Reflections on Agile DW by a Business Analytics Practitioner. Werner Engelen Principal Business Analytics Architect

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Reflections on Agile DW by a Business Analytics Practitioner. Werner Engelen Principal Business Analytics Architect"

Transcription

1 Reflections on Agile DW by a Business Analytics Practitioner Werner Engelen Principal Business Analytics Architect

2 Introduction Werner Engelen Active in BI & DW since years at element61 Previously: Oracle, PwC Consulting & IBM Global Business Services Proven track record in dimensional modeling, data quality, setup BICCs, project methodologies, project management, quality assurance, business analysis & ETL design But you can also talk to me about photography, urban exploration & landscape design

3 Just jump & swim?

4 Offer some (re-usable) food for thought Data discovery Governance Sources ETL Architecture Model Automate

5 Agile BI? Waterfall BI Requirements Design Code Test Rather than doing all of one thing at a time... agile BI teams do a little of everything all the time Agile BI

6 Agile in a nutshell Sprint retrospective

7 Offer some (re-usable) food for thought Data discovery Governance Sources ETL Architecture Model Automate

8 All we want is... a dimensional model SALES DATE CUSTOMER REVENUE STORE PRODUCT PRO - MOTION

9 How do we ask questions? WHAT? WHEN? WHAT? WHO? HOW MANY? How do this month s sales by sales rep of nonfood products which we promoted to consumers in Japan compare with previous years? WHERE? WHY? WHEN? WHO?

10 BI model canvas Need for a common questions framework WHEN When does it happen? date, time period, timeline... WHERE Where does it happen? Where does it refer to? location, store, facility... HOW How does it happen? How do we know it happened? How do we uniquely define an event? transaction type, transaction identifier... HOW MANY How many/much is involved? How long does it take? revenues, costs, quanities, durations... WHY Why does it happen? cause, reason, promotion... WHO Who does what? Who else is involved? Who is organizated how? customer, employee, supplier, sales rep... WHAT What is involved? What is the value proposition? product, service, resource...

11 Link business questions to design Product backlog Data model & Source to Target design

12 Offer some (re-usable) food for thought Data discovery Governance Sources ETL Architecture Model Automate

13 Governance? The scope of a BICC is # 100% of all BI related applications But: still a minimal insight & governance is required Each BI application can be defined within a certain category Define degree of governance by BICC for each category Mandatory deliverables? (at a certain point in time a departmental BI application might be promoted to a corporate BI application) How to a approach a BI project (requirements...) Framework, standards, guidelines Naming conventions Tools set... 0% 100% Special-purpose BI applications Departmental BI applications Cross-functional / cross-departmental BI applications Corporate BI applications

14 Offer some (re-usable) food for thought Data discovery Governance Sources ETL Architecture Model Automate

15 Possible architectural issues? Modify fact to lower granularity Modify leading sources Modify definitions Add dimensions Add fields Add history Modify functionality (transactional accumulated snapshot)... inflexible architecture & data model Costs & time go up

16 Data model / architecture anticipation 3-tier architecture Get the data (extract) source, landing zone, staging area... Store the data (register) data warehouse EDW, Data Vault, ODS, Kimball 1st level, Kimball granular, 3NF... Present the data data mart Kimball (combination 1st & 2nd level), cubes... IN KEEP ALL RELEVANT OUT SOURCE ORIENTED TARGET ORIENTED

17 Offer some (re-usable) food for thought Data discovery Governance Sources ETL Architecture Model Automate

18 ETL & modeling de-composition Breadth or depth? Split-up ETL & modeling in smaller pieces Minimize ETL and modeling in early iterations De-composition helps in planning activities De-composition supports early feedback Breadth Simplified load of the most important dimension models Early feedback, earlier build of dependent systems Depth Complete load of one dimension at a time Early deployment of complete usable sub systems

19 Start with a small thingy? FROM TO Divide dimension tables no history (current view only) include history Divide rows Group records by type Divide rows Subset of data (e.g. Customer: consumer, business) all types 10 % of data n % 100% Divide by columns columns from source 1 columns from source 2 all columns Data quality include only non-outliers include outliers ETL complexity simpler / earlier tasks complex tasks ETL refresh frequency one time load incremental load (monthly daily) ETL transformations (raw) data directly aggregations and/or business rules applied ETL target layer ETL degree of automation Subject area completeness source directly Manual most important star, dimension, attributes in a dimension staging presentation BI tools (semantic layer) fully automated all data model elements

20 Offer some (re-usable) food for thought Data discovery Governance Sources ETL Architecture Model Automate

21 Agile BI = data intensive Traditional BI Proven answers to known questions High-value reporting specifies drives need for. new. adjusted BI content for. better Data discovery Functional data connection Early access to data Fast answers to new questions Short-term reporting Source of requirements Helps in prioritizing Data profiling Data quality insight Identify & confront with issues asap Source of requirements

22 Offer some (re-usable) food for thought Data discovery Governance Sources ETL Architecture Model Automate

23 Keep your consumers close by Keep your data providers even closer

24 When is BI impacted? releases abstraction layers screens retention... direct & indirect DML Table 1 Column A - PK Column B relation - ship Table 4 Column I - PK Column J relationships current & historical Table 3 Column E - PK Column F - UK Table 2 Column C - PK Column D - FK interface Table 4 Column G - PK Column H - FK data source database 1 source database2... processes quality

