High Throughput Computing on P2P Networks. Carlos Pérez Miguel

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "High Throughput Computing on P2P Networks. Carlos Pérez Miguel carlos.perezm@ehu.es"

Transcription

1 High Throughput Computing on P2P Networks Carlos Pérez Miguel

2 Overview High Throughput Computing Motivation All things distributed: Peer-to-peer Non structured overlays Structured overlays P2P Computing Cassandra HTC over Cassandra Eventual consistency Experiments Future Work Conclusions

3 High Throughput Computing Concept introduced by the Condor team in 1996 In contrast to HPC, it optimizes the execution of a set of applications Figure of merit: the number of computational tasks per time unit Tasks are independent Examples: Condor, Oracle Grid Engine (Kalimero), BOINC

4 Functioning N worker nodes One master node Users interact with the master node Master manages pending task and idle workers using a queuing system Task are (usually) executed in FIFO order

5 Motivations Limitations of this model Master node may become a scalability bottleneck Failures in the master affects the whole system Is it possible to distribute the capabilities of the master node among all sytem nodes? How? (which technology can help?)

6 All things distributed: peerto-peer Distributed systems in which all nodes have the same role Nodes are interconnected defining an application-level virtual network An overlay network This overlay is used to locate other nodes and information inside them Two types of overlays: structured and non-structured

7 Non-structured overlays Nodes are interconnected randomly Searchs in the overlay are made by flooding Efficient search of popular contents Cannot guarantee that any system point is reachable Not efficient in terms of number of messages

8 Non-structured overlays (II)

9 Structured overlays Nodes interconnected using some kind of (regular) structure Each node has an unique ID of N bits, defining a 2 N keyspace This keyspace is divided among the nodes

10 Structured overlays (II) Each object in the system has an ID and a position in the key space A distance-based routing protocol is used This permits reaching any point with O(log n) messages

11 Distributed Hash Tables Provides a hash-like user API: Put (ID, Object) Get (ID) Fast access to distributed information Used to distribute file, communicate users, VoIP, Video Streaming

12 P2P Computing Must be seen by the user as a single resource pool User should be able to submit jobs from any node in the system System stores job s information permitting progress even when the user is not connected A FIFO order should be guaranteed DHTs are suitable for this purpose

13 DHTs for P2P Computing Must provide scalability in adverse conditions Must provide persistency (using replication) Replicas are synchronized by consensus algorithms Load balancing algorithms are also needed

14 DHTs for P2P Computing (II) In 2007 Amazon presented Dynamo, a DHT P2P system with persistence, scalability, access in O(n) and eventual consistency From Dynamo, many alternatives have been proposed: Riak, Scalaris, Memcached,... Facebook proposed Cassandra in 2009 with the same Dynamo capabilities and Google's BigTable data model

15 Cassandra Developed by Facebook and Twitter since 2009 Has been released to the Apache Foundation Developed in Java with multilanguage client libraries Pros: Fault tolerant, decentralized, scalable, durable Cons: Eventual consistency

16 Cassandra s Data Model DHTs store (key, value) pairs Cassandra store (key, (values..)) tuples across different tables The different tables are named ColumnFamilies or SuperColumnFamilies CF are 4-dimensional tables SCF are 5-dimensional tables

17 Column Families WaitingQueue ColumnFamily JobID Name Owner Binary 1 Task1 User1 URL 2 Task2 User2 URL 3 Task3 User1 URL N TaskN User3 URL

18 SuperColumn Families Waiting Running Queues SuperColumn Family Job1 Job2 JobN Task1 User1 Task2 User2 TaskN UserN Job1 Job2 JobN Task1 User1 Task2 User2 TaskN UserN

19 HTC over Cassandra A batch queue system has been implemented over Cassandra s data model This permits idle workers decide which task to run, in FIFO order Users can: Submit jobs Check jobs status Retrieve jobs results The use of Cassandra as underlying data storage allows for disconnected operation

20 HTC over Cassandra (II) System stores Job information Name Owner Binaries Users information Queues information The system is totally reconfigurable at run time, permitting the utilization of unlimited queues with different policies

21 Eventual Consistency All changes in any object reach all object replicas eventually CAP theorem implies that it is not possible to have these three properties at the same time: Consistency Availability Partition tolerance Cassandra have selected availability and partition tolerance instead of consistency In a failure-free scenario, Cassandra provides low latency

22 Eventual Consistency (II) This scenario implies the impossibility of atomic operations in Cassandra In our HTC system, collisions may happen when several nodes try to execute the same task We have implemented some partial solutions that reduce the probability of a collision: QUORUM consistency for all I/O operations Extra queue where idle nodes compete for the waiting task Reduces the collision probability from 30% to 4%

23 Experiments We have performed some experiments to evaluate our system A 20 nodes cluster has been used for this purpose Each node has a P4 processor with hyperthreading GB of RAM Each node represents one user in the system We have used a workload generator in order to generate a works list for each user

24 Metrics Bounded Slowdown: Waiting time for a job plus the running time bsd =max 1, w r max 10, r System utilization Scheduling time: time used by idle nodes to schedule a waiting job Collisions detected

25 System Load

26 Bounded Slowdown

27 Scheduling Time

28 Collisions

29 Future Work Find a viable solution to the Eventual Consistency problem Develop a workflow system with MapReduce tasks Reputation systems in order to classify nodes behavior

30 Conclusions HTC over P2P is possible A prototype has been developed Some preliminary experiments have been done obtaining good performance levels

31 QUESTIONS?

Cluster Computing. ! Fault tolerance. ! Stateless. ! Throughput. ! Stateful. ! Response time. Architectures. Stateless vs. Stateful.

