Similar documents
Tuition Reimbursement Program. Handbook

5 VECTOR GEOMETRY. 5.0 Introduction. Objectives. Activity 1


BMC ITSM Suite - nabité skúsenosťami. Juraj Izák,




R e t r o f i t o f t C i r u n i s g e C o n t r o l


Chem 115 POGIL Worksheet - Week 4 Moles & Stoichiometry Answers

List of Graduate Courses University of Economics, Prague Fall/Winter Semester 2015/2016

Chapter 9 Project Cash Flow Analysis



List of Graduate Courses University of Economics, Prague Fall/Winter Semester 2015/2016

ELECTRON CONFIGURATION (SHORT FORM) # of electrons in the subshell. valence electrons Valence electrons have the largest value for "n"!

How To Pay For An Ambulance Ride

Chem 115 POGIL Worksheet - Week 4 Moles & Stoichiometry

CLASS TEST GRADE 11. PHYSICAL SCIENCES: CHEMISTRY Test 6: Chemical change

Chapter. CPT only copyright 2009 American Medical Association. All rights reserved. 9Ambulance


All answers must use the correct number of significant figures, and must show units!

1.- L a m e j o r o p c ió n e s c l o na r e l d i s co ( s e e x p li c a r á d es p u é s ).

UNIK4250 Security in Distributed Systems University of Oslo Spring Part 7 Wireless Network Security

Manage the acquisition of products from suppliers for which there exists a formal agreement.

U S B Pay m e n t P r o c e s s i n g TM

Online Department Stores. What are we searching for?

Parallels Mac Management v4.0

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.


PES INSTITUTE OF TECHNOLOGY B.E 5TH SEMESTER (AUTONOMOUS) - PROVISIONAL RESULTS JANUARY 2015 COMPUTER SCIENCE AND ENGINEERING BRANCH

BLADE 12th Generation. Rafał Olszewski. Łukasz Matras

BIG DATA IN TRANSPORT RESEARCH: LEGAL AND PRIVACY CHALLENGES

MODERN ATOMIC THEORY AND THE PERIODIC TABLE

List of Undergraduate Courses University of Economics, Prague Fall/Winter Semester 2015/2016

Electronegativity and Polarity


SCO TT G LEA SO N D EM O Z G EB R E-

AN ESTIMATION OF CLAIMS DISTRIBUTION NAWOJIRO ESHITA FOREWORD

SwA Community s Assurance Process Reference Model - Mapping to Assurance Models

Sputtering Targets for Microelectronics. Sputtering Targets for Semiconductor Applications

How To Solve A Sequential Mca Problem

EXPERIMENT 4 The Periodic Table - Atoms and Elements

Business and Economics Applications

DryLin ZLW Belt Drive

Two River Views. A New Website at a New Home. Two River Community Bank Newsletter Fall 2015

SAMBA TRISTE As recorded by Baden Powell, 1963 (From the 1963 Album BADEN POWELL À VONTADE)

Campus Sustainability Assessment and Related Literature

GE Healthcare Life Sciences

Enrolment Application Form

รายงานผลการด าเน นงาน เร อง โครงการศ นย เร ยนร การเกษตรพอเพ ยงป 2552 โดย

Version 1.0. General Certificate of Education (A-level) January Mathematics MPC4. (Specification 6360) Pure Core 4. Final.


Put the human back in Human Resources.

So ware Zusammenfassung Details docusnap.intern

100% ionic compounds do not exist but predominantly ionic compounds are formed when metals combine with non-metals.

Chair of Software Engineering. Software Verification. Assertion Inference. Carlo A. Furia

LARGE CLASSES OF EXPERTS

From Quantum to Matter 2006

Covariances between gamma-ray energies

Ciascuncorsoincludeunacombinazionedigitescolastiche;duegiorni. interieduemezzegiornateselezionatetraleseguentidestinazioni:

1. Oblast rozvoj spolků a SU UK 1.1. Zvyšování kvalifikace Školení Zapojení do projektů Poradenství 1.2. Financování

Sustainable energy products Simulation based design for recycling

Multicrystalline solar silicon production for development of photovoltaic industry

STAPLES: AFTERMARKET STAPLES CROSS-REFERENCE GUIDE BRAND OEM # MODELS / FINISHERS DESCRIPTION COPYLITE #

Safe robot motion planning in dynamic, uncertain environments

Questions on Chapter 8 Basic Concepts of Chemical Bonding

Final Report Certification for CRADA Number. Between. UT-Battelle, LLC. and. (Participant)

Lecture 2 - Semiconductor Physics (I) September 13, 2005

Faculty Teaching Qualifications Table

The Econometric Society is collaborating with JSTOR to digitize, preserve and extend access to Econometrica.