25 Offer some (re-usable) food for thought Data discovery Governance Sources ETL Architecture Model Automate

26 Automation Get your act together before things start of Don t try certain things for the first time Have a near perfect way & means of working Keep it simple Automate the simple / repetitive things Metadata driven generation Focus on time consuming: e.g. source analysis, ETL & testing (unit, regression ) Re-use Develop best practices & reuse (think big, start small) Focus on the more difficult processes E.g. gathering good requirements, complex dimensional models, business rules Welcome change, but Is your architecture fit enough? (which layers) Are your tools fit enough?

27 Offer some (re-usable) food for thought Data discovery Governance Sources ETL Architecture Model Automate

28 Divide & conquer: De-composition is the key

29 Thank you Werner Engelen Principal Business Analytics Architect

Data Vault at work. Does Data Vault fulfill its promise? GDF SUEZ Energie Nederland

Data Vault at work. Does Data Vault fulfill its promise? GDF SUEZ Energie Nederland Data Vault at work Does Data Vault fulfill its promise? Leading player on Dutch energy market Approximately 1,000 employees Production capacity: 3,813 MW 20% of the total Dutch electricity production capacity

More information

The Role of the BI Competency Center in Maximizing Organizational Performance

The Role of the BI Competency Center in Maximizing Organizational Performance The Role of the BI Competency Center in Maximizing Organizational Performance Gloria J. Miller Dr. Andreas Eckert MaxMetrics GmbH October 16, 2008 Topics The Role of the BI Competency Center Responsibilites

More information

OLAP Theory-English version

OLAP Theory-English version OLAP Theory-English version On-Line Analytical processing (Business Intelligence) [Ing.J.Skorkovský,CSc.] Department of corporate economy Agenda The Market Why OLAP (On-Line-Analytic-Processing Introduction

More information

Achieving Rapid Return On Data Warehouse Investments

Achieving Rapid Return On Data Warehouse Investments Achieving Rapid Return On Data Warehouse Investments 1. Introduction Data warehouses are at the heart of most business intelligence solution platforms or frameworks and are expected to remain the foundation

More information

<Insert Picture Here> Extending Hyperion BI with the Oracle BI Server

<Insert Picture Here> Extending Hyperion BI with the Oracle BI Server Extending Hyperion BI with the Oracle BI Server Mark Ostroff Sr. BI Solutions Consultant Agenda Hyperion BI versus Hyperion BI with OBI Server Benefits of using Hyperion BI with the

More information

Establish and maintain Center of Excellence (CoE) around Data Architecture

Establish and maintain Center of Excellence (CoE) around Data Architecture Senior BI Data Architect - Bensenville, IL The Company s Information Management Team is comprised of highly technical resources with diverse backgrounds in data warehouse development & support, business

More information

Oracle BI Application: Demonstrating the Functionality & Ease of use. Geoffrey Francis Naailah Gora

Oracle BI Application: Demonstrating the Functionality & Ease of use. Geoffrey Francis Naailah Gora Oracle BI Application: Demonstrating the Functionality & Ease of use Geoffrey Francis Naailah Gora Agenda Oracle BI & BI Apps Overview Demo: Procurement & Spend Analytics Creating a ad-hoc report Copyright

More information

Modeling: Operational, Data Warehousing & Data Marts

Modeling: Operational, Data Warehousing & Data Marts Course Description Modeling: Operational, Data Warehousing & Data Marts Operational DW DMs GENESEE ACADEMY, LLC 2013 Course Developed by: Hans Hultgren DATA MODELING IMMERSION Modeling: Operational, Data

More information

COURSE OUTLINE. Track 1 Advanced Data Modeling, Analysis and Design

COURSE OUTLINE. Track 1 Advanced Data Modeling, Analysis and Design COURSE OUTLINE Track 1 Advanced Data Modeling, Analysis and Design TDWI Advanced Data Modeling Techniques Module One Data Modeling Concepts Data Models in Context Zachman Framework Overview Levels of Data

More information

Data Warehouse (DW) Maturity Assessment Questionnaire

Data Warehouse (DW) Maturity Assessment Questionnaire Data Warehouse (DW) Maturity Assessment Questionnaire Catalina Sacu - csacu@students.cs.uu.nl Marco Spruit m.r.spruit@cs.uu.nl Frank Habers fhabers@inergy.nl September, 2010 Technical Report UU-CS-2010-021

More information

Understanding Data Warehousing. [by Alex Kriegel]

Understanding Data Warehousing. [by Alex Kriegel] Understanding Data Warehousing 2008 [by Alex Kriegel] Things to Discuss Who Needs a Data Warehouse? OLTP vs. Data Warehouse Business Intelligence Industrial Landscape Which Data Warehouse: Bill Inmon vs.