Cluster Computing. ! Fault tolerance. ! Stateless. ! Throughput. ! Stateful. ! Response time. Architectures. Stateless vs. Stateful. Architectures Cluster Computing Job Parallelism Request Parallelism 2 2010 VMware Inc. All rights reserved Replication Stateless vs. Stateful! Fault tolerance High availability despite failures If one

More information

Cassandra A Decentralized, Structured Storage System

Cassandra A Decentralized, Structured Storage System Cassandra A Decentralized, Structured Storage System Avinash Lakshman and Prashant Malik Facebook Published: April 2010, Volume 44, Issue 2 Communications of the ACM http://dl.acm.org/citation.cfm?id=1773922

More information

MASTER PROJECT. Resource Provisioning for NoSQL Datastores

MASTER PROJECT. Resource Provisioning for NoSQL Datastores Vrije Universiteit Amsterdam MASTER PROJECT - Parallel and Distributed Computer Systems - Resource Provisioning for NoSQL Datastores Scientific Adviser Dr. Guillaume Pierre Author Eng. Mihai-Dorin Istin

More information

Xiaowe Xiaow i e Wan Wa g Jingxin Fen Fe g n Mar 7th, 2011

Xiaowe Xiaow i e Wan Wa g Jingxin Fen Fe g n Mar 7th, 2011 Xiaowei Wang Jingxin Feng Mar 7 th, 2011 Overview Background Data Model API Architecture Users Linearly scalability Replication and Consistency Tradeoff Background Cassandra is a highly scalable, eventually

More information

Facebook: Cassandra. Smruti R. Sarangi. Department of Computer Science Indian Institute of Technology New Delhi, India. Overview Design Evaluation

Facebook: Cassandra. Smruti R. Sarangi. Department of Computer Science Indian Institute of Technology New Delhi, India. Overview Design Evaluation Facebook: Cassandra Smruti R. Sarangi Department of Computer Science Indian Institute of Technology New Delhi, India Smruti R. Sarangi Leader Election 1/24 Outline 1 2 3 Smruti R. Sarangi Leader Election

More information

NoSQL Data Base Basics

NoSQL Data Base Basics NoSQL Data Base Basics Course Notes in Transparency Format Cloud Computing MIRI (CLC-MIRI) UPC Master in Innovation & Research in Informatics Spring- 2013 Jordi Torres, UPC - BSC www.jorditorres.eu HDFS

More information

Storage Systems Autumn 2009. Chapter 6: Distributed Hash Tables and their Applications André Brinkmann

Storage Systems Autumn 2009. Chapter 6: Distributed Hash Tables and their Applications André Brinkmann Storage Systems Autumn 2009 Chapter 6: Distributed Hash Tables and their Applications André Brinkmann Scaling RAID architectures Using traditional RAID architecture does not scale Adding news disk implies

More information

Cloud data store services and NoSQL databases. Ricardo Vilaça Universidade do Minho Portugal

Cloud data store services and NoSQL databases. Ricardo Vilaça Universidade do Minho Portugal Cloud data store services and NoSQL databases Ricardo Vilaça Universidade do Minho Portugal Context Introduction Traditional RDBMS were not designed for massive scale. Storage of digital data has reached

More information

these three NoSQL databases because I wanted to see a the two different sides of the CAP

these three NoSQL databases because I wanted to see a the two different sides of the CAP Michael Sharp Big Data CS401r Lab 3 For this paper I decided to do research on MongoDB, Cassandra, and Dynamo. I chose these three NoSQL databases because I wanted to see a the two different sides of the

More information

WSO2 Message Broker. Scalable persistent Messaging System

WSO2 Message Broker. Scalable persistent Messaging System WSO2 Message Broker Scalable persistent Messaging System Outline Messaging Scalable Messaging Distributed Message Brokers WSO2 MB Architecture o Distributed Pub/sub architecture o Distributed Queues architecture

More information

Practical Cassandra. Vitalii Tymchyshyn tivv00@gmail.com @tivv00

Practical Cassandra. Vitalii Tymchyshyn tivv00@gmail.com @tivv00 Practical Cassandra NoSQL key-value vs RDBMS why and when Cassandra architecture Cassandra data model Life without joins or HDD space is cheap today Hardware requirements & deployment hints Vitalii Tymchyshyn

More information

extensible record stores document stores key-value stores Rick Cattel s clustering from Scalable SQL and NoSQL Data Stores SIGMOD Record, 2010

extensible record stores document stores key-value stores Rick Cattel s clustering from Scalable SQL and NoSQL Data Stores SIGMOD Record, 2010 System/ Scale to Primary Secondary Joins/ Integrity Language/ Data Year Paper 1000s Index Indexes Transactions Analytics Constraints Views Algebra model my label 1971 RDBMS O tables sql-like 2003 memcached

More information

BENCHMARKING CLOUD DATABASES CASE STUDY on HBASE, HADOOP and CASSANDRA USING YCSB

BENCHMARKING CLOUD DATABASES CASE STUDY on HBASE, HADOOP and CASSANDRA USING YCSB BENCHMARKING CLOUD DATABASES CASE STUDY on HBASE, HADOOP and CASSANDRA USING YCSB Planet Size Data!? Gartner s 10 key IT trends for 2012 unstructured data will grow some 80% over the course of the next

More information

Study and Comparison of Elastic Cloud Databases : Myth or Reality?