845 PRICE AUTHORIZATION ACKNOWLEDGEMENT/STATUS - VERSION 5010

The Configuration Management process area involves the following:

ITINERARY 1 GOURMET OUTING 20 MINUTES AWAY FROM MONTRÉAL TOTAL DISTANCE: 57 KM

Victims Compensation Claim Status of All Pending Claims and Claims Decided Within the Last Three Years

YTD Highlights. 1 st Half 2013 Results Presentation

Networx SOW Status to date 10/28/09

REQUEST FOR BID TREE TRIMMING and TREE REMOVAL for ELECTRIC LINE CLEARANCE

Chapter 8 Atomic Electronic Configurations and Periodicity

UNITED STATES DEPARTMENT OF AGRICULTURE FOOD SAFETY AND INSPECTION SERVICE WASHINGTON, DC INFORMATION SYSTEM CERTIFICATION AND ACCREDITATION (C&A)

How to read your Oil Analysis Report

Time-line based model for software project scheduling

Overview of the Systems Security Engineering Capability Maturity Model (SSE-CMM)


Amsterdam RAI Hotel DETAILBOEK OMA AANVRAAG WABO 1 : 5. Heer Bokelweg AD Rotterdam, Netherlands tel: ARCHITECT PROJECT

L a h ip e r t e n s ió n a r t e r ia l s e d e f in e c o m o u n n iv e l d e p r e s ió n a r t e r ia l s is t ó lic a ( P A S ) m a y o r o

ANSWER KEY : BUILD AN ATOM PART I: ATOM SCREEN Build an Atom simulation ( an atom )

270/271 Health Care Eligibility Benefit Inquiry and Response

How to Assign Transport Request for Language Translation?

Transcription:

LoadBalancingforMinimizingExecutionTimeofaTargetJobon anetworkofheterogeneousworkstations DepartmentofElectricalandComputerEngineering S.-Y.LeeandC.-H.Cho sylee@eng.auburn.edu Auburn,AL36849. AuburnUniversity NOWs.Insuchanenvironment,partitioning(loadbalancing)atargetjobbasedononlythe executiontimeofatargetjobistobeminimized.jobarrivalrateandsizeare\random"ona Anetworkofworkstations(NOWs)maybeemployedforhighperformancecomputingwhere Abstract tominimizeexecutiontimeofatargetjobonasetofworkstationswheretheround-robinjob schedulingpolicyisadopted.ithasbeenveriedthroughcomputersimulationthattheproposed rstordermoments(means)ofsystemparametersisnotoptimal.inthispaper,itisproposed toconsiderthesecondordermoments(standarddeviations)alsoinloadbalancinginorder staticanddynamicloadbalancingschemescansignicantlyreduceexecutiontimeofatarget jobinanowsenvironment,comparedtocaseswhereonlythemeansoftheparametersare used. scheduling,standarddeviation,staticloadbalancing,stochasticmodel KeyWords:Dynamicloadbalancing,Executiontime,Networkofworkstation,Round-robinjob