More information

Business Intelligence and Service Oriented Architectures. An Oracle White Paper May 2007

Business Intelligence and Service Oriented Architectures. An Oracle White Paper May 2007 Business Intelligence and Service Oriented Architectures An Oracle White Paper May 2007 Note: The following is intended to outline our general product direction. It is intended for information purposes

More information

Agile BI With SQL Server 2012

Agile BI With SQL Server 2012 Agile BI With SQL Server 2012 Agenda About GNet Group Level set on components of a BI solution The Microwave Society Evolution & Change Approaches to BI Classic Agile Blend of both approaches Agility with

More information

Data Vault and The Truth about the Enterprise Data Warehouse

Data Vault and The Truth about the Enterprise Data Warehouse Data Vault and The Truth about the Enterprise Data Warehouse Roelant Vos 04-05-2012 Brisbane, Australia Introduction More often than not, when discussion about data modeling and information architecture

More information

Master Data Management and Data Warehousing. Zahra Mansoori

Master Data Management and Data Warehousing. Zahra Mansoori Master Data Management and Data Warehousing Zahra Mansoori 1 1. Preference 2 IT landscape growth IT landscapes have grown into complex arrays of different systems, applications, and technologies over the

More information

IST722 Data Warehousing

IST722 Data Warehousing IST722 Data Warehousing Components of the Data Warehouse Michael A. Fudge, Jr. Recall: Inmon s CIF The CIF is a reference architecture Understanding the Diagram The CIF is a reference architecture CIF

More information

Data Warehouse Overview. Srini Rengarajan

Data Warehouse Overview. Srini Rengarajan Data Warehouse Overview Srini Rengarajan Please mute Your cell! Agenda Data Warehouse Architecture Approaches to build a Data Warehouse Top Down Approach Bottom Up Approach Best Practices Case Example

More information

ACCESS INTELLIGENCE. an intelligent step beyond Access Management. White Paper

ACCESS INTELLIGENCE. an intelligent step beyond Access Management. White Paper ACCESS INTELLIGENCE an intelligent step beyond Access Management White Paper Table of Contents Access Intelligence an intelligent step beyond Access Management...3 The new Identity Access Management paradigm...3

More information

Applied Business Intelligence. Iakovos Motakis, Ph.D. Director, DW & Decision Support Systems Intrasoft SA

Applied Business Intelligence. Iakovos Motakis, Ph.D. Director, DW & Decision Support Systems Intrasoft SA Applied Business Intelligence Iakovos Motakis, Ph.D. Director, DW & Decision Support Systems Intrasoft SA Agenda Business Drivers and Perspectives Technology & Analytical Applications Trends Challenges

More information

www.pwc.com Implementation of Big Data and Analytics Projects with Big Data Discovery and BICS March 2015

www.pwc.com Implementation of Big Data and Analytics Projects with Big Data Discovery and BICS March 2015 www.pwc.com Implementation of Big Data and Analytics Projects with Big Data Discovery and BICS Agenda Big Data Discovery Oracle Business Intelligence Cloud Services (BICS) Use Cases How to start and our

More information

MDM and Data Warehousing Complement Each Other

MDM and Data Warehousing Complement Each Other Master Management MDM and Warehousing Complement Each Other Greater business value from both 2011 IBM Corporation Executive Summary Master Management (MDM) and Warehousing (DW) complement each other There

More information

A Service-oriented Architecture for Business Intelligence

A Service-oriented Architecture for Business Intelligence A Service-oriented Architecture for Business Intelligence Liya Wu 1, Gilad Barash 1, Claudio Bartolini 2 1 HP Software 2 HP Laboratories {name.surname@hp.com} Abstract Business intelligence is a business

More information

POLAR IT SERVICES. Business Intelligence Project Methodology

POLAR IT SERVICES. Business Intelligence Project Methodology POLAR IT SERVICES Business Intelligence Project Methodology Table of Contents 1. Overview... 2 2. Visualize... 3 3. Planning and Architecture... 4 3.1 Define Requirements... 4 3.1.1 Define Attributes...

More information

Microsoft Data Warehouse in Depth

Microsoft Data Warehouse in Depth Microsoft Data Warehouse in Depth 1 P a g e Duration What s new Why attend Who should attend Course format and prerequisites 4 days The course materials have been refreshed to align with the second edition

More information

Welcome to online seminar on. Oracle Agile PLM BI. Presented by: Rapidflow Apps Inc. January, 2011

Welcome to online seminar on. Oracle Agile PLM BI. Presented by: Rapidflow Apps Inc. January, 2011 Welcome to online seminar on Oracle Agile PLM BI Presented by: Rapidflow Apps Inc. January, 2011 Agenda Agile PLM BI Overview What is Agile BI? Who Needs Agile PLM BI? What does it offer? PLM Business

More information

White Paper February 2009. IBM Cognos Supply Chain Analytics

White Paper February 2009. IBM Cognos Supply Chain Analytics White Paper February 2009 IBM Cognos Supply Chain Analytics 2 Contents 5 Business problems Perform cross-functional analysis of key supply chain processes 5 Business drivers Supplier Relationship Management

More information

Lost in Space? Methodology for a Guided Drill-Through Analysis Out of the Wormhole

Lost in Space? Methodology for a Guided Drill-Through Analysis Out of the Wormhole Paper BB-01 Lost in Space? Methodology for a Guided Drill-Through Analysis Out of the Wormhole ABSTRACT Stephen Overton, Overton Technologies, LLC, Raleigh, NC Business information can be consumed many

