On Cyclotomic Polynomials with1 Coefficients



Similar documents
minimal polyonomial Example

March 29, S4.4 Theorems about Zeros of Polynomial Functions

Die ganzen zahlen hat Gott gemacht

Factoring Polynomials

CHAPTER SIX IRREDUCIBILITY AND FACTORIZATION 1. BASIC DIVISIBILITY THEORY

5. Factoring by the QF method

Zeros of Polynomial Functions

Polynomial Factoring. Ramesh Hariharan

Chapter 4, Arithmetic in F [x] Polynomial arithmetic and the division algorithm.

Factorization Algorithms for Polynomials over Finite Fields

Monogenic Fields and Power Bases Michael Decker 12/07/07

15. Symmetric polynomials


Module MA3411: Abstract Algebra Galois Theory Appendix Michaelmas Term 2013

Prime numbers and prime polynomials. Paul Pollack Dartmouth College

Integer roots of quadratic and cubic polynomials with integer coefficients

LINEAR DIFFERENTIAL EQUATIONS IN DISTRIBUTIONS

Integer Factorization using the Quadratic Sieve

A SIMPLE PROCEDURE FOR EXTRACTING QUADRATICS FROM A GIVEN ALGEBRAIC POLYNOMIAL.

U.C. Berkeley CS276: Cryptography Handout 0.1 Luca Trevisan January, Notes on Algebra

H/wk 13, Solutions to selected problems

FACTORING SPARSE POLYNOMIALS

MATH 289 PROBLEM SET 4: NUMBER THEORY

JUST THE MATHS UNIT NUMBER 1.8. ALGEBRA 8 (Polynomials) A.J.Hobson

SOLVING POLYNOMIAL EQUATIONS BY RADICALS

Introduction to Finite Fields (cont.)

calculating the result modulo 3, as follows: p(0) = = 1 0,

A number field is a field of finite degree over Q. By the Primitive Element Theorem, any number

3.2 The Factor Theorem and The Remainder Theorem

Influences in low-degree polynomials

SOLVING POLYNOMIAL EQUATIONS

MOP 2007 Black Group Integer Polynomials Yufei Zhao. Integer Polynomials. June 29, 2007 Yufei Zhao

The Division Algorithm for Polynomials Handout Monday March 5, 2012

Zeros of Polynomial Functions

Zeros of Polynomial Functions

Inner Product Spaces

On using numerical algebraic geometry to find Lyapunov functions of polynomial dynamical systems

2 Primality and Compositeness Tests

Principle of Data Reduction

3 Contour integrals and Cauchy s Theorem

The cyclotomic polynomials

STAT 830 Convergence in Distribution

10 Splitting Fields. 2. The splitting field for x 3 2 over Q is Q( 3 2,ω), where ω is a primitive third root of 1 in C. Thus, since ω = 1+ 3

Solutions to Homework 6

THE FUNDAMENTAL THEOREM OF ALGEBRA VIA PROPER MAPS

Lecture 13 - Basic Number Theory.

The Heat Equation. Lectures INF2320 p. 1/88

Differentiation and Integration

a 11 x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a 22 x a 2n x n = b 2.

8 Polynomials Worksheet

Modern Optimization Methods for Big Data Problems MATH11146 The University of Edinburgh

Recursive Algorithms. Recursion. Motivating Example Factorial Recall the factorial function. { 1 if n = 1 n! = n (n 1)! if n > 1

CSE373: Data Structures and Algorithms Lecture 3: Math Review; Algorithm Analysis. Linda Shapiro Winter 2015

UNIT I: RANDOM VARIABLES PART- A -TWO MARKS

SECTION 10-2 Mathematical Induction

Why? A central concept in Computer Science. Algorithms are ubiquitous.

The Greatest Common Factor; Factoring by Grouping

Derive 5: The Easiest... Just Got Better!

OPTIMAL SELECTION BASED ON RELATIVE RANK* (the "Secretary Problem")

Erdős on polynomials

1 = (a 0 + b 0 α) (a m 1 + b m 1 α) 2. for certain elements a 0,..., a m 1, b 0,..., b m 1 of F. Multiplying out, we obtain

Zero: If P is a polynomial and if c is a number such that P (c) = 0 then c is a zero of P.

User Guide Thank you for purchasing the DX90

2.3. Finding polynomial functions. An Introduction:

Breaking The Code. Ryan Lowe. Ryan Lowe is currently a Ball State senior with a double major in Computer Science and Mathematics and

Chapter 4. Polynomial and Rational Functions. 4.1 Polynomial Functions and Their Graphs

Factoring Polynomials

FACTORING. n = fall in the arithmetic sequence

Quotient Rings and Field Extensions

b) since the remainder is 0 I need to factor the numerator. Synthetic division tells me this is true

Prime Numbers and Irreducible Polynomials

1 Lecture: Integration of rational functions by decomposition

PUTNAM TRAINING POLYNOMIALS. Exercises 1. Find a polynomial with integral coefficients whose zeros include

63. Graph y 1 2 x and y 2 THE FACTOR THEOREM. The Factor Theorem. Consider the polynomial function. P(x) x 2 2x 15.

Factorization in Polynomial Rings

MATH 425, PRACTICE FINAL EXAM SOLUTIONS.