Study and Comparison of Elastic Cloud Databases : Myth or Reality? Université Catholique de Louvain Ecole Polytechnique de Louvain Computer Engineering Department Study and Comparison of Elastic Cloud Databases : Myth or Reality? Promoters: Peter Van Roy Sabri Skhiri

More information

A programming model in Cloud: MapReduce

A programming model in Cloud: MapReduce A programming model in Cloud: MapReduce Programming model and implementation developed by Google for processing large data sets Users specify a map function to generate a set of intermediate key/value

More information

Structured Data Storage

Structured Data Storage Structured Data Storage Xgen Congress Short Course 2010 Adam Kraut BioTeam Inc. Independent Consulting Shop: Vendor/technology agnostic Staffed by: Scientists forced to learn High Performance IT to conduct

More information

NoSQL Databases. Nikos Parlavantzas

NoSQL Databases. Nikos Parlavantzas !!!! NoSQL Databases Nikos Parlavantzas Lecture overview 2 Objective! Present the main concepts necessary for understanding NoSQL databases! Provide an overview of current NoSQL technologies Outline 3!

More information

Lecture Data Warehouse Systems

Lecture Data Warehouse Systems Lecture Data Warehouse Systems Eva Zangerle SS 2013 PART C: Novel Approaches in DW NoSQL and MapReduce Stonebraker on Data Warehouses Star and snowflake schemas are a good idea in the DW world C-Stores

More information

Cassandra. Jonathan Ellis

Cassandra. Jonathan Ellis Cassandra Jonathan Ellis Motivation Scaling reads to a relational database is hard Scaling writes to a relational database is virtually impossible and when you do, it usually isn't relational anymore The

More information

Distributed Computing over Communication Networks: Topology. (with an excursion to P2P)

Distributed Computing over Communication Networks: Topology. (with an excursion to P2P) Distributed Computing over Communication Networks: Topology (with an excursion to P2P) Some administrative comments... There will be a Skript for this part of the lecture. (Same as slides, except for today...

More information

A Review of Column-Oriented Datastores. By: Zach Pratt. Independent Study Dr. Maskarinec Spring 2011

A Review of Column-Oriented Datastores. By: Zach Pratt. Independent Study Dr. Maskarinec Spring 2011 A Review of Column-Oriented Datastores By: Zach Pratt Independent Study Dr. Maskarinec Spring 2011 Table of Contents 1 Introduction...1 2 Background...3 2.1 Basic Properties of an RDBMS...3 2.2 Example

More information

LARGE-SCALE DATA STORAGE APPLICATIONS

LARGE-SCALE DATA STORAGE APPLICATIONS BENCHMARKING AVAILABILITY AND FAILOVER PERFORMANCE OF LARGE-SCALE DATA STORAGE APPLICATIONS Wei Sun and Alexander Pokluda December 2, 2013 Outline Goal and Motivation Overview of Cassandra and Voldemort

More information

A REVIEW PAPER ON THE HADOOP DISTRIBUTED FILE SYSTEM

A REVIEW PAPER ON THE HADOOP DISTRIBUTED FILE SYSTEM A REVIEW PAPER ON THE HADOOP DISTRIBUTED FILE SYSTEM Sneha D.Borkar 1, Prof.Chaitali S.Surtakar 2 Student of B.E., Information Technology, J.D.I.E.T, sborkar95@gmail.com Assistant Professor, Information

More information

The NoSQL Ecosystem, Relaxed Consistency, and Snoop Dogg. Adam Marcus MIT CSAIL marcua@csail.mit.edu / @marcua

The NoSQL Ecosystem, Relaxed Consistency, and Snoop Dogg. Adam Marcus MIT CSAIL marcua@csail.mit.edu / @marcua The NoSQL Ecosystem, Relaxed Consistency, and Snoop Dogg Adam Marcus MIT CSAIL marcua@csail.mit.edu / @marcua About Me Social Computing + Database Systems Easily Distracted: Wrote The NoSQL Ecosystem in

More information

Introduction to NOSQL

Introduction to NOSQL Introduction to NOSQL Université Paris-Est Marne la Vallée, LIGM UMR CNRS 8049, France January 31, 2014 Motivations NOSQL stands for Not Only SQL Motivations Exponential growth of data set size (161Eo

More information

NoSQL Databases. Institute of Computer Science Databases and Information Systems (DBIS) DB 2, WS 2014/2015

NoSQL Databases. Institute of Computer Science Databases and Information Systems (DBIS) DB 2, WS 2014/2015 NoSQL Databases Institute of Computer Science Databases and Information Systems (DBIS) DB 2, WS 2014/2015 Database Landscape Source: H. Lim, Y. Han, and S. Babu, How to Fit when No One Size Fits., in CIDR,

More information

A Brief Analysis on Architecture and Reliability of Cloud Based Data Storage

A Brief Analysis on Architecture and Reliability of Cloud Based Data Storage Volume 2, No.4, July August 2013 International Journal of Information Systems and Computer Sciences ISSN 2319 7595 Tejaswini S L Jayanthy et al., Available International Online Journal at http://warse.org/pdfs/ijiscs03242013.pdf

