A comparative analysis of various seismic refraction interpretation techniques over granitic bedrock



Similar documents
Abstract. Introduction

Refraction Inversion with The GRM

A Vertical Array Method for Shallow Seismic. Refraction Surveying of the Sea Floor. J.A. Hunter and S.E. Pullan. Geological Survey of Canada

Brief Review of Global Earth Velocity Structures and Seismology

A Time b). Redatuming Direct with Ghost by Correlation T AB + T BC

Imaging the earth using seismic diffractions

Module 1 : Site Exploration and Geotechnical Investigation. Lecture 5 : Geophysical Exploration [ Section 5.1 : Methods of Geophysical Exploration ]

Which physics for full-wavefield seismic inversion?

GeoEast-Tomo 3D Prestack Tomographic Velocity Inversion System

ASSESSMENT OF SHEAR WAVE VELOCITY FROM INDIRECT INSITU TESTS

Full azimuth angle domain decomposition and imaging: A comprehensive solution for anisotropic velocity model determination and fracture detection

INDIRECT METHODS SOUNDING OR PENETRATION TESTS. Dr. K. M. Kouzer, Associate Professor in Civil Engineering, GEC Kozhikode

Broadband seismic to support hydrocarbon exploration on the UK Continental Shelf

Map Patterns and Finding the Strike and Dip from a Mapped Outcrop of a Planar Surface

AP Physics 1 and 2 Lab Investigations

Waveform inversion of shallow seismic refraction data using hybrid heuristic search method

TABLE OF CONTENTS PREFACE INTRODUCTION

Figure 1: 3D realisation of AST electrode firing head discarging high voltage charge within borehole.

Converted-waves imaging condition for elastic reverse-time migration Yuting Duan and Paul Sava, Center for Wave Phenomena, Colorado School of Mines

Th Salt Exit Velocity Retrieval Using Full-waveform Inversion

Eagle Ford Shale Exploration Regional Geology meets Geophysical Technology. Galen Treadgold Bruce Campbell Bill McLain

Permafrost monitoring at Mölltaler Glacier and Magnetköpfl

The advantages and disadvantages of dynamic load testing and statnamic load testing

EarthStudy 360. Full-Azimuth Angle Domain Imaging and Analysis

Experiment #1, Analyze Data using Excel, Calculator and Graphs.

Groundwater Potential of Basement Aquifers in Part of Southwestern Nigeria


Marine broadband seismic: Is the earth response helping the resolution revolution? N. Woodburn*, A. Hardwick, and R. Herring, TGS

RECOMMENDED STANDARDS FOR DIGITAL TAPE FORMATS 1

Groundwater exploration WATEX applications with Ground Penetrating Radars. Dr.Saud Amer USGS Dr.Alain Gachet Radar Technologies France

Development of EM simulator for sea bed logging applications using MATLAB

Prelab Exercises: Hooke's Law and the Behavior of Springs

manufacturer of seismic borehole equipment sales rentals field service

Tu Slanted-Streamer Acquisition - Broadband Case Studies in Europe / Africa

How Did These Ocean Features and Continental Margins Form?

INTRODUCTION TO ERRORS AND ERROR ANALYSIS

P164 Tomographic Velocity Model Building Using Iterative Eigendecomposition

Advancements in High Frequency, High Resolution Acoustic Micro Imaging for Thin Silicon Applications

Hydrogeological Data Visualization

CENTRAL COLLEGE Department of Mathematics COURSE SYLLABUS

The successful integration of 3D seismic into the mining process: Practical examples from Bowen Basin underground coal mines

Satish Pullammanappallil and Bill Honjas. Optim LLC, Reno, Nevada, USA. John N. Louie. J. Andrew Siemens. Siemens & Associates, Bend, Oregon, USA

INTERPRETATION ADDENDUM CANADIAN MINING COMPANY INC. SUITE WEST HASTINGS STREET VANCOUVER, BC V6E 3X2 3D INDUCED POLARIZATION

1 Mobilisation and demobilisation 1 Deep boring sum 2 Cone penetration tests sum 3 Miscellenous tests sum

Subsalt Interferometric Imaging using Walkaway VSP and Offset Free Cable geometry: A Modeling Study

