

More information

Trace Clustering in Process Mining

Trace Clustering in Process Mining Trace Clustering in Process Mining M. Song, C.W. Günther, and W.M.P. van der Aalst Eindhoven University of Technology P.O.Box 513, NL-5600 MB, Eindhoven, The Netherlands. {m.s.song,c.w.gunther,w.m.p.v.d.aalst}@tue.nl

More information

Handling Big(ger) Logs: Connecting ProM 6 to Apache Hadoop

Handling Big(ger) Logs: Connecting ProM 6 to Apache Hadoop Handling Big(ger) Logs: Connecting ProM 6 to Apache Hadoop Sergio Hernández 1, S.J. van Zelst 2, Joaquín Ezpeleta 1, and Wil M.P. van der Aalst 2 1 Department of Computer Science and Systems Engineering

More information

Modeling and Analysis of Incoming Raw Materials Business Process: A Process Mining Approach

Modeling and Analysis of Incoming Raw Materials Business Process: A Process Mining Approach Modeling and Analysis of Incoming Raw Materials Business Process: A Process Mining Approach Mahendrawathi Er*, Hanim Maria Astuti, Dita Pramitasari Information Systems Department, Faculty of Information

More information

FileNet s BPM life-cycle support

FileNet s BPM life-cycle support FileNet s BPM life-cycle support Mariska Netjes, Hajo A. Reijers, Wil M.P. van der Aalst Eindhoven University of Technology, Department of Technology Management, PO Box 513, NL-5600 MB Eindhoven, The Netherlands

More information

Performance testing as a full life cycle activity. Julian Harty

Performance testing as a full life cycle activity. Julian Harty Performance testing as a full life cycle activity Julian Harty Julian Harty & Stuart Reid 2004 Scope of Performance Performance What is performance testing? Various views 3 outcomes 3 evaluation techniques

More information

Nr.: Fakultät für Informatik Otto-von-Guericke-Universität Magdeburg

Nr.: Fakultät für Informatik Otto-von-Guericke-Universität Magdeburg Nr.: Fakultät für Informatik Otto-von-Guericke-Universität Magdeburg Nr.: Fakultät für Informatik Otto-von-Guericke-Universität Magdeburg Impressum ( 5 TMG) Herausgeber: Otto-von-Guericke-Universität Magdeburg

More information

BPIC 2014: Insights from the Analysis of Rabobank Service Desk Processes

BPIC 2014: Insights from the Analysis of Rabobank Service Desk Processes BPIC 2014: Insights from the Analysis of Rabobank Service Desk Processes Bruna Christina P. Brandão, Guilherme Neves Lopes, Pedro Henrique P. Richetti Department of Applied Informatics - Federal University

More information

Web Load Stress Testing

Web Load Stress Testing Web Load Stress Testing Overview A Web load stress test is a diagnostic tool that helps predict how a website will respond to various traffic levels. This test can answer critical questions such as: How

More information

Test Suite Generation for Services

Test Suite Generation for Services Test Suite Generation for Services Kathrin Kaschner and Niels Lohmann WESOA 2008 Sydney 1 December 2008 http://service technology.org/wesoa2008 UNIVERSITÄT ROSTOCK Testing Services: What's new? classical

More information

Workflow Support for the Healthcare Domain

Workflow Support for the Healthcare Domain Workflow Support for the Healthcare Domain register patient check patient data physical examination make documents consultation give information Ronny Mans Workflow Support for the Healthcare Domain CIP-DATA

More information

Augmented Search for IT Data Analytics. New frontier in big log data analysis and application intelligence

Augmented Search for IT Data Analytics. New frontier in big log data analysis and application intelligence Augmented Search for IT Data Analytics New frontier in big log data analysis and application intelligence Business white paper May 2015 IT data is a general name to log data, IT metrics, application data,

More information

TURNING INSIGHT INTO FORESIGHT: USING PREDICTIVE SIMULATION TO CREATE BUSINESS ADVANTAGE

TURNING INSIGHT INTO FORESIGHT: USING PREDICTIVE SIMULATION TO CREATE BUSINESS ADVANTAGE TURNING INSIGHT INTO FORESIGHT: USING PREDICTIVE SIMULATION TO CREATE BUSINESS ADVANTAGE This paper will look at how the application of predictive simulation to advanced analytics can take decision making

More information

Business Process Management: A personal view

Business Process Management: A personal view Business Process Management: A personal view W.M.P. van der Aalst Department of Technology Management Eindhoven University of Technology, The Netherlands w.m.p.v.d.aalst@tm.tue.nl 1 Introduction Business