More information

Data Management Roadmap

Data Management Roadmap Data Management Roadmap A progressive approach towards building an Information Architecture strategy 1 Business and IT Drivers q Support for business agility and innovation q Faster time to market Improve

More information

White Paper www.wherescape.com

White Paper www.wherescape.com What s your story? White Paper Agile Requirements Epics and Themes help get you Started The Task List The Story Basic Story Structure One More Chapter to the Story Use the Story Structure to Define Tasks

More information

Who Doesn t Want to be Agile? By: Steve Dine President, Datasource Consulting, LLC 7/10/2008

Who Doesn t Want to be Agile? By: Steve Dine President, Datasource Consulting, LLC 7/10/2008 Who Doesn t Want to be Agile? By: Steve Dine President, Datasource Consulting, LLC 7/10/2008 Who wants to be involved in a BI project or program that is labeled slow or inflexible? While I don t believe

More information

Data warehouse and Business Intelligence Collateral

Data warehouse and Business Intelligence Collateral Data warehouse and Business Intelligence Collateral Page 1 of 12 DATA WAREHOUSE AND BUSINESS INTELLIGENCE COLLATERAL Brains for the corporate brawn: In the current scenario of the business world, the competition

More information

Business Intelligence

Business Intelligence Transforming Information into Business Intelligence Solutions Business Intelligence Client Challenges The ability to make fast, reliable decisions based on accurate and usable information is essential

More information

Improving your Data Warehouse s IQ

Improving your Data Warehouse s IQ Improving your Data Warehouse s IQ Derek Strauss Gavroshe USA, Inc. Outline Data quality for second generation data warehouses DQ tool functionality categories and the data quality process Data model types

More information

The Benefits of Data Modeling in Data Warehousing

The Benefits of Data Modeling in Data Warehousing WHITE PAPER: THE BENEFITS OF DATA MODELING IN DATA WAREHOUSING The Benefits of Data Modeling in Data Warehousing NOVEMBER 2008 Table of Contents Executive Summary 1 SECTION 1 2 Introduction 2 SECTION 2

More information

Agile Testing of Business Intelligence. Cinderella 2.0

Agile Testing of Business Intelligence. Cinderella 2.0 Agile Testing of Business Intelligence Cinderella 2.0 Armando Dörsek (Verified) & Iris Groenewoudt (Ordina) Nordic Testing Days 6/6/2013 Programme About Us The Customer Background Information Business

More information

Enterprise Data Warehouse (EDW) UC Berkeley Peter Cava Manager Data Warehouse Services October 5, 2006

Enterprise Data Warehouse (EDW) UC Berkeley Peter Cava Manager Data Warehouse Services October 5, 2006 Enterprise Data Warehouse (EDW) UC Berkeley Peter Cava Manager Data Warehouse Services October 5, 2006 What is a Data Warehouse? A data warehouse is a subject-oriented, integrated, time-varying, non-volatile

More information

Building an Effective Data Warehouse Architecture James Serra

Building an Effective Data Warehouse Architecture James Serra Building an Effective Data Warehouse Architecture James Serra Global Sponsors: About Me Business Intelligence Consultant, in IT for 28 years Owner of Serra Consulting Services, specializing in end-to-end

More information

Management Consulting Systems Integration Managed Services WHITE PAPER DATA DISCOVERY VS ENTERPRISE BUSINESS INTELLIGENCE

Management Consulting Systems Integration Managed Services WHITE PAPER DATA DISCOVERY VS ENTERPRISE BUSINESS INTELLIGENCE Management Consulting Systems Integration Managed Services WHITE PAPER DATA DISCOVERY VS ENTERPRISE BUSINESS INTELLIGENCE INTRODUCTION Over the past several years a new category of Business Intelligence

More information

Agile Data Warehousing. Christina Knotts Associate Consultant Eli Lilly & Company

Agile Data Warehousing. Christina Knotts Associate Consultant Eli Lilly & Company Agile Data Warehousing Christina Knotts Associate Consultant Eli Lilly & Company Overview Defining Agile Data Warehousing Reasons for Agile Data Warehousing Walk-Thru with Case Study Key Learnings Additional

More information

Lection 3-4 WAREHOUSING

Lection 3-4 WAREHOUSING Lection 3-4 DATA WAREHOUSING Learning Objectives Understand d the basic definitions iti and concepts of data warehouses Understand data warehousing architectures Describe the processes used in developing

More information

Development of the Information Analysis System of the Ministry of Finance of Belarus

Development of the Information Analysis System of the Ministry of Finance of Belarus Development of the Information Analysis System of the Ministry of Finance of Belarus ASFR organizational and technical structure Data Processing (of the ) Local area network (LAN) Local area network (LAN)

More information

SAS Business Intelligence Online Training

SAS Business Intelligence Online Training SAS Business Intelligence Online Training IQ Training facility offers best online SAS Business Intelligence training. Our SAS Business Intelligence online training is regarded as the best training in Hyderabad