tributedcomputingtoolinanincreasingnumberofcases[1][2].accordingly,usinganows Anetworkofworkstations(NOWs),orcomputers,isbeingemployedasahighperformancedis- 1 Introduction issueofloadbalancingingeneralisnotnew.manyresearchershaveinvestigatedvariousaspects balancinghasasignicanteectonperformanceonecanachieveonanowsenvironment.the ecientlyforspeedingupvariousapplicationshasbecomeanimportantissue.inparticular,load ofloadbalancingforquitelongatime[3][4][5][6][7][8][9][10]. (orheterogeneity)ofsystem,loadbalancingoverhead,speciccharacteristicsofajob,etc.in processorspeed,jobarrivalrateandsize,communicationamongjobs(orsubtasks),homogeneity Thereweremanyparametersandcharacteristicsconsideredinloadbalancing.Theyinclude mostofthepreviouswork[11][12],onlythemeansofsuchparameterswereusedinloadbalancing. However,aparametermayhavethesamemeanforallworkstations,butquitedierentavariance onadierentworkstationinaheterogeneousenvironment.also,inmanycases[13][14][15],the emphasiswasonbalancingjobdistributionratherthanminimizingexecutiontimeofatargetjob. onanindividualworkstation.thisismainlyduetothefactthateachworkstationisusuallyshared forms,especiallydedicatedtightly-coupledmultiprocessorsystems,i.e.,randomnessofjobarrival ThereisafeatureofNOWs,whichdistinguishesitfromotherhighperformancecomputingplat- workstationtime-dependent.thatis,thenumberofjobsonaworkstationistobemodelledasa Thisrandomnessinjobarrivalandsizemakesthenumberofjobssharing(theprocessoron)a bymultipleindependentuserswhosubmittheirjobsatanytime.also,thesizeofajobisrandom. ofworkcompletedineachjobduringatimeintervaldependson(e.g.,inverselyproportionalto) randomvariable.whentheprocessorissharedamongjobsinaround-robinfashion,theamount workstationdoesnotachievetheminimumpossibleexecutiontime.aswillbeshownlater,not distributing(loadbalancing)atargetjobconsideringonlythemeanofthenumberofjobsoneach thenumberofjobs(sharingtheprocessor)inthatinterval.onanetworkofsuchworkstations, takeintoaccountthestandarddeviationofthenumberofjobsoneachworkstationinadditionto onlythemeanbutalsothestandarddeviationofthenumberofjobsaectsexecutiontimeofajob itsmeaninloadbalancing. onaworkstation.therefore,inordertominimizeexecutiontimeofatargetjob,itisnecessaryto analyticallyanddemonstratedviasimulationthatthesecondordermomentsaswellastherst ordermomentsofparametersaretobeusedtominimizeexecutiontimeofatargetjobona Inthispaper,asarststeptowarddevelopinganecientloadbalancingscheme,itisshown networkofheterogeneousworkstations.workstationsareconsideredtobeheterogeneouswhenthe partitionedforloadbalancingandcommunicationisnotrequiredamongsubtasks. time-sharedbymultiplejobs.inthisearlystudy,itisassumedthatatargetjobcanbearbitrarily meanandstandarddeviationofthenumberofjobsvarywithworkstation.eachworkstationis Themaincontributionsofthisworkare(i)derivationofanalyticformulasofperformance 1

measuresusedinloadbalancing,(ii)designofstaticanddynamicloadbalancingschemesfor thestandarddeviationsaswellasthemeansofparameterscanoutperformthoseconsideringthe meansonly. minimizingexecutiontimeofatargetjob,and(iii)showingthataloadbalancingschemeutilizing derivedanalyticallyonasingleworkstation,whicharetobeusedforloadbalancingonmultiple workstations.insection4,theproposedstaticanddynamicloadbalancingstrategiesaredescribed. InSection2,astochasticmodelofworkstationsisdescribed.InSection3,asetofmeasuresis strategies.insection6,aconclusionisprovidedwithremarksonthefuturedirections. InSection5,resultsfromextensivecomputersimulationarediscussedtovalidatetheproposed Glossary 2 AStochasticModelofWorkstations Thefollowingnotationsareadoptedinthispaper. Wiworkstationi X thenumberofworkstations Xi thesizeofatargetjobtobedistributed Ai theportionofxassignedtowi thenumberofjobs(randomvariable)arrivedinanintervalonwi ni aithestandarddeviationofai themeanofai Ni themeanofni arrivinginthecurrentinterval thenumberofjobs(randomvariable)inanintervalonwi,excludingthose nithestandarddeviationofni Si thesizeofjob(randomvariable)arrivingatwi i sithestandarddeviationofsi theservicerate(computingpower)ofwi themeanofsi Ti ti executiontime(randomvariable)measuredinintervalsonwi themeanofti Or Oc overheadinvolvedinredistributingload overheadinvolvedincheckingloaddistribution thestandarddeviationofti Whenavariableistobedistinguishedforeachtimeinterval,asuperscriptwithparentheses E[Z]expectationofZ willbeused,e.g.,a(j) idenotesaiforthejthinterval.thesubscriptofarandomvariable,which 2