V. RANDOM VARIABLES, PROBABILITY DISTRIBUTIONS, EXPECTED VALUE

Analysis of Binary Search algorithm and Selection Sort algorithm

AMBIGUOUS CLASSES IN QUADRATIC FIELDS

Intermediate Value Theorem, Rolle s Theorem and Mean Value Theorem

SOLUTIONS FOR PROBLEM SET 2

TOPPER Sample Paper - I. Class : XI MATHEMATICS. Questions. Time Allowed : 3 Hrs Maximum Marks: 100

RESULTANT AND DISCRIMINANT OF POLYNOMIALS

Math Abstract Algebra I Questions for Section 23: Factoring Polynomials over a Field

College of the Holy Cross, Spring 2009 Math 373, Partial Differential Equations Midterm 1 Practice Questions

WHAT ARE MATHEMATICAL PROOFS AND WHY THEY ARE IMPORTANT?

Roots of Polynomials

2 Polynomials over a field

i/io as compared to 4/10 for players 2 and 3. A "correct" way to play Certainly many interesting games are not solvable by this definition.

Factoring Algorithms

= = 3 4, Now assume that P (k) is true for some fixed k 2. This means that

Ideal Class Group and Units

Tim Kerins. Leaving Certificate Honours Maths - Algebra. Tim Kerins. the date

Some applications of LLL

FACTORING POLYNOMIALS IN THE RING OF FORMAL POWER SERIES OVER Z

Transcription:

On Cyclotomic Polynomials with1 Coefficients Peter Borwein and Kwok-Kwong Stephen Choi CONTENTS 1. Introduction 2. Cyclotomic Polynomials with Odd Coefficients 3. Cyclotomic Littlewood Polynomials 4. Cyclotomic Littlewood Polynomials of Odd Degree Acknowledgment References ResearchofP.Borweinissupported,inpart,byNSERCof Keywords:Cyclotomicpolynomials,Mahlermeasure,Littlewood FellowandtheInstitute'ssupportisgratefullyacknowledged. Canada. MathematicsSubjectClassication(1991):Primary11R09; K.-K.ChoiisaPacicInstituteofMathematicsPostdoctoral Secondary:11Y99 We characterize all cyclotomic polynomials of even degree with coefficients restricted to the setf+1, 1g. In this context a cyclotomic polynomial is any monic polynomial with integer coefficients and all roots of modulus 1. Inter alia we characterize all cyclotomic polynomials with odd coefficients. The characterization is as follows. A polynomial P(x) with coefficients1 of even degree N 1 is cyclotomic if and only if P(x) =ol p1 (x) ol p2 (x p1 )ol where N = p 1 p 2p r pr (x p1p2p r 1 ), and the p i are primes, not necessarily distinct, and where ol p (x) := (x p 1)/ (x 1) is the p-th cyclotomic polynomial. We conjecture that this characterization also holds for polynomials of odd degree with1 coefficients. This conjecture is based on substantial computation plus a number of special cases. Weareinterestedinstudyingpolynomialswithcoef- Central cientsrestrictedtothesetf+1; 1g.Thisparticularsetofpolynomialshasdrawnmuchattentionand to this paper is a careful analysis of the effect of Graeffe s root squaring algorithm on cyclotomic polynomials. questionsandsowecallthesepolynomialslittle- thereareanumberofdicultoldquestionsconcerningit.littlewood[1968]raisedanumberofthese 1. INTRODUCTION woodpolynomialsanddenotethembyl.alittle- woodpolynomialofdegreenhasl2normonthe raisedconcerncomparingthebehaviorofthesepolynomialsinothernormstothel2norm.oneofthe unitcircleequaltopn+1:manyofthequestions isttwopositiveconstantsc1andc2sothatforeach polynomialscanbe\at".specically,dothereex- olderandmoreintriguingoftheseaskswhethersuch nthereisalittlewoodpolynomialofdegreenwith C1pn+1<jp(z)j<C2pn+1cAKPeters, Ltd. 1058-6458/1999 $0.50 per page Experimental Mathematics 8:4, page 399