More information

EMC/Greenplum Driving the Future of Data Warehousing and Analytics

EMC/Greenplum Driving the Future of Data Warehousing and Analytics EMC/Greenplum Driving the Future of Data Warehousing and Analytics EMC 2010 Forum Series 1 Greenplum Becomes the Foundation of EMC s Data Computing Division E M C A CQ U I R E S G R E E N P L U M Greenplum,

More information

Experience studies data management How to generate valuable analytics with improved data processes

Experience studies data management How to generate valuable analytics with improved data processes www.pwc.com/us/insurance Experience studies data management How to generate valuable analytics with improved data processes An approach to managing data for experience studies October 2015 Table of contents

More information

Sizing Logical Data in a Data Warehouse A Consistent and Auditable Approach

Sizing Logical Data in a Data Warehouse A Consistent and Auditable Approach 2006 ISMA Conference 1 Sizing Logical Data in a Data Warehouse A Consistent and Auditable Approach Priya Lobo CFPS Satyam Computer Services Ltd. 69, Railway Parallel Road, Kumarapark West, Bangalore 560020,

More information

Tiber Solutions. The DNA of a Successful Business Intelligence Effort. Jim Hadley

Tiber Solutions. The DNA of a Successful Business Intelligence Effort. Jim Hadley Tiber Solutions The DNA of a Successful Business Intelligence Effort Jim Hadley Tiber Solutions Founded in 2005 to provide Business Intelligence / Data Warehousing thought leadership to corporations and

More information

Friday, 10 December 2010. How to run a BI project?

Friday, 10 December 2010. How to run a BI project? How to run a BI project? But what about success? What is this about? Look at approaches to projects Aided by best practices Unpinned by management techniques What is this about? Methodology Project Management

More information

Tiber Solutions. The DNA of a Successful Business Intelligence Effort. Jim Hadley

Tiber Solutions. The DNA of a Successful Business Intelligence Effort. Jim Hadley Tiber Solutions The DNA of a Successful Business Intelligence Effort Jim Hadley Tiber Solutions Founded in 2005 to provide Business Intelligence / Data Warehousing thought leadership to corporations and

More information

Data Warehousing. Jens Teubner, TU Dortmund jens.teubner@cs.tu-dortmund.de. Winter 2015/16. Jens Teubner Data Warehousing Winter 2015/16 1

Data Warehousing. Jens Teubner, TU Dortmund jens.teubner@cs.tu-dortmund.de. Winter 2015/16. Jens Teubner Data Warehousing Winter 2015/16 1 Jens Teubner Data Warehousing Winter 2015/16 1 Data Warehousing Jens Teubner, TU Dortmund jens.teubner@cs.tu-dortmund.de Winter 2015/16 Jens Teubner Data Warehousing Winter 2015/16 13 Part II Overview

More information

Budgeting and Planning with Microsoft Excel and Oracle OLAP

Budgeting and Planning with Microsoft Excel and Oracle OLAP Copyright 2009, Vlamis Software Solutions, Inc. Budgeting and Planning with Microsoft Excel and Oracle OLAP Dan Vlamis and Cathye Pendley dvlamis@vlamis.com cpendley@vlamis.com Vlamis Software Solutions,

More information

Integrating Netezza into your existing IT landscape

Integrating Netezza into your existing IT landscape Marco Lehmann Technical Sales Professional Integrating Netezza into your existing IT landscape 2011 IBM Corporation Agenda How to integrate your existing data into Netezza appliance? 4 Steps for creating

More information

IBM AND NEXT GENERATION ARCHITECTURE FOR BIG DATA & ANALYTICS!

IBM AND NEXT GENERATION ARCHITECTURE FOR BIG DATA & ANALYTICS! The Bloor Group IBM AND NEXT GENERATION ARCHITECTURE FOR BIG DATA & ANALYTICS VENDOR PROFILE The IBM Big Data Landscape IBM can legitimately claim to have been involved in Big Data and to have a much broader

More information

Making Business Intelligence Easy. White Paper Agile Business Intelligence

Making Business Intelligence Easy. White Paper Agile Business Intelligence Making Business Intelligence Easy White Paper Agile Business Intelligence Contents Overview... 3 The need for Agile Business Intelligence... 4 Technology: Critical features of an Agile Business Intelligence

More information

Business Intelligence Project Management 101

Business Intelligence Project Management 101 Business Intelligence Project Management 101 Managing BI Projects within the PMI Process Groups Too many times, Business Intelligence (BI) and Data Warehousing project managers are ill-equipped to handle

More information

CHAPTER SIX DATA. Business Intelligence. 2011 The McGraw-Hill Companies, All Rights Reserved

CHAPTER SIX DATA. Business Intelligence. 2011 The McGraw-Hill Companies, All Rights Reserved CHAPTER SIX DATA Business Intelligence 2011 The McGraw-Hill Companies, All Rights Reserved 2 CHAPTER OVERVIEW SECTION 6.1 Data, Information, Databases The Business Benefits of High-Quality Information

More information

Atomate Development Process. Quick Guide

Atomate Development Process. Quick Guide Development Process Quick Guide METHODOLOGY Every project is unique You know your business inside out. You have thought and planned your ideas carefully and are keen to see it live as soon as possible.