More information

International Journal of Scientific & Engineering Research, Volume 4, Issue 11, November-2013 349 ISSN 2229-5518

International Journal of Scientific & Engineering Research, Volume 4, Issue 11, November-2013 349 ISSN 2229-5518 International Journal of Scientific & Engineering Research, Volume 4, Issue 11, November-2013 349 Load Balancing Heterogeneous Request in DHT-based P2P Systems Mrs. Yogita A. Dalvi Dr. R. Shankar Mr. Atesh

More information

Distributed Systems. Tutorial 12 Cassandra

Distributed Systems. Tutorial 12 Cassandra Distributed Systems Tutorial 12 Cassandra written by Alex Libov Based on FOSDEM 2010 presentation winter semester, 2013-2014 Cassandra In Greek mythology, Cassandra had the power of prophecy and the curse

More information

Analytics March 2015 White paper. Why NoSQL? Your database options in the new non-relational world

Analytics March 2015 White paper. Why NoSQL? Your database options in the new non-relational world Analytics March 2015 White paper Why NoSQL? Your database options in the new non-relational world 2 Why NoSQL? Contents 2 New types of apps are generating new types of data 2 A brief history of NoSQL 3

More information

Overview of Databases On MacOS. Karl Kuehn Automation Engineer RethinkDB

Overview of Databases On MacOS. Karl Kuehn Automation Engineer RethinkDB Overview of Databases On MacOS Karl Kuehn Automation Engineer RethinkDB Session Goals Introduce Database concepts Show example players Not Goals: Cover non-macos systems (Oracle) Teach you SQL Answer what

More information

Distributed Data Stores

Distributed Data Stores Distributed Data Stores 1 Distributed Persistent State MapReduce addresses distributed processing of aggregation-based queries Persistent state across a large number of machines? Distributed DBMS High

More information

Why NoSQL? Your database options in the new non- relational world. 2015 IBM Cloudant 1

Why NoSQL? Your database options in the new non- relational world. 2015 IBM Cloudant 1 Why NoSQL? Your database options in the new non- relational world 2015 IBM Cloudant 1 Table of Contents New types of apps are generating new types of data... 3 A brief history on NoSQL... 3 NoSQL s roots

More information

Highly available, scalable and secure data with Cassandra and DataStax Enterprise. GOTO Berlin 27 th February 2014

Highly available, scalable and secure data with Cassandra and DataStax Enterprise. GOTO Berlin 27 th February 2014 Highly available, scalable and secure data with Cassandra and DataStax Enterprise GOTO Berlin 27 th February 2014 About Us Steve van den Berg Johnny Miller Solutions Architect Regional Director Western

More information

Challenges for Data Driven Systems

Challenges for Data Driven Systems Challenges for Data Driven Systems Eiko Yoneki University of Cambridge Computer Laboratory Quick History of Data Management 4000 B C Manual recording From tablets to papyrus to paper A. Payberah 2014 2

More information

Evaluation of NoSQL databases for large-scale decentralized microblogging

Evaluation of NoSQL databases for large-scale decentralized microblogging Evaluation of NoSQL databases for large-scale decentralized microblogging Cassandra & Couchbase Alexandre Fonseca, Anh Thu Vu, Peter Grman Decentralized Systems - 2nd semester 2012/2013 Universitat Politècnica

More information

CSE-E5430 Scalable Cloud Computing Lecture 2

CSE-E5430 Scalable Cloud Computing Lecture 2 CSE-E5430 Scalable Cloud Computing Lecture 2 Keijo Heljanko Department of Computer Science School of Science Aalto University keijo.heljanko@aalto.fi 14.9-2015 1/36 Google MapReduce A scalable batch processing

More information

Big Data Storage, Management and challenges. Ahmed Ali-Eldin

Big Data Storage, Management and challenges. Ahmed Ali-Eldin Big Data Storage, Management and challenges Ahmed Ali-Eldin (Ambitious) Plan What is Big Data? And Why talk about Big Data? How to store Big Data? BigTables (Google) Dynamo (Amazon) How to process Big

More information

Amazon EC2 Product Details Page 1 of 5

Amazon EC2 Product Details Page 1 of 5 Amazon EC2 Product Details Page 1 of 5 Amazon EC2 Functionality Amazon EC2 presents a true virtual computing environment, allowing you to use web service interfaces to launch instances with a variety of

More information

Distributed Storage Systems

Distributed Storage Systems Distributed Storage Systems John Leach john@brightbox.com twitter @johnleach Brightbox Cloud http://brightbox.com Our requirements Bright box has multiple zones (data centres) Should tolerate a zone failure

More information

In-Memory BigData. Summer 2012, Technology Overview

In-Memory BigData. Summer 2012, Technology Overview In-Memory BigData Summer 2012, Technology Overview Company Vision In-Memory Data Processing Leader: > 5 years in production > 100s of customers > Starts every 10 secs worldwide > Over 10,000,000 starts

More information

In Memory Accelerator for MongoDB

In Memory Accelerator for MongoDB In Memory Accelerator for MongoDB Yakov Zhdanov, Director R&D GridGain Systems GridGain: In Memory Computing Leader 5 years in production 100s of customers & users Starts every 10 secs worldwide Over 15,000,000

More information

Can the Elephants Handle the NoSQL Onslaught?