More information

Process Mining Using BPMN: Relating Event Logs and Process Models

Process Mining Using BPMN: Relating Event Logs and Process Models Noname manuscript No. (will be inserted by the editor) Process Mining Using BPMN: Relating Event Logs and Process Models Anna A. Kalenkova W. M. P. van der Aalst Irina A. Lomazova Vladimir A. Rubin Received:

More information

Discovering Queues from Event Logs with Varying Levels of Information

Discovering Queues from Event Logs with Varying Levels of Information Discovering Queues from Event Logs with Varying Levels of Information Arik Senderovich 2, Sander J.J. Leemans 1, Shahar Harel 2, Avigdor Gal 2, Avishai Mandelbaum 2, and Wil M.P. van der Aalst 1 1 Eindhoven

More information

Maximize Warehouse Management Systems with Process Mining Technology

Maximize Warehouse Management Systems with Process Mining Technology WMS Maximize Warehouse Management Systems with Process Mining Technology Short Introduction & Background Courtesy of Soft Solutions Warehouse Management System Ordering & Receiving Goods to the Warehouse

More information

Business Process Quality Metrics: Log-based Complexity of Workflow Patterns

Business Process Quality Metrics: Log-based Complexity of Workflow Patterns Business Process Quality Metrics: Log-based Complexity of Workflow Patterns Jorge Cardoso Department of Mathematics and Engineering, University of Madeira, Funchal, Portugal jcardoso@uma.pt Abstract. We

More information

WebSphere Business Monitor V7.0 Business space dashboards

WebSphere Business Monitor V7.0 Business space dashboards Copyright IBM Corporation 2010 All rights reserved IBM WEBSPHERE BUSINESS MONITOR 7.0 LAB EXERCISE WebSphere Business Monitor V7.0 What this exercise is about... 2 Lab requirements... 2 What you should

More information

MS-10750: Monitoring and Operating a Private Cloud with System Center 2012. Required Exam(s) Course Objectives. Price. Duration. Methods of Delivery

MS-10750: Monitoring and Operating a Private Cloud with System Center 2012. Required Exam(s) Course Objectives. Price. Duration. Methods of Delivery MS-10750: Monitoring and Operating a Private Cloud with System Center 2012 This course describes the various components of System Center and how to deploy, monitor and manage a service and prepackaged

More information

Reducing or increasing the number of people assigned to an activity. A sudden increase of the number of instances flowing through the process.

Reducing or increasing the number of people assigned to an activity. A sudden increase of the number of instances flowing through the process. 2 Process Simulation 2 Process Simulation... 1 2.1 Process Simulation Overview... 1 2.2 Process Simulation Lab... 1 2.2.1 Creating Process Simulation Models... 2 2.2.2 Creating the Project Simulation Definition...

More information

Introduction to Business Model Simulation ActiveVOS Designer

Introduction to Business Model Simulation ActiveVOS Designer Introduction to Business Model Simulation ActiveVOS Designer 2010 Active Endpoints Inc. ActiveVOS is a trademark of Active Endpoints, Inc. All other company and product names are the property of their

More information

Business Process Configuration in The Cloud: How to Support and Analyze Multi-Tenant Processes?

Business Process Configuration in The Cloud: How to Support and Analyze Multi-Tenant Processes? Business Process Configuration in The Cloud: How to Support and Analyze Multi-Tenant Processes? W.M.P. van der Aalst Department of Mathematics and Computer Science, Eindhoven University of Technology Eindhoven,

More information

Discovering Stochastic Petri Nets with Arbitrary Delay Distributions From Event Logs

Discovering Stochastic Petri Nets with Arbitrary Delay Distributions From Event Logs Discovering Stochastic Petri Nets with Arbitrary Delay Distributions From Event Logs Andreas Rogge-Solti 1 and Wil M.P. van der Aalst 2 and Mathias Weske 1 1 Business Process Technology Group, Hasso Plattner

More information

Radiation Oncology Patient & Family Guide

Radiation Oncology Patient & Family Guide Radiation Oncology Patient & Family Guide 1 Radiation Oncology Patient & Family Guide The Radiation Oncology department is part of the Cleveland Clinic Cancer Center at Hillcrest Hospital. The department

More information

From Big Data to Smart Data Thomas Hahn

From Big Data to Smart Data Thomas Hahn Siemens Future Forum @ HANNOVER MESSE 2014 From Big to Smart Hannover Messe 2014 The Evolution of Big Digital data ~ 1960 warehousing ~1986 ~1993 Big data analytics Mining ~2015 Stream processing Digital