beenopenformorethanfortyyears,isdiscussed foreachzofmodulus1?thisproblem,whichhas calledrudin{shapiropolynomials.itisstillun- knownwhetherthereisasequencesatisfyingjust in[borwein1998],wherethereisanextensivebibliography.theupperboundissatisedbytheso- 400 Experimental Mathematics, Vol. 8 (1999), No. 4 timization"). ofthe\veryhardestproblemsincombinatorialop- thelowerbound(thisproblemhasbeencalledone hasbeenstudiedfromanumberofpointsofview. TheproblemofminimizingtheL4norm(orequivalentlyofmaximizingtheso-called\meritfactor") ThesizeoftheLpnormofLittlewoodpolynomials hasalsoattractedalotofattention. greenhavel4normasymptoticallyclosetopn+1? Thistooisstillopenandisdiscussedin[Borwein 1998]. Inparticular,canLittlewoodpolynomialsofde- themahlermeasureoflittlewoodpolynomials.the MahlermeasureisjusttheL0normonthecircleand onewouldexpectthistobecloselyrelatedtothe Mahler[1963]raisedthequestionofmaximizing coursetheminimumpossiblemahlermeasurefora minimizationproblemforthel4normabove.of Littlewoodpolynomialis1andthisisachievedby anycyclotomicpolynomial.inthispaperwedene anddenotebyn(x)then-thirreduciblecyclotomic polynomial,thatis,theminimumpolynomialofa acyclotomicpolynomialasanymonicpolynomial primitiven-throotofunity. withintegercoecientsandallrootsofmodulus1, withcoecients1ofevendegreen 1iscyclotomicifandonlyif degree.specically,weshowthatapolynomialp(x) ingthecyclotomiclittlewoodpolynomialsofeven Thispaperaddressesthequestionofcharacteriz- wheren=p1p2prandthepiareprimes(not necessarilydistinct).the\if"partisobvioussince pi(x)hascoecients1. P(x)=p1(x)p2(xp1)pr(xp1p2pr 1); ofsuchpolynomials. Graee'srootsquaringalgorithm.Ittranspiresthat Thisanalysisisbasedonacarefultreatmentof Wealsogiveanexplicitformulaforthenumber greehavethesamexedpointoniteratinggra- ee'srootsquaringalgorithm.thisalsoallowsus allcyclotomiclittlewoodpolynomialsofaxedde- tocharacterizeallcyclotomicpolynomialswithodd characterizationofcyclotomiclittlewoodpolynomialsofevendegreealsoholdsforodddegree.oneof Substantialcomputations,aswellasanumberof specialcases,leadustoconjecturethattheabove coecients. thecaseswecanhandleiswhennisapowerof2. isreallytheobservationthatthecyclotomiclittle- thisiscarefullyerasedinthenalexposition).it pectsofthispaper.(asisperhapsusual,muchof Itisworthcommentingontheexperimentalasrithmthatiscritical.ThisallowsforcomputatiosentiallybyinvertingGraee'srootsquaringalgo- overallcyclotomiclittlewoodsuptodegreeseveral woodpolynomialscanbeexplicitlyconstructedes- turesofthepaperandsuggestedtheroutetosome itwasthesecalculationsthatallowedfortheconjec- hundred(withexhaustivesearchfailingfarearlier), oftheresults. aconstructionwhichisofinterestinitself.indeed Section3looksatcyclotomicLittlewoodpolynomialswithacompleteanalysisoftheevendegreecase. Thepaperisorganizedasfollows.Section2examinescyclotomicpolynomialswithoddcoecients. andotherevidencetosupporttheconjecturethat theoddcasebehavesliketheevencase. Thelastsectionpresentssomenumericalevidence ofirreduciblecyclotomicpolynomials.todothis, Inthissection,wediscussthefactorizationofcyclotomicpolynomialswithoddcoecientsasaproduct pisaprimenumber.themostusefulcaseisp=2 werstconsiderthefactorizationoverzp[x],where becauseeverylittlewoodpolynomialreducestothe Dirichletkernel1+x++xN 1 inz2[x].inzp[x],n(x)isnolongerirreducible ingeneralbutn(x)andm(x)arestillrelatively primetoeachother. arerelativelyprimeinzp[x]. tegersrelativelyprimetop.thenn(x)andm(x) 2.1.Supposenandmaredistinctpositivein- 2. CYCLOTOMIC POLYNOMIALS WITH ODD COEFFICIENTS