isusedtodistinguishworkstations,isomittedwhenthereisnoneedfordistinction,e.g.,asingle workstationorwhenitdoesnotvarywithworkstation. ServicePolicy Atimeintervalisaunitoftimeforschedulingjobs(sharingtheprocessor)onaworkstation.All timemeasuresareexpressedinintervals.itisassumedthateachworkstationadoptsaround-robin foreachjobinanintervalonworkstationi(denotedbywi)whereiistheservicerateofwi. schedulingpolicy.aworkstation(processor)spends,oneachjobinaninterval,anamountoftime Thosejobsarrivedinanintervalstarttobeserviced(processed)inthefollowingintervalwithout whichisinverselyproportionaltothenumber(ni)ofjobsinthatinterval.thatis,i niisallocated JobArrival anydistinctiondependingontheirarrivaltimes(aslongastheyarriveinthesameinterval).itis tobenotedthatniincludesalljobsarrivedbutnotcompletedbyii 1. Jobsaresubmittedatrandomtimeinstancesand,therefore,thenumberofjobsarrivinginan intervalmaybemodelledbyarandomvariabledenotedbyai.themeanandstandarddeviation JobSize ofaiaredenotedbyaiandai,respectively. standarddeviation(si).itisassumedthatthejobsizeisindependentofthejobarrivalrate. Overheads Thesizeofajobvarieswithjobandmayhaveacertaindistributionwithamean(Si)anda suchastheremainingportionofxionwi,andalsoaconstantoverhead,or,forredistributingthe Loadsonworkstationsarecheckedtodetermineifloadbalancingistobedone.Itisassumedthat, givenanumberofworkstations,thereisaxedamountofoverhead,oc,forcheckinginformation remainingxoverworkstationswhenitisdecidedtoperformloadbalancing. beestimatedfromagivennetworkofworkstations.also,nicanbedirectlymonitoredinpractice. thesystemparametersmaybeknowninsomecases.ortheirmeansandstandarddeviationscan Thejobarrivalrateandjobsizewillbereferredtoassystemparameters.Thedistributionsof distributionofeachofthesystemparameters. Itneedstobenotedthattheproposedloadbalancingschemesdonotassumeanyparticular loadbalancingschemesformultipleworkstations,arederived. 3Inthissection,certain(performance)measuresonasingleworkstation,tobeusedintheproposed PerformanceMeasuresonaWorkstation 3

characteristics(morespecically,themeansandstandarddeviationsofthesystemparameters)do notvarywithtimeonaworkstation,itissaidthattheworkstationisin\steadystate".when Thejobofwhichexecutiontimeistobeminimizedisreferredtoastargetjob.Whentheload theyvarywithtime,theworkstationissaidtobein\dynamicstate". Thenumberofjobs,n(j),mayberelatedtothejobarrivalrate,a(j),asfollows. 3.1NumberofJobs n(j)=1+a(j 1)+(n(j 1) 1)p(j 1) intervalandtherstterm(of1)correspondstothetargetjob. wherep(j 1)istheprobabilitythatajobinthe(j 1)thintervaliscarriedovertothejth (1) dependsonandthedistributionsofa(j)ands(j),fromequation1, NotingthatE[n(j)]=E[n(j 1)]=N,andlettingPdenotethesteadystatevalueofp(j)which Also,thestandarddeviationofn(j)canbederivedasfollows. N=1+ 1 P A (2) 3.2ExecutionTime n=qe[(n(j) N)2]= 1 P a (3) Inthejthinterval,thetargetjob(anyjob)isprocessedbytheamountof tintervalstocompletethetargetjob,txi=1 n(j)forallj.ifittakes Then,1 Let'sexpressn(j)asN+n(j).Then,E[n(j)]=0sinceE[n(j)]=N,andE[(n(j))2]=2n. n(i)=x: (4) asfollows. n(j)canbeapproximatedbyignoringthehigherordertermsbeyondthesecondorderterm BytakingE[](expectation)onbothsidesofEquation4withEquation5incorporatedinto, n(j)= 1 N+n(j)1N0@1 n(j) 1 N + n(j) N!21A (5) themeanofexecutiontimeofthetargetjob,t,canbederived. 4