Can the Elephants Handle the NoSQL Onslaught? Can the Elephants Handle the NoSQL Onslaught? Avrilia Floratou, Nikhil Teletia David J. DeWitt, Jignesh M. Patel, Donghui Zhang University of Wisconsin-Madison Microsoft Jim Gray Systems Lab Presented

More information

GraySort on Apache Spark by Databricks

GraySort on Apache Spark by Databricks GraySort on Apache Spark by Databricks Reynold Xin, Parviz Deyhim, Ali Ghodsi, Xiangrui Meng, Matei Zaharia Databricks Inc. Apache Spark Sorting in Spark Overview Sorting Within a Partition Range Partitioner

More information

CSE-E5430 Scalable Cloud Computing Lecture 6

CSE-E5430 Scalable Cloud Computing Lecture 6 CSE-E5430 Scalable Cloud Computing Lecture 6 Keijo Heljanko Department of Computer Science School of Science Aalto University keijo.heljanko@aalto.fi 26.10-2015 1/20 Hard Disk Read Errors Unrecoverable

More information

Data Consistency on Private Cloud Storage System

Data Consistency on Private Cloud Storage System Volume, Issue, May-June 202 ISS 2278-6856 Data Consistency on Private Cloud Storage System Yin yein Aye University of Computer Studies,Yangon yinnyeinaye.ptn@email.com Abstract: Cloud computing paradigm

More information

SQL VS. NO-SQL. Adapted Slides from Dr. Jennifer Widom from Stanford

SQL VS. NO-SQL. Adapted Slides from Dr. Jennifer Widom from Stanford SQL VS. NO-SQL Adapted Slides from Dr. Jennifer Widom from Stanford 55 Traditional Databases SQL = Traditional relational DBMS Hugely popular among data analysts Widely adopted for transaction systems

More information

www.basho.com Technical Overview Simple, Scalable, Object Storage Software

www.basho.com Technical Overview Simple, Scalable, Object Storage Software www.basho.com Technical Overview Simple, Scalable, Object Storage Software Table of Contents Table of Contents... 1 Introduction & Overview... 1 Architecture... 2 How it Works... 2 APIs and Interfaces...

More information

Not Relational Models For The Management of Large Amount of Astronomical Data. Bruno Martino (IASI/CNR), Memmo Federici (IAPS/INAF)

Not Relational Models For The Management of Large Amount of Astronomical Data. Bruno Martino (IASI/CNR), Memmo Federici (IAPS/INAF) Not Relational Models For The Management of Large Amount of Astronomical Data Bruno Martino (IASI/CNR), Memmo Federici (IAPS/INAF) What is a DBMS A Data Base Management System is a software infrastructure

More information

Hadoop. MPDL-Frühstück 9. Dezember 2013 MPDL INTERN

Hadoop. MPDL-Frühstück 9. Dezember 2013 MPDL INTERN Hadoop MPDL-Frühstück 9. Dezember 2013 MPDL INTERN Understanding Hadoop Understanding Hadoop What's Hadoop about? Apache Hadoop project (started 2008) downloadable open-source software library (current

More information

HDB++: HIGH AVAILABILITY WITH. l TANGO Meeting l 20 May 2015 l Reynald Bourtembourg

HDB++: HIGH AVAILABILITY WITH. l TANGO Meeting l 20 May 2015 l Reynald Bourtembourg HDB++: HIGH AVAILABILITY WITH Page 1 OVERVIEW What is Cassandra (C*)? Who is using C*? CQL C* architecture Request Coordination Consistency Monitoring tool HDB++ Page 2 OVERVIEW What is Cassandra (C*)?

More information

Blockchain, Throughput, and Big Data Trent McConaghy

Blockchain, Throughput, and Big Data Trent McConaghy Blockchain, Throughput, and Big Data Trent McConaghy Bitcoin Startups Berlin Oct 28, 2014 Conclusion Outline Throughput numbers Big data Consensus algorithms ACID Blockchain Big data? Throughput numbers

More information

1. Comments on reviews a. Need to avoid just summarizing web page asks you for:

1. Comments on reviews a. Need to avoid just summarizing web page asks you for: 1. Comments on reviews a. Need to avoid just summarizing web page asks you for: i. A one or two sentence summary of the paper ii. A description of the problem they were trying to solve iii. A summary of

More information

Big Systems, Big Data

Big Systems, Big Data Big Systems, Big Data When considering Big Distributed Systems, it can be noted that a major concern is dealing with data, and in particular, Big Data Have general data issues (such as latency, availability,

More information

Using Peer to Peer Dynamic Querying in Grid Information Services

Using Peer to Peer Dynamic Querying in Grid Information Services Using Peer to Peer Dynamic Querying in Grid Information Services Domenico Talia and Paolo Trunfio DEIS University of Calabria HPC 2008 July 2, 2008 Cetraro, Italy Using P2P for Large scale Grid Information

More information

Lecture 3: Scaling by Load Balancing 1. Comments on reviews i. 2. Topic 1: Scalability a. QUESTION: What are problems? i. These papers look at

Lecture 3: Scaling by Load Balancing 1. Comments on reviews i. 2. Topic 1: Scalability a. QUESTION: What are problems? i. These papers look at Lecture 3: Scaling by Load Balancing 1. Comments on reviews i. 2. Topic 1: Scalability a. QUESTION: What are problems? i. These papers look at distributing load b. QUESTION: What is the context? i. How