Proof.Supposeeandfarethesmallestpositiveintegerssuchthat pe1(modn)andpf1(modm): LetFpkbetheeldoforderpk.ThenFpecontains Borwein and Choi: On Cyclotomic Polynomials with1 Coefficients 401 isaproductof'(n)=eirreduciblefactorsofdegreee exactly'(n)elementsofordernandoverzp,n(x) bedenedoverthequotientoftwomonicpolynomialsinz[x]bytp[(p=q)(x)]:=tp[p(x)]=tp[q(x)]. isalsoamonicpolynomialinz[x].weextendtpto identities[borweinanderdelyi1995,p.5],tp[p(x)] foreveryp(x)=qni=1(x i)inz[x].bynewton's haveacommonfactorinzp[x]sincetheirirreducible foranelementinfpeofordernoverzp;see[lidl andniederreiter1983].son(x)andm(x)cannot andeachirreduciblefactorisaminimalpolynomial rootsofp.alsoweletmpbethenaturalprojection befactorsofpolynomialswithoddcoecients. factorsareminimalpolynomialsofdierentorders. fromz[x]ontozp[x]: polynomialwhoserootsarethep-thpowersofthe Thisoperatorobviouslytakesapolynomialtothe Thefollowinglemmatellswhichm(x)canpossibly Thisprovesourlemma. Proof.Sincem(x)dividesP(x),som(x)alsodividesP(x)inZ2[x].However,inZ2[x],P(x)equals coecientsofdegreen 1.Ifm(x)dividesP(x), thenmdivides2n. 2.2.SupposeP(x)isapolynomialwithodd tivelyprimetopandi2.then Mp[P(x)]=P(x)(modp): (ii)tp[pn(x)]=n(x)p 1, (i)tp[n(x)]=n(x), 2.3.Supposethatnisapositiveintegerrela- to1+x++xn 1andcanbefactoredas wheren=2tm,t0andmisodd.inviewof P(x)=1(x) 1YdjM2t permutestherootsofn(x).toprove(ii)and(iii), (iii)tp[pin(x)]=pi 1n(x)p. 2.1,d1(x)andd2(x)arerelativelyprime d(x); weconsider Proof.(i)istrivialbecauseif(n;p)=1thenTpjust Tp[P(xp)]=Tp"NYj=1(xp i)# inz2[x]ifd1andd2aredistinctoddintegers.soif misodd,thenm(x)isafactorintherighthand =Tp"NYj=1pYl=1(x e2il=p1=p i)# sideof(2{1)andhencem=dforsomedjm.on (2 1) theotherhand,ifmisevenandm=2lm0where inz2[x].thus,inviewof(2{1),wemusthavem0= l1andm0isodd,then =NYj=1pYl=1(x i) dfordjmandlt+1.henceinbothcaseswe m(x)=2m0(x2l 1)=m0(x2l 1)=m0(x)2l 1 Thus(ii)and(iii)followfrom(i)andtheequalities =P(x)p: writtenas P(x),withoddcoecientsofdegreeN 1canbe havemdivides2n. Inviewof2.2,everycyclotomicpolynomial, vergeinanitenumberofstepstoaxedpointof pn(x)=n(xp)=n(x)andpin(x)=pi 1n(xp) wherethee(d)arenonnegativeintegers. P(x)=Ydj2Ne(d) ForeachprimepletTpbetheoperatordened d(x); TpandwedenethistobethexedpointofP(x) [Hungerford1974,x5.8]. withrespecttotp. WhenP(x)iscyclotomic,theiteratesTnp[P(x)]con- inz[x],thenmp[tp[p(x)]]=mp[p(x)]; 2.4.IfP(x)isamoniccyclotomicpolynomial overallmonicpolynomialsinz[x]by Tp[P(x)]:=NYi=1(x pi) (2 2) mialsn(x).letnbeanintegerrelativelyprime sucestoconsidertheprimitivecyclotomicpolyno- inzp[x]. Proof.SincebothTpandMparemultiplicative,it (2 3)