NotethatTdependsonnotonlyNbutalsonbothofwhichinturndependonthestandard T= 1+2n NXN2 (6) deviationsaswellasthemeansofthesystemparameters,a,a,s,ands(andofcourse).note thatexecutiontimeofatargetjobonaworkstationwitharound-robinjobschedulingdecreases approximationusedtoobtaint,thestandarddeviation,x,ofxcanbeshowntoben thatisprocessed(completed)inthejthinterval.thenx(j)= asvariation(n)inthenumberofjobsincreases. Inordertoderivethestandarddeviationofexecutiontime,letX(j)denoteaportionofX N+n(j).Followingthesimilar amountoftargetjobprocessedovertintervals(whichisthemeanexecutiontimeofthetarget Now,assuming\uncorrelatedness"ofX(j)betweenintervals,thestandarddeviation,X,ofthe N2. job)canbeeasilyshowntobeptx.finally,thestandarddeviationofexecutiontimeofa targetjobmaybederived(approximated)bydividingxbythemeanprocessingspeedwhichis XTandusingEquation6.Thatis, t=xt X=pTq1+2n n NN2 (7) 4.1StaticLoadBalancing 4 LoadBalancingoverHeterogeneousWorkstations Intheproposedstaticloadbalancingscheme,atargetjobispartitionedsuchthatthefractionof XassignedtoWifori=1;;WisinverselyproportionaltotheexpectedexecutiontimeofX onwiwherewisthenumberofworkstationsavailableforx.lettidenoteexecutiontimeofthe targetjobonwi(i.e.,whenwionlyisemployedfortheentirex).then, Ti= i1+2ni NiX LetXidenotethesizeoftheportionofXtobeassignedtoWi.Then,Xiisdeterminedas N2i fori=1;;w: (8) follows. Xi= PWi=11Ti XTi isconstantforalli.thisloadbalancingstrategyassignsmoreworktoaworkstationwitha Notethat,evenwhenNiisthesameforalli,Xwouldnotbedistributedevenlyunlessni (9) 5

largervariationinthenumberofjobsonitwhentheaveragenumberofjobsisthesameforall rateof1+3=23onw2.therefore,alargerportionofthetargetistobeassignedtow2which and3).then,atargetjobwouldbeprocessedattheaveragerateof2onw1whileattheaverage workstations.supposethatn1=n2=2,n1=0,andn2>0(say,n2alternatesbetween1 hasalargervariationinthenumberofjobs. 4.2DynamicLoadBalancing point). ofatargetjob)andhowfrequentlyloaddistributionistobechecked(determinationofchecking Twoessentialissuesindynamicloadbalancingarehowloadshouldberedistributed(redistribution Redistribution LetXi:remdenotethesizeoftheremainingportionofatargetjobonWibeforeloadbalancingat 6.Thatis, completiontimeofthetargetjobwouldbemaxifti:remgwhereti:remiscomputedusingequation acheckingpoint.ifloadbalancing(redistribution)isnotdoneatthecheckingpoint,theexpected Ti:rem= i1+2ni NiXi:rem N2i fori=1;;w (10) Xrem=PIXi:rem,isredistributedoverWiaccordingtoEquation9.Thatis,X0i:rem= Now,ifloadbalancingistobedoneatthecheckingpoint,thetotalremainingjob,ofwhichsizeis PWi=11 Ti:rem Xrem foralli;jsinceloadhasbeenbalanced. wherex0i:remisthesizeoftargetjob(portion)tobeassignedtowiafterloadbalancing.the expectedexecutiontimeofx0i:remonwiisdenotedbyt0 i:rem.then,notethatt0 i:rem=t0j:rem Ti:rem Theexpectedreduction,T,inexecutiontimeofthetargetjobcanbeexpressedas whereoristheoverheadforredistribution. T=maxifTi:remg T01:rem Or (11) DeterminationofCheckingPoint executiontime,t)exceedsacertainthreshold,i.e.,tthreshold. Loadbalancing(redistribution)iscarriedoutonlywhentheexpectedbenet(reductionin whichanywiisidle(doesnotworkonthetargetjob)beforethetargetjobiscompletedonall Inordertominimizeexecutiontimeofatargetjob,itisnecessarytominimizethedurationin 6