More information

Write a technical report Present your results Write a workshop/conference paper (optional) Could be a real system, simulation and/or theoretical

Write a technical report Present your results Write a workshop/conference paper (optional) Could be a real system, simulation and/or theoretical Identify a problem Review approaches to the problem Propose a novel approach to the problem Define, design, prototype an implementation to evaluate your approach Could be a real system, simulation and/or

More information

MapReduce and Hadoop. Aaron Birkland Cornell Center for Advanced Computing. January 2012

MapReduce and Hadoop. Aaron Birkland Cornell Center for Advanced Computing. January 2012 MapReduce and Hadoop Aaron Birkland Cornell Center for Advanced Computing January 2012 Motivation Simple programming model for Big Data Distributed, parallel but hides this Established success at petabyte

More information

No-SQL Databases for High Volume Data

No-SQL Databases for High Volume Data Target Conference 2014 No-SQL Databases for High Volume Data Edward Wijnen 3 November 2014 The New Connected World Needs a Revolutionary New DBMS Today The Internet of Things 1990 s Mobile 1970 s Mainfram

More information

Hands-on Cassandra. OSCON July 20, 2010. Eric Evans eevans@rackspace.com @jericevans http://blog.sym-link.com

Hands-on Cassandra. OSCON July 20, 2010. Eric Evans eevans@rackspace.com @jericevans http://blog.sym-link.com Hands-on Cassandra OSCON July 20, 2010 Eric Evans eevans@rackspace.com @jericevans http://blog.sym-link.com 2 Background Influential Papers BigTable Strong consistency Sparse map data model GFS, Chubby,

More information

Energy Efficient MapReduce

Energy Efficient MapReduce Energy Efficient MapReduce Motivation: Energy consumption is an important aspect of datacenters efficiency, the total power consumption in the united states has doubled from 2000 to 2005, representing

More information

Peer-to-Peer Networks. Chapter 6: P2P Content Distribution

Peer-to-Peer Networks. Chapter 6: P2P Content Distribution Peer-to-Peer Networks Chapter 6: P2P Content Distribution Chapter Outline Content distribution overview Why P2P content distribution? Network coding Peer-to-peer multicast Kangasharju: Peer-to-Peer Networks

More information

Data Management in the Cloud

Data Management in the Cloud Data Management in the Cloud Ryan Stern stern@cs.colostate.edu : Advanced Topics in Distributed Systems Department of Computer Science Colorado State University Outline Today Microsoft Cloud SQL Server

More information

Case study: CASSANDRA

Case study: CASSANDRA Case study: CASSANDRA Course Notes in Transparency Format Cloud Computing MIRI (CLC-MIRI) UPC Master in Innovation & Research in Informatics Spring- 2013 Jordi Torres, UPC - BSC www.jorditorres.eu Cassandra:

More information

Cloud Application Development (SE808, School of Software, Sun Yat-Sen University) Yabo (Arber) Xu

Cloud Application Development (SE808, School of Software, Sun Yat-Sen University) Yabo (Arber) Xu Lecture 4 Introduction to Hadoop & GAE Cloud Application Development (SE808, School of Software, Sun Yat-Sen University) Yabo (Arber) Xu Outline Introduction to Hadoop The Hadoop ecosystem Related projects

More information

BlobSeer: Towards efficient data storage management on large-scale, distributed systems

BlobSeer: Towards efficient data storage management on large-scale, distributed systems : Towards efficient data storage management on large-scale, distributed systems Bogdan Nicolae University of Rennes 1, France KerData Team, INRIA Rennes Bretagne-Atlantique PhD Advisors: Gabriel Antoniu

More information

Firebird meets NoSQL (Apache HBase) Case Study

Firebird meets NoSQL (Apache HBase) Case Study Firebird meets NoSQL (Apache HBase) Case Study Firebird Conference 2011 Luxembourg 25.11.2011 26.11.2011 Thomas Steinmaurer DI +43 7236 3343 896 thomas.steinmaurer@scch.at www.scch.at Michael Zwick DI

More information

Referential Integrity in Cloud NoSQL Databases

Referential Integrity in Cloud NoSQL Databases Referential Integrity in Cloud NoSQL Databases by Harsha Raja A thesis submitted to the Victoria University of Wellington in partial fulfilment of the requirements for the degree of Master of Engineering

More information

So What s the Big Deal?

So What s the Big Deal? So What s the Big Deal? Presentation Agenda Introduction What is Big Data? So What is the Big Deal? Big Data Technologies Identifying Big Data Opportunities Conducting a Big Data Proof of Concept Big Data

More information

The Cloud Trade Off IBM Haifa Research Storage Systems

The Cloud Trade Off IBM Haifa Research Storage Systems The Cloud Trade Off IBM Haifa Research Storage Systems 1 Fundamental Requirements form Cloud Storage Systems The Google File System first design consideration: component failures are the norm rather than

More information

Future Internet Technologies

Future Internet Technologies Future Internet Technologies Big (?) Processing Dr. Dennis Pfisterer Institut für Telematik, Universität zu Lübeck http://www.itm.uni-luebeck.de/people/pfisterer FIT Until Now Architectures -Server SPDY

More information

On- Prem MongoDB- as- a- Service Powered by the CumuLogic DBaaS Platform

On- Prem MongoDB- as- a- Service Powered by the CumuLogic DBaaS Platform On- Prem MongoDB- as- a- Service Powered by the CumuLogic DBaaS Platform Page 1 of 16 Table of Contents Table of Contents... 2 Introduction... 3 NoSQL Databases... 3 CumuLogic NoSQL Database Service...