More information

A Software Framework for Risk-Aware Business Process Management

A Software Framework for Risk-Aware Business Process Management A Software Framework for Risk-Aware Business Management Raffaele Conforti 1, Marcello La Rosa 1,2, Arthur H.M. ter Hofstede 1,4, Giancarlo Fortino 3, Massimiliano de Leoni 4, Wil M.P. van der Aalst 4,1,

More information

Structural Detection of Deadlocks in Business Process Models

Structural Detection of Deadlocks in Business Process Models Structural Detection of Deadlocks in Business Process Models Ahmed Awad and Frank Puhlmann Business Process Technology Group Hasso Plattner Institut University of Potsdam, Germany (ahmed.awad,frank.puhlmann)@hpi.uni-potsdam.de

More information

Diagramming Techniques:

Diagramming Techniques: 1 Diagramming Techniques: FC,UML,PERT,CPM,EPC,STAFFWARE,... Eindhoven University of Technology Faculty of Technology Management Department of Information and Technology P.O. Box 513 5600 MB Eindhoven The

More information

Process mining challenges in hospital information systems

Process mining challenges in hospital information systems Proceedings of the Federated Conference on Computer Science and Information Systems pp. 1135 1140 ISBN 978-83-60810-51-4 Process mining challenges in hospital information systems Payam Homayounfar Wrocław

More information

Supporting the BPM life-cycle with FileNet

Supporting the BPM life-cycle with FileNet Supporting the BPM life-cycle with FileNet Mariska Netjes, Hajo A. Reijers, Wil M.P. van der Aalst Eindhoven University of Technology, Department of Technology Management, PO Box 513, NL-5600 MB Eindhoven,

More information

TAYLOR II MANUFACTURING SIMULATION SOFTWARE

TAYLOR II MANUFACTURING SIMULATION SOFTWARE Prnceedings of the 1996 WinteT Simulation ConfeTence ed. J. M. ClIarnes, D. J. Morrice, D. T. Brunner, and J. J. 8lvain TAYLOR II MANUFACTURING SIMULATION SOFTWARE Cliff B. King F&H Simulations, Inc. P.O.

More information

EMailAnalyzer: An E-Mail Mining Plug-in for the ProM Framework

EMailAnalyzer: An E-Mail Mining Plug-in for the ProM Framework EMailAnalyzer: An E-Mail Mining Plug-in for the ProM Framework Wil M.P. van der Aalst 1 and Andriy Nikolov 2 1 Department of Information Systems, Eindhoven University of Technology, P.O. Box 513, NL-5600

More information

Analytics Data Groups

Analytics Data Groups Analytics Data Groups Analytics Data Groups: Metrics and Dimensions When using the Site Analytics Gadget and the Page Analytics Gadget, the data for each group of metrics and dimensions are provided in

More information

Flexible Web Visualization for Alert-Based Network Security Analytics

Flexible Web Visualization for Alert-Based Network Security Analytics Flexible Web Visualization for Alert-Based Network Security Analytics Lihua Hao 1, Christopher G. Healey 1, Steve E. Hutchinson 2 1 North Carolina State University, 2 U.S. Army Research Laboratory lhao2@ncsu.edu

More information

Data Mining, Predictive Analytics with Microsoft Analysis Services and Excel PowerPivot

Data Mining, Predictive Analytics with Microsoft Analysis Services and Excel PowerPivot www.etidaho.com (208) 327-0768 Data Mining, Predictive Analytics with Microsoft Analysis Services and Excel PowerPivot 3 Days About this Course This course is designed for the end users and analysts that

More information

A Biologically Inspired Approach to Network Vulnerability Identification

A Biologically Inspired Approach to Network Vulnerability Identification A Biologically Inspired Approach to Network Vulnerability Identification Evolving CNO Strategies for CND Todd Hughes, Aron Rubin, Andrew Cortese,, Harris Zebrowitz Senior Member, Engineering Staff Advanced

More information

Translating Message Sequence Charts to other Process Languages using Process Mining

Translating Message Sequence Charts to other Process Languages using Process Mining Translating Message Sequence Charts to other Process Languages using Process Mining Kristian Bisgaard Lassen 1, Boudewijn F. van Dongen 2, and Wil M.P. van der Aalst 2 1 Department of Computer Science,