top.then(2{3)istrueforp(x)=n(x)by(i)of 2.3.ForP(x)=pn(x),wehave by(ii)of2.3.however, Mp[Tp[pn(x)]]=Mp[n(x)p 1]=Mp[n(x)]p 1 402 Experimental Mathematics, Vol. 8 (1999), No. 4 Mp[pn(x)]=Mp[n(xp)] Mp[n(x)]=Mp[n](xp) inzp[x].thisprovesthat(2{3)isalsotruefor =Mp[n(x)]p 1 P(x)=pn(x).Finally,P(x)=pin(x)implies Mp[Tp[pin(x)]]=Mp[pi 1n(x)p] by(iii)of2.3.thiscompletestheproofof =Mp[pin(x)] =Mp[pi 1n(xp)] theconverseisalsotrue. Mp[P(x)]=Mp[Q(x)].Thenextresultshowsthat 2.4showsthatTp[P(x)]=Tp[Q(x)]implies ourlemma. samexedpointwithrespecttoiterationoftp. Zp[x]ifandonlyifbothP(x)andQ(x)havethe polynomialsinz[x]andmp[p(x)]=mp[q(x)]in 2.5.P(x)andQ(x)aremoniccyclotomic Proof.Suppose P(x)=Yd2De(d) d(x)e(pd) pd(x)e(ptd) ptd(x) Theorem andq(x)=yd2de(d)0 d(x)e(pd)0 pd(x)e(ptd)0 integersrelativelyprimetop.thenusingparts(i){ wheret;e(j);e(j)00anddisasetofpositive ptd(x); (iii)of2.3,wehaveforlt Tlp[Q(x)]=Yd2Dd(x)f(d)0; Tlp[P(x)]=Yd2Dd(x)f(d); wheref(d)=e(d)+(p 1)tXj=1pj 1e(pjd); (2 4) f(d)0=e(d)0+(p 1)tXj=1pj 1e(pjd)0: From2.4,wehave foranylt.fromthisand(2{4), Mp[Tlp[P(x)]]=Mp[P(x)]=Mp[Q(x)] Yd2DMp[d(x)]f(d)=Yd2DMp[d(x)]f(d)0: =Mp[Tlp[Q(x)]]; andmp[d0(x)]arerelativelyprimeifd6=d0.sowe However,with2.1,weknowthatMp[d(x)] musthavef(d)=f(d)0foralld2dandhencefrom (2{4),P(x)andQ(x)havethesamexedpointwith respecttotp. FromTheorem2.5,wecancharacterizethemonic dertheprojectionmp.theyallhavethesamexed cyclotomicpolynomialsbytheirimagesinzp[x]un- pointundertp.inparticular,whenp=2wehave: xedpointunderiterationoft2.specically,ifn= oddcoecientsofthedegreen 1havethesame 2.6.Allmoniccyclotomicpolynomialswith occursatthe(t+1)-thstepoftheiterationandequals 2tMwheret0andMisoddthenthexedpoint 2.5andthefactthat Proof.TherstpartfollowsdirectlyfromTheorem (xm 1)2t(x 1) 1: coecientsofdegreen 1.IfN=2tM,thenfrom inz2[x]ifp(x)isamonicpolynomialwithodd M2[P(x)]=1+x++xN 1 (2{2), OverZ2[x], P(x)=YdjMe(d) d(x)e(2d) 2d(x)e(2t+1d) 2t+1d(x): so 1+x++xN 1=1(x) 1YdjM2t f(d)=e(d)+t+1 d(x); =2tXi=12i 1e(2id) 2t 1ford=1. fordjm,d>1, (2 5)

Therefore,from(2{5)and2.3, Tt+1 2[P(x)]=YdjMf(d) =(xm 1)2t(x 1) 1: d(x)=1(x) 1YdjM2t d(x) Borwein lary2.7.toprove(2{7),weusedebruijn'sasymp- toticestimationforb(n)in[debruijn1948]: Proof.Formula(2{6)followsfrom(2{5)andCorol- and Choi: On Cyclotomic Polynomials with1 Coefficients 403 T2[P(x)]equals1+x++xN 1forallcyclotomic 2.6,whenNisodd(t=0),showsthat B(n)exp((logn)2=log4): ofcyclotomicpolynomialswithoddcoecients. (2{5),wethenhavethefollowingcharacterization polynomialswithoddcoecients.from(2{2)and N 1iscyclotomicifandonlyif Apolynomial,P(x),withoddcoecientsofdegree P(x)=YdjMe(d) 2.7.LetN=2tMwitht0andModd. mialofhigherdegreeisasfollows:ifp1(x)andp2(x) thecoecientsareall+1or 1. Wenowspecializethediscussiontothecasewhere OnenaturalwaytobuildupLittlewoodpolyno- d(x)e(2d) 2d(x)e(2t+1d) 2t+1d(x); P(x),withoddcoecientsofevendegreeN 1is cyclotomicifandonlyif andthee(d)satisfythecondition(2{5). istheonlywaytoproducecyclotomiclittlewood ofhigherdegree.inthissection,weshowthatthis arelittlewoodpolynomialsandp1(x)isofdegree Furthermore,ifNisodd,thenanypolynomial, polynomials,atleastforevendegree. N 1thenP1(x)P2(xN)isaLittlewoodpolynomial P(x)=YdjN d>1e(d) wherethee(d)arenonnegativeintegers. d(x); suchthatali+n=aliforall1ni 1and ProvingthisisequivalenttoshowingthatthecoecientsofP(x)are\periodic"inthesensethat ifp(x)=pn 1 n=0anxn,thenthereisa\period"i 0lN=i 1.ThisisourTheorem3.3below. B(n)bethenumberofpartitionsofnintoasum cyclotomicpolynomialswithoddcoecients.let oftermsofthesequencef1;1;2;4;8;16;:::g.then 2.7allowsustocomputethenumberof wehavexn 1P(1=x)=P(x).Thusitfollowsfrom nomialinlandletskbethesumofthek-thpowers ofalltherootsofp(x).sincep(x)iscyclotomic, SupposeP(x)=PN 1 n=0anxnisacyclotomicpoly- Newton'sidentitiesthat B(n)hasgeneratingfunction a1=1byreplacingp(x)by P(x)orP( x)if forkn 2.Wemayfurtherassumethata0= Sk+a1Sk 1++ak 1S1+kak=0 ThenumberofcyclotomicpolynomialswithoddcoecientsofdegreeN 1is Weclaimthat S1= a1= 1: 2.8.LetN=2tMwitht0andModd. F(x)=(1 x) 11Yk=0(1 x2k) 1: forsomeintegeri2.from(3{1),wehave necessary.wenowlet a0=a1==ai 1=1andai= 1; (3 1) whered(m)denotesthenumberofdivisorsofm. C(N)=B(2t)d(M) 1B(2t 1); Furthermore, SupposeS1==Sj= 1forj<i 1.Then s1=s2==si 1= 1; logc(n)(12t2log2)(d(m) 1)+(log(2t 1))2 from(3{1)again, log4 : SoS1==Si 1= 1.Similarly,from(3{1), Sj+1= a1sj ajs1 (j+1)aj+1 =j (j+1)= 1: (2 6) Si= a1si 1 ai 1S1 iai=2i 1: (2 7) Now(2{7)followsfromthisand(2{6). 3. CYCLOTOMIC LITTLEWOOD POLYNOMIALS Si=2i 1: (3 2)