stillworkonthetargetjob. Wi.Hence,theloaddistributionistobecheckedbeforeanyofWibecomesidlewhiletheothers Equation7.Areasonableestimateofthe\highlylikely"earliestcompletiontimeonWimaybe approximatedtobet0 Thestandarddeviation,t0i:rem,ofexecutiontimetocompleteX0i:remcanbederivedusing setasfollows. Then,thenextcheckingpoint,Tcheck,measuredwithrespecttothecurrentcheckingpointis i:rem ht0i:remwherehisatuningfactorcloseto1. Tcheck=minifT0 tionbeforeanyofwicompletesitsexecutionoftargetjob(x0i:rem).notethatonceawicompletes Thatis,intheproposeddynamicloadbalancingscheme,itisattemptedtocheckloaddistribu- i:rem ht0i:remg (12) 5X0i:remitwillnotbeutilizedforthetargetjobatleastuntilnextcheckingpoint. Anextensivecomputersimulationhasbeencarriedoutinordertoverifythereductioninexecution timeofatargetjob,whichcanbeachievedbyconsideringthesecondordermoments(standard SimulationResultsandDiscussion geneousworkstations. 5.1Simulation deviations)aswellasthemeansofsystemparametersforloadbalancingonanetworkofhetero- similartrendshavebeenobservedforallthreedistributions,onlytheresultsforthe(truncated) distributions,havebeenconsideredforeachofthejobinter-arrivaltimeandthejobsize.since Inthissimulation,threedierentdistributions,i.e.,exponential,uniform,andtruncatedGaussian eachwithadierentseed,andthenresults(executiontimeofatargetjob)wereaveraged. testedforawiderangeofeachparameter.theprogramwasrunmultipletimesineachtestcase, Gaussiandistributionareprovidedinthispaper.Theproposedloadbalancingschemeshavebeen \SE"(StaticEven)whichdistributesatargetjobevenlyinthestaticloadbalancingand\SM" \staticproposed"and\dynamicproposed",respectively)arecomparedtootherapproaches,i.e., Theproposedstaticanddynamicloadbalancingschemes(\SP"and\DP"whichreads (StaticMean)and\DM"(DynamicMean)whichuseonlythemeans(Ni)ofthenumberofjobs inthestaticanddynamicloadbalancing,respectively. totheexecutiontimeforeachcheckingpoint.ifloadisredistributed,or(redistributionoverhead) isalsoadded(foreachredistribution). Inthecasesofdynamicloadbalancing,theoverhead,Oc,forcheckingloaddistributionisadded 7

Executiontimeismeasuredinintervals.Inadditiontoexecutiontimeofatargetjob,themeasure of\relativeimprovement"isusedincomparison,whichisdenedasris=tsm TSP 5.2ResultsandDiscussion staticloadbalancingwheretsmandtspareexecutiontimesofatargetjobachievedbysmand SP,respectively.Similarly,therelativeimprovementisdenedforthedynamicloadbalancingas RID=TDM TDP anddp,respectively. Resultsforcaseswhereworkstationsareinthesteadystatearediscussedrst. wheretdmandtdpareexecutiontimesofatargetjobachievedbydm discussedinsection3.2,tclearlyshowsitsdependencyonnanddecreasesasnincreases. nfordierentninasteadystate.obviously,tincreasesasnincreases.moreimportantly,as InFigure1,executiontimeofatargetjobonasingleworkstationisplottedasafunctionof expected,theproposedloadbalancingschemes(spanddp)workbetterthantheotherschemes, comparedamongtheveloadbalancingschemesmentionedabove.first,itcanbeseenthat,as InFigure2,(parallel)executiontimeofatargetjobinsteadystatesontwoworkstationsis conrmingthatthesecondordermomentsofthesystemparametersaretobeconsideredinload balancinginordertominimizetheexecutiontimeofatargetjob.second,itneedstobenotedthat SPachievesshorterexecutiontimesthanDP.Thisisduetothefactthatinasteadystatetheload characteristicsdonotvaryinthelongtermandthereforetheone-timeinitialloadbalancing(by SP)isgoodenough,andthatDPpaystheoverheadofcheckingandbalancingduringexecution. inn,leadingtoashorterexecutiontime(refertoequation6).however,increasingshasan executiontime(figure2-(b)).thisisbecauseanincreaseinacausesalargerincreaseinnthan Third,anincreaseinaleadstoashorterexecutiontime(Figure2-(a))whilethatinstoalonger oppositeeect. analyzedinasteadystate.asshowninthegure,whentheoverheadsarerelativelylow,dpcan stillachieveashorterexecutiontimethanthatbysp.however,astheoverheadsbecomelarger, InFigure3,dependencyofexecutiontimeontheloadcheckingandredistributionoverheadsis thansp. theystarttoosetthegainbythedynamicloadbalancingandeventuallymakedpperformworse DMinFigure4-(b).Itcanbeseeninbothcasesthattherelativeimprovementincreasesasthe dierenceinaorsbetweentwoworkstationsbecomeslarger.thisisduetothefactthatthe TherelativeimprovementbySPoverSMisconsideredinFigure4-(a),andthatbyDPover agiandssiareaandsoftheithgroupofworkstations.itcanbeobservedthattherelative largerthedierenceis,thelessaccuratetheloadbalancingbysmbecomes. improvementbyspoversmincreaseswiththenumberofworkstations.itincreasesmorerapidly Eectsofthenumberofworkstations,W,areanalyzedforsteadystatesinFigure5where theloadbalancingbyspbecomesmore(relatively)accuratethanthatbysmasthedierence whenthedierenceineitheraorsislarger.again,theseobservationsstemfromthefactthat inthesecondordermomentsbetweengroupsofworkstationsgrows. 8