More information

Trivadis White Paper. Comparison of Data Modeling Methods for a Core Data Warehouse. Dani Schnider Adriano Martino Maren Eschermann

Trivadis White Paper. Comparison of Data Modeling Methods for a Core Data Warehouse. Dani Schnider Adriano Martino Maren Eschermann Trivadis White Paper Comparison of Data Modeling Methods for a Core Data Warehouse Dani Schnider Adriano Martino Maren Eschermann June 2014 Table of Contents 1. Introduction... 3 2. Aspects of Data Warehouse

More information

BI Dashboards the Agile Way

BI Dashboards the Agile Way BI Dashboards the Agile Way Paul DeSarra Paul DeSarra is Inergex practice director for business intelligence and data warehousing. He has 15 years of BI strategy, development, and management experience

More information

Republic Polytechnic School of Information and Communications Technology C355 Business Intelligence. Module Curriculum

Republic Polytechnic School of Information and Communications Technology C355 Business Intelligence. Module Curriculum Republic Polytechnic School of Information and Communications Technology C355 Business Intelligence Module Curriculum This document addresses the content related abilities, with reference to the module.

More information

BUSINESSOBJECTS WEB INTELLIGENCE

BUSINESSOBJECTS WEB INTELLIGENCE PRODUCTS BUSINESSOBJECTS WEB INTELLIGENCE BusinessObjects A Web-based query, reporting, and analysis tool designed to empower the maximum number of users via an easy-to-use interface running on top of

More information

Data Governance. Unlocking Value and Controlling Risk. Data Governance. www.mindyourprivacy.com

Data Governance. Unlocking Value and Controlling Risk. Data Governance. www.mindyourprivacy.com Data Governance Unlocking Value and Controlling Risk 1 White Paper Data Governance Table of contents Introduction... 3 Data Governance Program Goals in light of Privacy... 4 Data Governance Program Pillars...

More information

Business Intelligence

Business Intelligence 1 3 Business Intelligence Support Services Service Definition BUSINESS INTELLIGENCE SUPPORT SERVICES Service Description The Business Intelligence Support Services are part of the Cognizant Information

More information

From Agile by Design. Full book available for purchase here.

From Agile by Design. Full book available for purchase here. From Agile by Design. Full book available for purchase here. Contents Introduction xiii About the Author xix Chapter 1 Adjusting to a Customer-Centric Landscape 1 It s a Whole New World 1 From Customer-Aware

More information

Ten Cornerstones of a Modern Data Warehouse Environment

Ten Cornerstones of a Modern Data Warehouse Environment Ten Cornerstones of a Modern Data Warehouse Environment May 2015 Mike Lamble, CEO Clarity Solution Group Business Analytics Data Clarity Solution Group Unique Perspective Largest US consultancy focused

More information

Request for Information Page 1 of 9 Data Management Applications & Services

Request for Information Page 1 of 9 Data Management Applications & Services Request for Information Page 1 of 9 Data Management Implementation Analysis and Recommendations About MD Anderson M. D. Anderson is a component of the University of Texas System and was created by the

More information

Creating a Business Intelligence Competency Center to Accelerate Healthcare Performance Improvement

Creating a Business Intelligence Competency Center to Accelerate Healthcare Performance Improvement Creating a Business Intelligence Competency Center to Accelerate Healthcare Performance Improvement Bruce Eckert, National Practice Director, Advisory Group Ramesh Sakiri, Executive Consultant, Healthcare

More information

Users: The Missing Link in BI Delivery

Users: The Missing Link in BI Delivery Users: The Missing Link in BI Delivery George Labelle, Chief Information Officer Mark Henschel, Manager, BI & DW Independent Purchasing Cooperative A Subway Franchisee Owned Organization Sponsored by:

More information

QlikView Business Discovery Platform. Algol Consulting Srl

QlikView Business Discovery Platform. Algol Consulting Srl QlikView Business Discovery Platform Algol Consulting Srl Business Discovery Applications Application vs. Platform Application Designed to help people perform an activity Platform Provides infrastructure

More information

Deploying Governed Data Discovery to Centralized and Decentralized Teams. Why Tableau and QlikView fall short

Deploying Governed Data Discovery to Centralized and Decentralized Teams. Why Tableau and QlikView fall short Deploying Governed Data Discovery to Centralized and Decentralized Teams Why Tableau and QlikView fall short Agenda 1. Managed self-service» The need of managed self-service» Issues with real-world BI

More information

A Knowledge Management Framework Using Business Intelligence Solutions

A Knowledge Management Framework Using Business Intelligence Solutions www.ijcsi.org 102 A Knowledge Management Framework Using Business Intelligence Solutions Marwa Gadu 1 and Prof. Dr. Nashaat El-Khameesy 2 1 Computer and Information Systems Department, Sadat Academy For

More information

Semantic Data Modeling: The Key to Re-usable Data

Semantic Data Modeling: The Key to Re-usable Data Semantic Data Modeling: The Key to Re-usable Data Stephen Brobst Chief Technology Officer Teradata Corporation stephen.brobst@teradata.com 617-422-0800 Enterprise Information Management Data Modeling Not