alifor1ni 1and0lk 2.Then Xl=0ali S(k l)i+j+1 S(k l 1)i+j+1 3.1.Let2kN 1 i 1andsupposeali+n= 404 Experimental Mathematics, Vol. 8 (1999), No. 4 +(ki+j+1)(aki+j+1 aki+j) for0ji 2. +i 1 Proof.Suppose0ji 2.From(3{1)and(3{2) wehave 0=k 1 Xl=0i 1 Xn=0a(k 1)i+n(Si+j n+1 Si+j n)=0(3 3) +j 1 Xn=0ali+nS(k l)i+j n =k 2 Xl=0alii 1 Xn=0aki+nSj n+(ki+j)aki+j Xn=0S(k l)i+j n+i 1 jxn=0aki+n+(ki+j+1)aki+j: Xn=0a(k 1)i+nSi+j n 0=k 2 Similarly, Xl=0alii 1 Xn=0S(k l)i+j n+1+i 1 Xn=0a(k 1)i+nSi+j n+1 (3 4) 0=k 2 Hence,onsubtracting(3{5)from(3{4),wehave Xl=0ali S(k l)i+j+1 S(k l 1)i+j+1 jxn=0aki+n+(ki+j+1)aki+j+1:(3 5) +(ki+j+1)(aki+j+1 aki+j) Thisproves(3{3). +i 1 Xn=0a(k 1)i+n(Si+j n+1 Si+j n): 3.2.Let0kN 1 i 1.Supposeali+n=ali for1ni 1and0lk. for1ni 1and0lk.Then Sli+n= 1 (3 6) Proof.Weprovethisbyinductiononk.Wehave istruefork 1.Then,forany0ji 2, provedthat(3{6)istruefork=0.suppose(3{6) 0=a0(Ski+j+1 S(k 1)i+j+1) =Ski+j+1+1+a(k 1)i(Si+j+1 Sj+1) +a(k 1)ii 1 Xn=0(Si+j n+1 Si+j n) by(3{3).henceski+j+1= 1for0ji 2. =Ski+j+1+1; 3.3.SupposeNisodd.Ifa0=a1== for1ni 1and0lNi 1. ai 1=1andai= 1,then Proof.WerstshowthatS2k= 1for1kN 1 ali+n=ali Theorem odd,from2.7, andhenceiisoddbecausesi=2i 1.SinceNis P(x)=YdjNe(d) d(x)e(2d) If1kN 1,then wheree(d)+e(2d)=1ifd>1ande(1)=e(2)=0. 2d(x) S2k=XdjN(e(d)Cd(2k)+e(2d)C2d(2k)) =XdjN(e(d)+e(2d))Cd(k) =XdjNCd(k) C1(k) rootsofqdjnd(x)=xn 1,whichisequaltozero hencepdjncd(k)isthesumofk-thpowersofthe k-thpowersoftheprimitived-throotsofunityand wheretheramanujansum,cd(k),isthesumofthe when1kn 1. Suppose Wecontinueourproofbyusinginductiononk. for1ni 1and0lk 1where1k N 1 i 1.Froms3.1and3.2wehave ali+n=ali Ski+j+1+1+(ki+j+1)(aki+j+1 aki+j)=0(3 8) = 1; (3 7)