45 40 N=2 (A=1, S=20) N=3 (A=2, S=10) N=4 (A=3, S=5) 35 Execution time 30 Figure1:ExecutiontimeofXononeworkstationwhere=100andX=1000. 25 20 15 10 0 10 20 30 40 50 60 σ (%) n 34 32 S_E S_M S_P D_M D_P 36 34 32 S_E S_M S_P D_M D_P 30 30 28 28 26 26 S2=20,andX=2000.(a)a1=53%,s1=30%,s2=48%,(b)a1=53%,a2=45%,s1=30% Figure2:Parallelexecutiontimeontwoworkstationswhere=100,A1=1,A2=2,S1=10, (b) 24 24 22 22 Now,acasewhereasystemparametervarieswithtimeisconsidered,i.e.dynamicstate.In 0 20 40 60 80 0 20 40 60 80 σ a2 (%) σ (%) thestaticschemes(spandsm).also,itisnotedthatdpwhichtakesa1intoaccountachieves Figure6,a1varieswithtimesuchthatitsdeviationfromthevalueusedbySPischanged(larger forcaseiwithlargeri).asexpected,thedynamicschemes(dpanddm)performbetterthan s2 ashorterexecutiontimecomparedtodm.theimprovementbydpoverdmtendstoincrease 6withthedeviation. astherstordermoments(means)ofsystemparametersbetakenintoaccountforloadbalancing Inthispaper,ithasbeenproposedthatthesecondordermoments(standarddeviations)aswell ConclusionandFutureStudy onatime-sharedheterogeneousparallel/distributedcomputingenvironment.theseloadbalancing schemeswhichattempttominimizeexecutiontimeofatargetjobhavebeentestedviacomputer simulation.ithasbeenveriedthatconsideringthesecondordermomentsalsoinbothstaticand 9 Execution time Execution time

46 44 42 S_E S_M S_P D_M D_P Execution time 40 38 S2=30,X=2000,a1=90%,a2=0%,s1=96%,s2=96%. Figure3:Parallelexecutiontimeontwoworkstationswhere=100,A1=1,A2=2,S1=20, 36 34 32 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 O c, O r 12 10 σ s2 =1 % σ s2 =47 % σ s2 =95 % 13 12 11 σ s2 =1 % σ s2 =46 % σ s2 =96 % Relative improvement (%) 10 8 9 6 8 7 4 6 A1=0:5,A2=0:5,S1=40,S2=40,X=3000,a1=0%,s1=100%,(b)Relativeimprovement, 5 2 RID,byDPoverDMontwoworkstations.=100,A1=2,A2=2,S1=20,S2=20,X=16000, Figure4:(a)Relativeimprovement,RIS,bySPoverSMontwoworkstations. 4 a1=0%,s1=96%,oc=0:1,or=0:1. 0 3 0 20 80 0 20 80 σ (%) σ a2 a_2 (%) (reductioninexecutiontimeofatargetjob)becomeslargerasthedierenceinthesecondorder NOWswitharound-robinjobschedulingpolicyadoptedineachworkstation.Theimprovement dynamicloadbalancingcanleadtoasignicantreductioninexecutiontimeofatargetjobona momentsbetweenworkstationsorgroupsofworkstationsincreases.thesimilarobservationshave application. schemesaresimpleandgeneral,andthereforearebelievedtohaveagoodpotentialforwide beenmadeforallofthethreedistributionsconsideredforeachsystemparameter.theproposed performanceanalysisforrealworkloadsonanows,etc. Thefuturestudyincludesconsiderationofcommunicationamongsubtasksandjobgranularity, 10 Relative improvement (%)