Evaluation of Open Channel Flow Equations. Introduction :

VAV Laboratory Room Airflow The Lowdown on Turndown

SUBSURFACE INVESTIGATION USING GROUND PENETRATING RADAR

Determination of source parameters from seismic spectra

Mathematics 31 Pre-calculus and Limits

WELL LOGGING TECHNIQUES WELL LOGGING DEPARTMENT OIL INDIA LIMITED

EXPLORATION GEOPHYSICS - OIL AND NATURAL GAS

Using Excel (Microsoft Office 2007 Version) for Graphical Analysis of Data

GROUND-PENETRATING RADAR SURVEY

Secondary Consolidation and the effect of Surcharge Load

2. Simple Linear Regression

NEW DIGITAL TERRAIN MODELING (DTM) TOOLS FOR CABLE ROUTE PLANNING by Dr. Jose M. Andres Makai Ocean Engineering Inc.

Seismic Risk Assessment Procedures for a System consisting of Distributed Facilities -Part three- Insurance Portfolio Analysis

Encoders for Linear Motors in the Electronics Industry

CIVL451. Soil Exploration and Characterization

Decomposition of Marine Electromagnetic Fields Into TE and TM Modes for Enhanced Interpretation

1.3.1 Position, Distance and Displacement

GEOPHYSICAL TESTING OF ROCK AND ITS RELATIONSHIPS TO PHYSICAL PROPERTIES FINAL REPORT

Stop Treating Diffractions as Noise Use them for Imaging of Fractures and Karst*

15.3. Calculating centres of mass. Introduction. Prerequisites. Learning Outcomes. Learning Style

OPTIMIZING CONDENSER WATER FLOW RATES. W. A. Liegois, P.E. Stanley Consultants, Inc. Muscatine, Iowa

Canyon Geometry Effects on Seismic SH-Wave scattering using three dimensional BEM

NuGeneration Ltd Site Investigations

7.2.4 Seismic velocity, attenuation and rock properties

Solving Simultaneous Equations and Matrices

Stanford Rock Physics Laboratory - Gary Mavko. Basic Geophysical Concepts

Data Mining and Exploratory Statistics to Visualize Fractures and Migration Paths in the WCBS*

WILLOCHRA BASIN GROUNDWATER STATUS REPORT

The Internal Rate of Return Model for Life Insurance Policies

CHAPTER 9 CHANNELS APPENDIX A. Hydraulic Design Equations for Open Channel Flow

Dip is the vertical angle perpendicular to strike between the imaginary horizontal plane and the inclined planar geological feature.

RayGUI 2.1. A Graphical User Interface for Interactive Forward and Inversion Ray-Tracing. U. S. Geological Survey. Open File Report

The Bullet-Block Mystery

DecisionSpace. Prestack Calibration and Analysis Software. DecisionSpace Geosciences DATA SHEET

Geological Maps 3: Faulted Strata

3D MODELLING OF GEOLOGICAL STRUCTURES FOR UNDERGROUND CAVERNS : A NEW AND SIMPLE METHODOLOGY

Shape and depth solutions form third moving average residual gravity anomalies using the window curves method

Index-Velocity Rating Development (Calibration) for H-ADCP Real-Time Discharge Monitoring in Open Channels

W009 Application of VTI Waveform Inversion with Regularization and Preconditioning to Real 3D Data

ebb current, the velocity alternately increasing and decreasing without coming to

CORN IS GROWN ON MORE ACRES OF IOWA LAND THAN ANY OTHER CROP.