andhencefrom(3{3)again 0=a0(S(k+1)i+j+1 Ski+j+1)+ai(Ski+j+1 S(k 1)i+j+1) +aki+j(si+1 Si)+aki+j+1(Si Si 1) clotomicinlofdegreen 1ifandonlyif 3.5.SupposeNisodd.ThenP(x)iscy- Borwein and Choi: On Cyclotomic Polynomials with1 Coefficients 405 =S(k+1)i+j+1+1+2((k+1)i+j+1)(aki+j+1 aki+j) =(S(k+1)i+j+1 2Ski+j+1 1)+2i(aki+j+1 aki+j) +((k+1)i+j+1)(a(k+1)i+j+1 a(k+1)i+j) where"=0or1,n0=1;nt=nandni 1isa P(x)=tYi=1xNi+( 1)"+i properdivisorofnifori=1;2;:::;t. xni 1+( 1)"+i Proof.Withoutlossofgenerality,wemayassume ifjiseven.sofrom(3{8)and(3{9),wehave (3{7),Ski+j+1= 1ifjisoddandS(k+1)i+j+1= 1 for0ji 2.Supposekiseven.Theninviewof P(x)iscyclotomicinLifandonlyif thatp(x)=1+x+a2x2+.fromtheorem3.4, P(x)=p1(x)p2(xp1)pr(xp1pr 1) aki+j+1=aki+j =p1(x)pn1(xp1pn1 1) (3 9) forj=1;3;:::;i 2and forj=0;2;:::;i 3.However,sincetheai'sare+1 pnt 1+1(( 1)t 1xp1pnt 1) pn1+1( xp1pn1)pn2( xp1pn2 1) forj=0;2;:::;i 3.Henceaki+n=akiforn= or 1,Equation(3{10)impliesthat aki+j+1=aki+j anda(k+1)i+j+1=a(k+1)i+j theprecedingequationbecomes wheren=p1pnt.sincep(x)=(xp 1)=(x 1), pnt(( 1)t 1xp1pnt 1); P(x)=tYi=1xNi+( 1)i 2(aki+j+1 aki+j)=a(k+1)i+j+1 a(k+1)i+j(3 10) nomial,p(x),ofdegreen 1iscyclotomicifand 1;2;:::;i 1.Thecaseofkoddcanbeprovedin xni 1+( 1)i; onlyif thesameway. 3.4.SupposeNisodd.ALittlewoodpoly- cyclotomiclittlewoodpolynomialsofgivenevendegree.foranypositiveintegersnandt,dene Thisprovesourcorollary. Using3.5,wecancountthenumberof wheren0=1andni=p1pnifori=1;:::;t. wheren=p1p2prandthepiareprimes,not Theorem Conversely,supposeP(x)isacyclotomicLittlewood thenp(x)isacyclotomiclittlewoodpolynomial. necessarilydistinct. andfori1,di(n):=xnjndi 1(n) r(n;t):=#(n1;n2;:::;nt):n1jn2jjnt; 1<N1<N2<<Nt=N ; polynomial.asbeforewemayassumethata0= Proof.ItisclearthatifP(x)isoftheform(3{11), whered0(n)=1. a1==ai 1=1andai= 1.WeproveourresultbyinductiononN.FromTheorem3.3,wehave 3.6.Forl;t0andpprime,wehave P(x)=P1(x)P2(xi),whereP1(x)=1+x++xi 1 dt(pl)=l+t t: (3 12) andp2(x)isacyclotomiclittlewoodpolynomialof P2(x)areoftheform(3{11)andhencesoisP(x) degreelessthann 1.Byinduction,P1(x)and becausethedegreeofp1(x)isi 1. suppose(3{13)istruefort 1wheret1.Then clearlytruefort=0becaused0(n)=1.wethen Proof.Weworkbyinductionont.Equality(3{13)is dt(pl)=xnjpldt 1(n)=lXi=0dt 1(pi)=lXi=0i+t 1 t 1: (3 13) P(x)=p1(x)p2(xp1)pr(xp1p2pr 1); (3 11)