More information

From Business Models to BI Models. Lawrence Corr

From Business Models to BI Models. Lawrence Corr From Business Models to BI Models Lawrence Corr Essentially, all models are wrong, but some are useful. George E. P. Box Business Models A business model describes the rationale of how an organization

More information

IAF Business Intelligence Solutions Make the Most of Your Business Intelligence. White Paper November 2002

IAF Business Intelligence Solutions Make the Most of Your Business Intelligence. White Paper November 2002 IAF Business Intelligence Solutions Make the Most of Your Business Intelligence White Paper INTRODUCTION In recent years, the amount of data in companies has increased dramatically as enterprise resource

More information

Agile BI The Future of BI

Agile BI The Future of BI 114 Informatica Economică vol. 17, no. 3/2013 Agile BI The Future of BI Mihaela MUNTEAN, Traian SURCEL Department of Economic Informatics and Cybernetics Academy of Economic Studies, Bucharest, Romania

More information

Presented By: Leah R. Smith, PMP. Ju ly, 2 011

Presented By: Leah R. Smith, PMP. Ju ly, 2 011 Presented By: Leah R. Smith, PMP Ju ly, 2 011 Business Intelligence is commonly defined as "the process of analyzing large amounts of corporate data, usually stored in large scale databases (such as a

More information

Sterling Business Intelligence

Sterling Business Intelligence Sterling Business Intelligence Concepts Guide Release 9.0 March 2010 Copyright 2009 Sterling Commerce, Inc. All rights reserved. Additional copyright information is located on the documentation library:

More information

Extensibility of Oracle BI Applications

Extensibility of Oracle BI Applications Extensibility of Oracle BI Applications The Value of Oracle s BI Analytic Applications with Non-ERP Sources A White Paper by Guident Written - April 2009 Revised - February 2010 Guident Technologies, Inc.

More information

Ten Things You Need to Know About Data Virtualization

Ten Things You Need to Know About Data Virtualization White Paper Ten Things You Need to Know About Data Virtualization What is Data Virtualization? Data virtualization is an agile data integration method that simplifies information access. Data virtualization

More information

Whitepaper. Data Warehouse/BI Testing Offering YOUR SUCCESS IS OUR FOCUS. Published on: January 2009 Author: BIBA PRACTICE

Whitepaper. Data Warehouse/BI Testing Offering YOUR SUCCESS IS OUR FOCUS. Published on: January 2009 Author: BIBA PRACTICE YOUR SUCCESS IS OUR FOCUS Whitepaper Published on: January 2009 Author: BIBA PRACTICE 2009 Hexaware Technologies. All rights reserved. Table of Contents 1. 2. Data Warehouse - Typical pain points 3. Hexaware

More information

SCM & Agile Business Intelligence. Anja Cielen

SCM & Agile Business Intelligence. Anja Cielen SCM & Agile Business Intelligence Anja Cielen 19/11/2014 Agenda Supply Chain & Today s Challenges Supply Chain Analytics Supply Chain and Agile BI 2 SUPPLY CHAIN & TODAY S CHALLENGES 3 Supply Chain 4 Supply

More information

Business Intelligence and Healthcare

Business Intelligence and Healthcare Business Intelligence and Healthcare SUTHAN SIVAPATHAM SENIOR SHAREPOINT ARCHITECT Agenda Who we are What is BI? Microsoft s BI Stack Case Study (Healthcare) Who we are Point Alliance is an award-winning

More information

SAS BI Course Content; Introduction to DWH / BI Concepts

SAS BI Course Content; Introduction to DWH / BI Concepts SAS BI Course Content; Introduction to DWH / BI Concepts SAS Web Report Studio 4.2 SAS EG 4.2 SAS Information Delivery Portal 4.2 SAS Data Integration Studio 4.2 SAS BI Dashboard 4.2 SAS Management Console

More information

Service Oriented Architecture (SOA) An Introduction

Service Oriented Architecture (SOA) An Introduction Oriented Architecture (SOA) An Introduction Application Evolution Time Oriented Applications Monolithic Applications Mainframe Client / Server Distributed Applications DCE/RPC CORBA DCOM EJB s Messages

More information

Agile Software Development

Agile Software Development Agile Software Development Use case for Agile Software Development Methodology in an Oil and Gas Exploration environment. White Paper Introduction No matter what business you are in, there are critical

More information

Implementing Oracle BI Applications during an ERP Upgrade

Implementing Oracle BI Applications during an ERP Upgrade Implementing Oracle BI Applications during an ERP Upgrade Summary Jamal Syed BI Practice Lead Emerging solutions 20 N. Wacker Drive Suite 1870 Chicago, IL 60606 Emerging Solutions, a professional services

More information

Agile Business Intelligence Data Lake Architecture

Agile Business Intelligence Data Lake Architecture Agile Business Intelligence Data Lake Architecture TABLE OF CONTENTS Introduction... 2 Data Lake Architecture... 2 Step 1 Extract From Source Data... 5 Step 2 Register And Catalogue Data Sets... 5 Step

More information

@DanSSenter. Business Intelligence Centre of Excellence Manager. daniel.senter@nationalgrid.com. +44 (0) 7805 162092 dansenter.co.