Index-Velocity Rating Development for Rapidly Changing Flows in an Irrigation Canal Using Broadband StreamPro ADCP and ChannelMaster H-ADCP

Measurement with Ratios

Applying Statistics Recommended by Regulatory Documents

Thickness estimation of road pavement layers using Ground Penetrating Radar

Standing Waves on a String

Exercise (4): Open Channel Flow - Gradually Varied Flow

Gas Dynamics Prof. T. M. Muruganandam Department of Aerospace Engineering Indian Institute of Technology, Madras. Module No - 12 Lecture No - 25

FAN group includes NAMVARAN UPSTREAM,

Imaging Systems Laboratory II. Laboratory 4: Basic Lens Design in OSLO April 2 & 4, 2002

Structural Axial, Shear and Bending Moments

Transcription:

P-331 Summary A comparative analysis of various seismic refraction interpretation techniques over granitic bedrock Ankur Mundhra* 1, Om Prakash Pathak 1, Satyawrat Pamnani 1, T Sheshunarayana 2 A refraction survey was carried out over granitic bedrock of Dharwar craton stretching for about 120 meters and data obtained was interpreted using various interpretation techniques. Individual interpretation results have been presented in this paper followed by their comparative study. Techniques such as intercept time method, delay time method, reciprocal methods and tomography were used for the purpose of interpretation. Keywords: Refraction, interpretation, seismic, reciprocal method, delay time, tomography Introduction Seismic refraction is considered to be paramount in engineering geophysics. In earlier days it was used in oil exploration but with the advent of seismic survey method in reflection its importance is lost. It fulfill vested interest in broad geophysical domain like static correction, mining applications, environmental and engineering applications.refraction techniques supplements the primary purpose of determining bedrock depth, rippability and assessing rock type. The technique has been successfully implemented in mapping backfilled quarries, overburden thickness and topography of groundwater. For civil purposes viz. site investigations, application of method has observed significant increase (Redpath, 1973). Survey area under consideration is composed of granitic bedrocks overlain with weathered layer which itself has undulated surface. Ideally base of weathered layer should be a perfect refractor however geological irregularities may lead to lateral velocity discontinuity and consequently affect depth of the refractor. As interpretation is based on picking of first arrivals, analysis may be erroneous since some of the first arrivals were adjusted manually from wiggle. Placing of geophones closer to each other overcomes this problem to some extent or AGC amplifier can be used. Spacing between geophones and sources and number of shot points all depends upon the purpose of survey. Detailed survey can be undertaken by less spacing and more number of geophones. Theory Interpretation of refraction data Interpretation often works on the principal of considering one refractor layer at a time and readjusting time-distance curve and offset for deeper layers. In other words, it analyzes first refractor layer, readjusts time-distance curve for subsequent refractors, considering shots and geophones to be laid over the first layer, this is known as stripping principle. The process continues for layers down the depth. The most traditional method in interpretation techniques is based on ray theory (Cerveny and Ravindra, 1971) called as Intercept Time Method (ITM). It is the simplest of all methods practiced in refraction interpretation. Depth and velocity of each refractor are computed according to the time- distance relationship for first arrival of p-waves at each receiver. For present data ITM is applied using first arrivals for each receiver. Meanwhile, travel-time data was retrieved corresponding to each shot and travel time curve was obtained. Presence of couple of slope changes was 1 Indian School of Mines,Dhanbad,India 2 National Geophysical Research Institute, Hyderabad D-208, Sapphire Hostel, Indian School of Mines, Dhanbad-826004 Email id: ankur.ismu@gmail.com