More information

Development of nosql data storage for the ATLAS PanDA Monitoring System

Development of nosql data storage for the ATLAS PanDA Monitoring System Development of nosql data storage for the ATLAS PanDA Monitoring System M.Potekhin Brookhaven National Laboratory, Upton, NY11973, USA E-mail: potekhin@bnl.gov Abstract. For several years the PanDA Workload

More information

Scalable Architecture on Amazon AWS Cloud

Scalable Architecture on Amazon AWS Cloud Scalable Architecture on Amazon AWS Cloud Kalpak Shah Founder & CEO, Clogeny Technologies kalpak@clogeny.com 1 * http://www.rightscale.com/products/cloud-computing-uses/scalable-website.php 2 Architect

More information

INTRODUCTION & CONCEPTS. Definition of Cloud Computing Service Models Deployment Models... 23

INTRODUCTION & CONCEPTS. Definition of Cloud Computing Service Models Deployment Models... 23 Contents I INTRODUCTION & CONCEPTS 17 1 Introduction to Cloud Computing 19 11 Introduction 111 Definition of Cloud Computing 20 12 Characteristics of Cloud Computing 20 13 Cloud Models 22 131 132 Service

More information

Developing Scalable Smart Grid Infrastructure to Enable Secure Transmission System Control

Developing Scalable Smart Grid Infrastructure to Enable Secure Transmission System Control Developing Scalable Smart Grid Infrastructure to Enable Secure Transmission System Control EP/K006487/1 UK PI: Prof Gareth Taylor (BU) China PI: Prof Yong-Hua Song (THU) Consortium UK Members: Brunel University

More information

MongoDB in the NoSQL and SQL world. Horst Rechner horst.rechner@fokus.fraunhofer.de Berlin, 2012-05-15

MongoDB in the NoSQL and SQL world. Horst Rechner horst.rechner@fokus.fraunhofer.de Berlin, 2012-05-15 MongoDB in the NoSQL and SQL world. Horst Rechner horst.rechner@fokus.fraunhofer.de Berlin, 2012-05-15 1 MongoDB in the NoSQL and SQL world. NoSQL What? Why? - How? Say goodbye to ACID, hello BASE You

More information

Chapter 4 Cloud Computing Applications and Paradigms. Cloud Computing: Theory and Practice. 1

Chapter 4 Cloud Computing Applications and Paradigms. Cloud Computing: Theory and Practice. 1 Chapter 4 Cloud Computing Applications and Paradigms Chapter 4 1 Contents Challenges for cloud computing. Existing cloud applications and new opportunities. Architectural styles for cloud applications.

More information

An Approach to Implement Map Reduce with NoSQL Databases

An Approach to Implement Map Reduce with NoSQL Databases www.ijecs.in International Journal Of Engineering And Computer Science ISSN: 2319-7242 Volume 4 Issue 8 Aug 2015, Page No. 13635-13639 An Approach to Implement Map Reduce with NoSQL Databases Ashutosh

More information

NoSQL Systems for Big Data Management

NoSQL Systems for Big Data Management NoSQL Systems for Big Data Management Venkat N Gudivada East Carolina University Greenville, North Carolina USA Venkat Gudivada NoSQL Systems for Big Data Management 1/28 Outline 1 An Overview of NoSQL

More information

Distributed File System. MCSN N. Tonellotto Complements of Distributed Enabling Platforms

Distributed File System. MCSN N. Tonellotto Complements of Distributed Enabling Platforms Distributed File System 1 How do we get data to the workers? NAS Compute Nodes SAN 2 Distributed File System Don t move data to workers move workers to the data! Store data on the local disks of nodes

More information

Database Scalability and Oracle 12c

Database Scalability and Oracle 12c Database Scalability and Oracle 12c Marcelle Kratochvil CTO Piction ACE Director All Data/Any Data marcelle@piction.com Warning I will be covering topics and saying things that will cause a rethink in

More information

Infrastructures for big data

Infrastructures for big data Infrastructures for big data Rasmus Pagh 1 Today s lecture Three technologies for handling big data: MapReduce (Hadoop) BigTable (and descendants) Data stream algorithms Alternatives to (some uses of)

More information

HDMQ :Towards In-Order and Exactly-Once Delivery using Hierarchical Distributed Message Queues. Dharmit Patel Faraj Khasib Shiva Srivastava

HDMQ :Towards In-Order and Exactly-Once Delivery using Hierarchical Distributed Message Queues. Dharmit Patel Faraj Khasib Shiva Srivastava HDMQ :Towards In-Order and Exactly-Once Delivery using Hierarchical Distributed Message Queues Dharmit Patel Faraj Khasib Shiva Srivastava Outline What is Distributed Queue Service? Major Queue Service

More information

ON-LINE VIDEO ANALYTICS EMBRACING BIG DATA

ON-LINE VIDEO ANALYTICS EMBRACING BIG DATA ON-LINE VIDEO ANALYTICS EMBRACING BIG DATA David Vanderfeesten, Bell Labs Belgium ANNO 2012 YOUR DATA IS MONEY BIG MONEY! Your click stream, your activity stream, your electricity consumption, your call