@DanSSenter. Business Intelligence Centre of Excellence Manager. daniel.senter@nationalgrid.com. +44 (0) 7805 162092 dansenter.co. Dan Senter Business Intelligence Centre of Excellence Manager daniel.senter@nationalgrid.com @DanSSenter +44 (0) 7805 162092 dansenter.co.uk Agenda National Grid Evolution of BI The BICC Empowerment Learnings

More information

Building a Custom Data Warehouse

Building a Custom Data Warehouse Building a Custom Data Warehouse Tom Connolly, BizTech Session #11976 Agenda Presentation Overview Project Methodology for the DDW Phase 1 Project Definition (Planning) Phase 2 Development Phase 3 Operational

More information

MS 20467: Designing Business Intelligence Solutions with Microsoft SQL Server 2012

MS 20467: Designing Business Intelligence Solutions with Microsoft SQL Server 2012 MS 20467: Designing Business Intelligence Solutions with Microsoft SQL Server 2012 Description: This five-day instructor-led course teaches students how to design and implement a BI infrastructure. The

More information

Session M6. Andrea Matulick, Acting Manager, Business Intelligence, Robert Davies, Technical Team Leader, Enterprise Data

Session M6. Andrea Matulick, Acting Manager, Business Intelligence, Robert Davies, Technical Team Leader, Enterprise Data Strategic Data Management Conforming the Data Warehouse Session M6 September 24, 2007 Andrea Matulick, Acting Manager, Business Intelligence, Planning and Assurance Services, UniSA Robert Davies, Technical

More information

Introduction to Business Intelligence

Introduction to Business Intelligence IBM Software Group Introduction to Business Intelligence Vince Leat ASEAN SW Group 2007 IBM Corporation Discussion IBM Software Group What is Business Intelligence BI Vision Evolution Business Intelligence

More information

Chapter 7: Data Mining

Chapter 7: Data Mining Chapter 7: Data Mining Overview Topics discussed: The Need for Data Mining and Business Value The Data Mining Process: Define Business Objectives Get Raw Data Identify Relevant Predictive Variables Gain

More information

LEARNING SOLUTIONS website milner.com/learning email training@milner.com phone 800 875 5042

LEARNING SOLUTIONS website milner.com/learning email training@milner.com phone 800 875 5042 Course 20467A: Designing Business Intelligence Solutions with Microsoft SQL Server 2012 Length: 5 Days Published: December 21, 2012 Language(s): English Audience(s): IT Professionals Overview Level: 300

More information

Practical Considerations for Real-Time Business Intelligence. Donovan Schneider Yahoo! September 11, 2006

Practical Considerations for Real-Time Business Intelligence. Donovan Schneider Yahoo! September 11, 2006 Practical Considerations for Real-Time Business Intelligence Donovan Schneider Yahoo! September 11, 2006 Outline Business Intelligence (BI) Background Real-Time Business Intelligence Examples Two Requirements

More information

MOC 20467B: Designing Business Intelligence Solutions with Microsoft SQL Server 2012

MOC 20467B: Designing Business Intelligence Solutions with Microsoft SQL Server 2012 MOC 20467B: Designing Business Intelligence Solutions with Microsoft SQL Server 2012 Course Overview This course provides students with the knowledge and skills to design business intelligence solutions

More information

Designing Business Intelligence Solutions with Microsoft SQL Server 2012 Course 20467A; 5 Days

Designing Business Intelligence Solutions with Microsoft SQL Server 2012 Course 20467A; 5 Days Lincoln Land Community College Capital City Training Center 130 West Mason Springfield, IL 62702 217-782-7436 www.llcc.edu/cctc Designing Business Intelligence Solutions with Microsoft SQL Server 2012

More information

ORACLE BUSINESS INTELLIGENCE, ORACLE DATABASE, AND EXADATA INTEGRATION

ORACLE BUSINESS INTELLIGENCE, ORACLE DATABASE, AND EXADATA INTEGRATION ORACLE BUSINESS INTELLIGENCE, ORACLE DATABASE, AND EXADATA INTEGRATION EXECUTIVE SUMMARY Oracle business intelligence solutions are complete, open, and integrated. Key components of Oracle business intelligence

More information

Evaluation Checklist Data Warehouse Automation

Evaluation Checklist Data Warehouse Automation Evaluation Checklist Data Warehouse Automation March 2016 General Principles Requirement Question Ajilius Response Primary Deliverable Is the primary deliverable of the project a data warehouse, or is

More information

Traditional BI vs. Business Data Lake A comparison

Traditional BI vs. Business Data Lake A comparison Traditional BI vs. Business Data Lake A comparison The need for new thinking around data storage and analysis Traditional Business Intelligence (BI) systems provide various levels and kinds of analyses

More information

Chapter 6 Basics of Data Integration. Fundamentals of Business Analytics RN Prasad and Seema Acharya

Chapter 6 Basics of Data Integration. Fundamentals of Business Analytics RN Prasad and Seema Acharya Chapter 6 Basics of Data Integration Fundamentals of Business Analytics Learning Objectives and Learning Outcomes Learning Objectives 1. Concepts of data integration 2. Needs and advantages of using data

More information