observed which subsequently marked the refractors at different depths. Velocity of each layer is equal to inverse of computed slope of time-distance relationship belonging to different refractors. which in turn yields more sophisticated refractor velocity. In practical situations, reflectors are rarely horizontal providing the difference between the received signals travelling updip and downdip. Using this observation, delay time method came into existence (Barry, 1967). This method is utilized to calculate velocity and depth of shallow refractor. Method is widely popular as could be easily computed manually. The procedure embeds picking of first arrivals of different seismic trace. Corresponding to each refractor the difference between average value from two shot points (usually reverse in nature) and reciprocal time at common receiver provides the delay time at a receiver. This procedure is repeated till the delay time for almost all receivers are determined. For our purpose delay time method was carried over 5 shots comprised of far offset, near offset and a shot in middle. Following equations have been used for computation of depth of the refractos: Where, T is delay time, T u denotes up dip shooting time, T d denotes downdip shooting time, T t denotes average reciprocal time, Z d is depth of the refractor, v 1 denotes velocity of upper layer and v 2 denotes velocity of lower subsurface. In late 50 s (Hagedoorn, 1959) Conventional Reciprocal Method (CRM) was introduced which was able to determine lateral velocity variation. It works on the principal of wavefront reconstruction and is applicable for survey locations where precise depth of refractors and velocities of waves along refractors have to be analyzed thoroughly. The depth computation is based on an early concept, termed here the time-depth analysis function, which differs slightly from the delay-time. The calculation of the individual time-depths and of the corrected travel times within the refractor requires only simple numerical computation. RM calculates corrected time-depths and Where, DCF denotes depth conversion factor; Z denotes depth of the refractor and analysis function. is the time depth The main advantage of using the CRM is that it is able to conveniently accommodate and resolve simple departures from the plane interfaces and homogeneous velocities of the ITM. In addition, most of the computations are relatively simple arithmetic. In 1980, Palmer introduced the concept of Generalized Reciprocal Method (GRM). It is the advanced version of reciprocal method as it can be utilized for delineating ruffled refractors, present at any depth. Here, refractor velocity and depth are computed using travel-times of two geophones, located at variable distance. Two geophones leads to improved interpretation and optimum separation is estimated by response of velocity analysis function (Leung, 1995). Interpreted result with means of geophones spaced at optimum distance tends to smoothen refractor and provide least linear velocity variation. It uses the equations derived from conventional reciprocal method with slight modification. Tomography is an interpretation technique which requires an initial velocity model to begin with (Zhang and Toksöz, 1998). It has a primary purpose of reducing RMS error between calculated and observed model and to produce a velocity model devoid of small scale artifacts. Principle behind its working is to divide velocity model into a number of cells of constant velocity followed by iteratively tracing ray through the model further assumptions are made that the seismic pulse will pass through these cells. On the basis of observed travel time through these cells we can assign a region as fast or slow region and their elastic parameters can also be predicted. Inversion is applied over rays to converge to best results. We chose following steps as depicted by flowchart in fig.1 2

near offset of 1 m and all others in between at a distance of 7.5 m with each other as shown in fig.3. Results and discussion Intercept time method provided the velocity model of three layered model as shown in Fig. 4. According to velocity, top layer is composed of soil underlain by layer apparently composed of wet and weathered granitic layer. Below it, presence of fractured and joint granitic layer is expected. First layer velocity comes out to be equal to 500 m/s. In case of delay time method, third layer is found to be highly undulating as shown in Fig.5. Depth for third layer calculated by this method varies in the range of 15 to 18 m while for second layer depth ranges from 2.5 to 4 m. Reason can be attributed to the fact that small scale artifacts are not smoothened, affecting interpretation and depth. However, depth values are found to be in near agreement to that computed by others barring undulations. Figure 1: Flowchart depicting steps performed in tomography Geology and location of survey profile Survey area is comprised of granites and rock formations which date back to Precambrian period. Prospective area is present over Deccan plateau and geographically it lies in Uppal, Hyderabad. In CRM, velocity analysis function is found to be varying almost linearly. In GRM, on the other hand, velocity was calculated corresponding to spacing of 10 m between the geophones as it has the least variation shown in Fig. 6. Summing up the results of velocity analysis function and velocities plots obtained by both reciprocal methods, horizontality of refractors can be conferred and velocities obtained are found to be in near agreement to actual value. With the assistance of velocities of first and second layer and time depth function depth section for the same are evaluated. Therefore, computing depth of the second layer by CRM (Fig.7) and GRM (Fig.8), observed to be nearly equal as computed by other methods. Figure 2: Survey area. Data was acquired using hammer as an energy source and 48 geophones were used to receive signals. Geophones were placed at 2.5 meters spacing making a total spread of 117.5 meters. Total of 19 shot points were selected, both forward and backward, comprising of far offset of 20 meters, Tomography was applied independently on the field data and produced three layered model as shown in Fig.9.Tomography was successful in smoothening lateral variations considerably and velocity model provided by it. Depth observed is more laterally uniform compared to that of other methods. However, velocity model obtained is found to be at general agreement with one obtained by intercept time method. Here it was found that the velocity of first layer differs from that calculated through ITM by being equal to 300m/s. 3