More information

Comparison of the Frontier Distributed Database Caching System with NoSQL Databases

Comparison of the Frontier Distributed Database Caching System with NoSQL Databases Comparison of the Frontier Distributed Database Caching System with NoSQL Databases Dave Dykstra dwd@fnal.gov Fermilab is operated by the Fermi Research Alliance, LLC under contract No. DE-AC02-07CH11359

More information

Financial Services Grid Computing on Amazon Web Services January 2013 Ian Meyers

Financial Services Grid Computing on Amazon Web Services January 2013 Ian Meyers Financial Services Grid Computing on Amazon Web Services January 2013 Ian Meyers (Please consult http://aws.amazon.com/whitepapers for the latest version of this paper) Page 1 of 15 Contents Abstract...

More information

Cloud Computing with Microsoft Azure

Cloud Computing with Microsoft Azure Cloud Computing with Microsoft Azure Michael Stiefel www.reliablesoftware.com development@reliablesoftware.com http://www.reliablesoftware.com/dasblog/default.aspx Azure's Three Flavors Azure Operating

More information

How In-Memory Data Grids Can Analyze Fast-Changing Data in Real Time

How In-Memory Data Grids Can Analyze Fast-Changing Data in Real Time SCALEOUT SOFTWARE How In-Memory Data Grids Can Analyze Fast-Changing Data in Real Time by Dr. William Bain and Dr. Mikhail Sobolev, ScaleOut Software, Inc. 2012 ScaleOut Software, Inc. 12/27/2012 T wenty-first

More information

Understanding Neo4j Scalability

Understanding Neo4j Scalability Understanding Neo4j Scalability David Montag January 2013 Understanding Neo4j Scalability Scalability means different things to different people. Common traits associated include: 1. Redundancy in the

More information

Big Data JAMES WARREN. Principles and best practices of NATHAN MARZ MANNING. scalable real-time data systems. Shelter Island

Big Data JAMES WARREN. Principles and best practices of NATHAN MARZ MANNING. scalable real-time data systems. Shelter Island Big Data Principles and best practices of scalable real-time data systems NATHAN MARZ JAMES WARREN II MANNING Shelter Island contents preface xiii acknowledgments xv about this book xviii ~1 Anew paradigm

More information

Parallel & Distributed Data Management

Parallel & Distributed Data Management Parallel & Distributed Data Management Kai Shen Data Management Data management Efficiency: fast reads/writes Durability and consistency: data is safe and sound despite failures Usability: convenient interfaces

More information

Apache Hadoop. Alexandru Costan

Apache Hadoop. Alexandru Costan 1 Apache Hadoop Alexandru Costan Big Data Landscape No one-size-fits-all solution: SQL, NoSQL, MapReduce, No standard, except Hadoop 2 Outline What is Hadoop? Who uses it? Architecture HDFS MapReduce Open

More information

NoSQL systems: introduction and data models. Riccardo Torlone Università Roma Tre

NoSQL systems: introduction and data models. Riccardo Torlone Università Roma Tre NoSQL systems: introduction and data models Riccardo Torlone Università Roma Tre Why NoSQL? In the last thirty years relational databases have been the default choice for serious data storage. An architect

More information

Cassandra A Decentralized Structured Storage System

Cassandra A Decentralized Structured Storage System Cassandra A Decentralized Structured Storage System Avinash Lakshman, Prashant Malik LADIS 2009 Anand Iyer CS 294-110, Fall 2015 Historic Context Early & mid 2000: Web applicaoons grow at tremendous rates

More information

Apache Cassandra for Big Data Applications

Apache Cassandra for Big Data Applications Apache Cassandra for Big Data Applications Christof Roduner COO and co-founder christof@scandit.com Java User Group Switzerland January 7, 2014 2 AGENDA Cassandra origins and use How we use Cassandra Data

More information

Parallel Databases. Parallel Architectures. Parallelism Terminology 1/4/2015. Increase performance by performing operations in parallel

Parallel Databases. Parallel Architectures. Parallelism Terminology 1/4/2015. Increase performance by performing operations in parallel Parallel Databases Increase performance by performing operations in parallel Parallel Architectures Shared memory Shared disk Shared nothing closely coupled loosely coupled Parallelism Terminology Speedup:

More information

A1 and FARM scalable graph database on top of a transactional memory layer

A1 and FARM scalable graph database on top of a transactional memory layer A1 and FARM scalable graph database on top of a transactional memory layer Miguel Castro, Aleksandar Dragojević, Dushyanth Narayanan, Ed Nightingale, Alex Shamis Richie Khanna, Matt Renzelmann Chiranjeeb

More information

Design Patterns for Distributed Non-Relational Databases

Design Patterns for Distributed Non-Relational Databases Design Patterns for Distributed Non-Relational Databases aka Just Enough Distributed Systems To Be Dangerous (in 40 minutes) Todd Lipcon (@tlipcon) Cloudera June 11, 2009 Introduction Common Underlying

More information

A survey of big data architectures for handling massive data

A survey of big data architectures for handling massive data CSIT 6910 Independent Project A survey of big data architectures for handling massive data Jordy Domingos - jordydomingos@gmail.com Supervisor : Dr David Rossiter Content Table 1 - Introduction a - Context

More information