More information

WebSphere Business Monitor V6.2 Business space dashboards

WebSphere Business Monitor V6.2 Business space dashboards Copyright IBM Corporation 2009 All rights reserved IBM WEBSPHERE BUSINESS MONITOR 6.2 LAB EXERCISE WebSphere Business Monitor V6.2 What this exercise is about... 2 Lab requirements... 2 What you should

More information

T i. An Integrated Workbench For Optimizing Business Processes MODELING SIMULATION ANALYSIS OPTIMIZATION

T i. An Integrated Workbench For Optimizing Business Processes MODELING SIMULATION ANALYSIS OPTIMIZATION O P T i M An Integrated Workbench For Optimizing Business Processes MODELING SIMULATION ANALYSIS OPTIMIZATION O P T i M MODEL SIMULATE ANALYZE OPTIMIZE Integrated process modeler with import/export functionality

More information

Towards Comprehensive Support for Organizational Mining

Towards Comprehensive Support for Organizational Mining Towards Comprehensive Support for Organizational Mining Minseok Song and Wil M.P. van der Aalst Eindhoven University of Technology P.O.Box 513, NL-5600 MB, Eindhoven, The Netherlands. {m.s.song, w.m.p.v.d.aalst}@tue.nl

More information

Technology Implications of an Instrumented Planet presented at IFIP WG 10.4 Workshop on Challenges and Directions in Dependability

Technology Implications of an Instrumented Planet presented at IFIP WG 10.4 Workshop on Challenges and Directions in Dependability Technology Implications of an Instrumented Planet presented at IFIP WG 10.4 Workshop on Challenges and Directions in Dependability Nick Bowen Colin Harrison IBM June 2008 1 Background Global Technology

More information

Software Requirements Specification. Schlumberger Scheduling Assistant. for. Version 0.2. Prepared by Design Team A. Rice University COMP410/539

Software Requirements Specification. Schlumberger Scheduling Assistant. for. Version 0.2. Prepared by Design Team A. Rice University COMP410/539 Software Requirements Specification for Schlumberger Scheduling Assistant Page 1 Software Requirements Specification for Schlumberger Scheduling Assistant Version 0.2 Prepared by Design Team A Rice University

More information

INCREASE REVENUE PER SQUARE METER WITH ACTIONABLE INSIGHTS. Powered by

INCREASE REVENUE PER SQUARE METER WITH ACTIONABLE INSIGHTS. Powered by by INCREASE REVENUE PER SQUARE METER WITH ACTIONABLE INSIGHTS Powered by ACTIONABLE RETAIL INSIGHTS SUMMARY Retailers in brick and mortar stores need deep insight into consumer behavior and foot traffic

More information

EDIminer: A Toolset for Process Mining from EDI Messages

EDIminer: A Toolset for Process Mining from EDI Messages EDIminer: A Toolset for Process Mining from EDI Messages Robert Engel 1, R. P. Jagadeesh Chandra Bose 2, Christian Pichler 1, Marco Zapletal 1, and Hannes Werthner 1 1 Vienna University of Technology,

More information

Data Extraction Guide

Data Extraction Guide 1 Data Extraction Guide One of the big advantages of process mining is that it starts with the data that is already there, and usually it starts very simple. There is no need to first set up a data collection

More information

Introduction to Workflow

Introduction to Workflow Introduction to Workflow SISTEMI INFORMATICI SUPPORTO ALLE DECISIONI AA 2006-2007 Libro di testo: Wil van der Aalst and Kees van Hee. Workflow Management: Models, Methods, and Systems. The MIT Press, paperback

More information

Formal Modeling Approach for Supply Chain Event Management

Formal Modeling Approach for Supply Chain Event Management Formal Modeling Approach for Supply Chain Event Management Rong Liu and Akhil Kumar Smeal College of Business Penn State University University Park, PA 16802, USA {rul110,akhilkumar}@psu.edu Wil van der

More information

Configuring IBM WebSphere Monitor for Process Mining

Configuring IBM WebSphere Monitor for Process Mining Configuring IBM WebSphere Monitor for Process Mining H.M.W. Verbeek and W.M.P. van der Aalst Technische Universiteit Eindhoven Department of Mathematics and Computer Science P.O. Box 513, 5600 MB Eindhoven,

More information

Augmented Search for Web Applications. New frontier in big log data analysis and application intelligence

Augmented Search for Web Applications. New frontier in big log data analysis and application intelligence Augmented Search for Web Applications New frontier in big log data analysis and application intelligence Business white paper May 2015 Web applications are the most common business applications today.

More information