(x+1)t 1+(x+1)t++(x+1)l+t 1 Sodt(pl)isthecoecientofxt 1in =(x+1)t 1(x+1)l+1 1 x 406 Experimental Mathematics, Vol. 8 (1999), No. 4 (x+1)t 1.Therefore,dt(pl)= l+t Hencedt(pl)isthecoecientofxtin(x+1)l+t =(x+1)l+t (x+1)t 1 t. x : have Sincedt(N)isamultiplicativefunctionofN,we aredistinctprimes,then 3.7.IfN=pr1 dt(n)=syi=1ri+t 1prs swhereri1andpi t: have r(n;t):=0 3.8.ForanypositiveintegersNandt,we Pti=1( 1)t i tidi 1(N)ifN>1. ifn=1, fromthedenitionthatr(1;t)=0andr(n;1)=1 Proof.Weagainprovebyinductionont.Itisclear (3{14)istruefort 1wheret2.Then foranyt;n1.wethensupposen>1and r(n;t)=xn1jn N1>1r(N=N1;t 1) (3 14) =XN1jN =XN1jNt 1 N>N1>1r(N=N1;t 1) t 1 Xi=1( 1)t i 1t 1 Xi=1( 1)t i 1t 1 idi 1(N=N1) =txi=2( 1)t it 1 i 1di 1(N) i(di 1(1)+di 1(N)) t 1 =txi=1( 1)t itidi 1(N) Xi=1( 1)t i 1t 1 idi 1(N)+( 1)t 1 from(3{12)andthefactthat t 1 i 1+ t 1 inlofdegreen 1,whereN=pr1 3.9.Thenumberofcyclotomicpolynomials i= ti. andthepiaredistinctoddprimes,is 4r1++rs Xi=1 ixj=1( 1)i jijsyk=1rk+j 1 1prs s;ri1 j 1: Proof.From3.5,thenumberofcyclotomic polynomialsinlofdegreen 1is Thecorollarynowfollowsfrom3.7and 4r1++rs Xi=1r(N;i): 3.8. forpolynomialsofodddegree. WeconjectureexplicitlythatTheorem3.4alsoholds degreen 1iscyclotomicifandonlyif 4.1.ALittlewoodpolynomial,P(x),of necessarilydistinct. wheren=p1p2prandthepiareprimes,not P(x)=p1(x)p2(xp1)pr(xp1p2pr 1); Conjecture putingallcyclotomicpolynomialswithoddcoe- cientsofagivendegreeandthencheckingwhich Wecomputeduptodegree210(exceptforthecase N 1=191).Thecomputationwasbasedoncom- matchedthesetgeneratedbytheconjecture.for wereactuallylittlewoodandseeingthatthisset arelittlewood.forn 1=191thereare697392380 cyclotomicpolynomialswithoddcoecients(which example,forn 1=143thereare6773464cyclotomicpolynomialswithoddcoecientsofwhich416 wastoobigforourprogram). ecientsfrom2.7quiteeasilysothebulk height1.thesetintheconjecturecomputesvery oftheworkisinvolvedincheckingwhichoneshave Wecangenerateallthecyclotomicswithoddco- easilyrecursively. 4. CYCLOTOMIC LITTLEWOOD POLYNOMIALS OF ODD DEGREE (4 1)

proofisasfollows.from2.7,wehave MostnotablythecasewhereNisapowerof2.The Somespecialcasesalsosupporttheconjecture. P(x)=e(1) 1(x)e(2) 2(x)e(2t+1) 2t+1(x): Borwein and Choi: On Cyclotomic with1 Coefficients 407 x2 1and Again,weassumea0=a1=1.Since1(x)2(x)= [BorweinandErdelyi1995]P.BorweinandT.Erdelyi, L.Schumaker,VanderbiltUniversityPress,Nashville, TN,1998. ApproximationTheoryIX,editedbyC.Chuiand forl2,wehavee(2) e(1)=1andhence P(x)=2(x)Q(x2); 2l(x)=2(x2l 1) [debruijn1948]n.g.debruijn,\onmahler'spartition Polynomialsandpolynomialinequalities,Lect.Notes inmath.161,springer,newyork,1995. forsomecyclotomiclittlewoodpolynomialq(x). (1948),210{220. problem",nederl.akad.wetensch.,proc.51(1948), 659{669.AlsoappearsasIndagationesMath.10 TheauthorswishtothankProfessorD.Boydforhis adviceandsupportconcerningthispaper. [LidlandNiederreiter1983]R.LidlandH.Niederreiter, [Hungerford1974]T.W.Hungerford,Algebra,Holt, GraduateTextsinMath.73,Springer,Berlin,1980. RinehartandWinston,NewYork,1974.Reprintedas [Borwein1998]P.Borwein,\Someoldproblemson [Littlewood1968]J.E.Littlewood,Someproblems Finiteelds,Seconded.,Addison-Wesley,Reading, MA,1983.Secondedition,CambridgeUniv.Press, 1997. polynomialswithintegercoecients",pp.31{50in [Mahler1963]K.Mahler,\Ontwoextremumproperties inrealandcomplexanalysis,heathmathematical Monographs,D.C.Heath,Lexington,MA,1968. PeterBorwein,DepartmentofMathematicsandStatistics,SimonFraserUniversity,Burnaby,B.C.,Canada ofpolynomials",illinoisj.math.7(1963),681{701. REFERENCES Kwok-KwongStephenChoi,DepartmentofMathematics,UniversityofBritishColumbia,Vancouver,B.C.,Canada V5A1S6(pborwein@cecm.sfu.ca) V6T1Z2andDepartmentofMathematicsandStatistics,SimonFraserUniversity,Burnaby,B.C.,Canada ReceivedJune3,1998;acceptedinrevisedformNovember28,1998 V5A1S6(choi@cecm.sfu.ca) Therefore,byinduction,P(x)satises(4{1). ACKNOWLEDGMENT