Conclusion Intercept and delay time methods provided preliminary information such as depth and velocity of reflectors and were found to deviate nominally from computations using other interpretation techniques. This deviation may be due to personal error in manual calculation and plot of travel time curve on graph. For delay time computation first arrival were picked and extrapolation of travel time curve was done to obtain second and third layer velocity and consequently depth of respective interfaces. The delay time method tends to find out depth to the bedrock below each receiver. However, it fails in the determination of lateral velocity variation and identification of thin layer. CRM carries the advantage of resolving simple departures from the plane interfaces and homogeneous velocities of the ITM. Reciprocal methods are computationally effective for the region having gentle dip i.e. less than 15 degrees. In case of pronounced changes in depth, assumption of plane refractor does not hold and artifacts occur. Reciprocal methods were able to accurately predict depth of second layer. But, they cannot calculate depth of third layer as velocity analysis function for the same could not be figured out. Depth section and velocity model for both conventional method and reciprocal method was found to be at par, with generalized method having more gentle lateral variation. However the advantage of method over DTM is that lateral velocity variations can be found along with the capability of depicting the fractures and joints, causing the velocity of granitic layer somewhat less than the original value. A better velocity model could have been obtained if parallelism of travel time plots would have been worked over while processing the data. Among all the methods discussed, tomography appears to provide optimum results. Lesser undulations, accurate depth section and precise velocities for different layers marked the operation of tomography. Its essence lies in the fact that it can tackle the discontinuities of refractor bed which was overlooked in GRM. While comparisons deduced by us are not definitive however they do offer some guidance over performance of refraction interpretation techniques over granitic bedrock. Also this fact cannot be neglected that in absence of sufficient data, tomography inversion results into erroneous models. So, a firm data worked through CRM and GRM is essential for an acceptable tomographic model. Worked out approach for interpretation is summarized in Table 1. Figure 3: Arrangement of geophones and shot points on a survey line Figure 4: Velocity Model obtained from ITM 4

Figure 5: Depth to the second and third interface calculated through DTM Figure 6: Shows the variation in velocity with varying XY Figure 7: Variation in depth to the second layer with stations computed by CRM Figure 8: Variation in depth to second layer computed by GRM 5

Figure 9: Velocity model after Tomography Interpretation Method ITM ITM Travel Time Inversion CRM, GRM, DTM Application Picking of first arrivals Travel time curve illustration Velocity model using ITM Computation of depth & velocity Tomography Inversion Velocity model using Tomography Table 1: Illustrating refraction interpretation system for detailed Granitic mapping Acknowledgement The authors gratefully acknowledge the support of National Geophysical Research Institute for allowing the acquisition of data and are thankful to Mr Govardhan and others related to research team of Dr Sheshunarayana to provide guidance whenever needed. References Barry, K.M., 1967, Delay-time and its application to refraction profile interpretation: in Musgrave, A.W. (ed.), Seismic Refraction Prospecting: Society of Exploration Geophysicists, 348 361. Cerveny, V., and Ravindra, R., 1971, Theory of Seismic Head Waves: Toronto Press, 296p. Hawkins, L.V., 1961, The Reciprocal method of routine shallow seismic refraction investigations: Geophysics, 26, 806 819. Hagedoorn, J.G., 1959, The plus-minus method of interpreting seismic refraction sections: Geophysical Prospecting, 7, 158 182 Leung T.M., 1995, Examination of the optimum XY value by ray tracing: Geophysics, 40, 1151 1156. D.M., Eddleston, D.M., Fenning, P.J., and Reeves, G.M. (Eds), Modern Geophysics in Engineering Geology: Geological Society of London, Engineering Geology Special Publication No. 12, 413 416. Palmer, D., 1980, The generalized reciprocal method of seismic refraction interpretation: Society of Exploration Geophysics, 104p. Redpath, B., 1973, Seismic refraction for engineering site investigation: Explosives Excavation Research Lab., TR E- 73-4, 51p. Zhang, J., and Toksöz, M.N., 1998, Nonlinear refraction traveltime tomography: Geophysics, 63, 1726 1737. 6