Relative improvement (%) 25 20 σ a_g2 =50 %, σ s_g2 =0 % σ a_g2 =50 %, σ s_g2 =96 % σ a_g2 =76 %, σ s_g2 =0 % σ a_g2 =76 %, σ s_g2 =96 % 15 Ag1=0:5,Ag2=0:5,Sg1=40,Sg2=40,X=1500,ag1=50%,sg1=96%. Figure5:Relativeimprovement,RIS,bySPoverSMonmultipleworkstationswhere=100, 5 0 2 4 6 8 12 W 50 45 S_E S_M S_P D_M D_P Execution time 40 Figure6:Parallelexecutiontimeontwoworkstationswhere=100,A1=1,A2=2,S1=20,S2=30, 35 25 References X=2000,a1=24%,a2=0%,s1=0%,s2=20%.a1varieswithtimewhereitsdeviationfrom thevalueusedbyspislargerforcaseiwithlargeri. 1 2 3 4 [2]Pf,\InSearchofClusters". [1]D.Culler,\ParallelComputerArchitecture",MorganKaufman,1999. [4]C.PolychronopoulosandD.Kuck,\GuidedSelf-SchedulingSchemeforParallelSupercomputers",IEEETransactionsonComputers,vol.36,no.12,pp1,425-1,439,December1987. [3]G.Cybenko,\DynamicLoadBalancingforDistributedMemoryMultiprocessors",J.Parallel anddistributedcomputing,vol.7,pp279-301,1989. [5]S.Ranka,Y.Won,andS.Sahni,\ProgrammingaHypercubeMulticomputer",IEEESoftware, pp69-77,september1988. 11

[7]M.Cierniak,W.Li,andM.J.Zaki,\LoopSchedulingforHeterogeneity",Proc.ofthe4th [6]M.MaheswaranandH.Siegel,\ADynamicMatchingandSchedulingAlgorithmforHeterogeneousComputingSystems",Proc.HeterogeneousComputing'98,pp57-69,1998. [8]A.GerasoulisandT.Yang,\OntheGranularityandClusteringofDirectedAcyclictask IEEEInternationalSymposiumHigh-PerformanceDistributedComputing,pp78-85,August graphs",ieeetransactionsonparallelanddistributedsystems,vol.4,no.6,pp686-701, 1995. [9]S.M.FigueiraandF.Berman,\ModelingtheSlowdownofData-ParallelApplicationsin 1993. [10]J.C.JacobandS.-Y.Lee,"TaskSpreadingandShrinkingonMultiprocessorSystemsand 1998. HomogeneousClustersofWorkstations",Proc.HeterogeneousComputerWorkshop,pp90-101, [11]E.P.MakatosandT.J.Leblanc,\UsingProcessorAnityinLoopSchedulingonShared- NetworksofWorkstations",IEEETransactionsonParallelandDistributedSystems,vol.10, no.10,pp1082-1101,october1999. [12]S.SubramaniamandD.L.Eager,\AnitySchedulingofUnbalancedWorkloads",Proc.Supercomputing'94,pp214-226,1994. no.4,pp379-400,april1993. MemoryMultiprocessors",IEEETransactionsonParallelandDistributedSystems,vol.5, [13]M.-Y.Wu,\OnRuntimeParallelSchedulingforProcessorLoadBalancing",IEEETransactionsonParallelandDistributedSystems,vol.8,no.2,pp173-186,February1997. [14]X.ZhangandY.Yan,\ModelingandCharacterizingParallelComputingPerformanceOnHeterogeneousNetworksofWorkstations",Proc.ofthe7thIEEESymp.ParallelandDistributed [15]B.-R.TsaiandK.G.Shin,\Communication-OrientedAssignmentofTaskModulesinHypercubeMulticomputers",Proc.ofthe12thInternationalConferenceonDistributedComputing Processing,pp25-34,October1995. Systems,pp38-45,1992. 12