Supernova Remnants interac1ng with molecular clouds as seen with H.E.S.S.



Similar documents
The VHE future. A. Giuliani

Gamma Rays from Molecular Clouds and the Origin of Galactic Cosmic Rays. Stefano Gabici APC, Paris

HIGHLIGHTS OF RECENT RESULTS FROM THE VERITAS GAMMA-RAY OBSERVATORY TAUP-2015 TORINO. Lucy Fortson. VERITAS Collaboration. Fortson, TAUP 2015, Torino

Search for Pulsed Emission in Archival VERITAS Data. Since the 2011 VERITAS discovery of very high energy (VHE; E>100 GeV) gamma rays from

Interstellar Cosmic-Ray Spectrum from Gamma Rays and Synchrotron

8.1 Radio Emission from Solar System objects

Recent observations of Active Galactic Nuclei with H.E.S.S.

High-resolution radio study of SNR IC 443 at low radio frequencies ABSTRACT. = 470 ± 51 Jy and S. 74 MHz

Constraints on the explosion mechanism and progenitors of Type Ia supernovae

IV. Molecular Clouds. 1. Molecular Cloud Spectra

Gamma-rays from Dark Matter Mini-Spikes in Andromeda Galaxy M31. Mattia Fornasa Dipartimento di Fisica G. Galilei I.N.F.N. Padova

How To Understand The Shock Cloud Interaction In Supernova Remnants

Low-energy point source searches with IceCube

Star Formation in the Large Magellanic Cloud: Tracing an Evolution of Giant Molecular Clouds

HTRA Instrumentation I

The Chemical Composition of a Molecular Cloud at the Outer Edge of the Galaxy

lecture 10. The Milky Way s Interstellar Medium Birgitta Nordström, Copenhagen, & Gerhard Hensler, Vienna

Charting the Transient Radio Sky on Sub-Second Time-Scales with LOFAR

NGUYEN LUONG QUANG. Président du jury: J. Le Bourlot Rapporteurs: H. Beuther, T. Moore Examinateurs: I. Bonnell, F. Boulanger, F. Combes, F.

Indirect dark matter detection offers a promising approach to


The dynamics and energetics of FR-II radio galaxies

Cross section, Flux, Luminosity, Scattering Rates

Detailed Mass Map of CL from Strong Lensing

arxiv:astro-ph/ v1 2 Mar 2004

Dinamica del Gas nelle Galassie II. Star formation

ABSTRACT INTRODUCTION

Astronomy. Astrophysics. Large-scale flow dynamics and radiation in pulsar γ-ray binaries. V. Bosch-Ramon 1 andm.v.barkov 2,3. 1.

The Universe Inside of You: Where do the atoms in your body come from?

AGN-driven winds and ionized clouds moving along the jet in PKS

5. The Nature of Light. Does Light Travel Infinitely Fast? EMR Travels At Finite Speed. EMR: Electric & Magnetic Waves

T(CR)3IC Testbed for Coherent Radio Cherenkov Radiation from Cosmic-Ray Induced Cascades

In studying the Milky Way, we have a classic problem of not being able to see the forest for the trees.

The Aulterra Neutralizer Reduces the Intensity of Cell Phone Radiation

Recent Discoveries of Energetic Young Radio Pulsars

Chapter 15.3 Galaxy Evolution

Highlights from the VLA/ANGST Survey

Modeling Galaxy Formation

TES microcalorimeters for future X ray missions. Athena and Beyond: TES detectors for future X-ray missions. Luigi Piro IAPS/INAF

Low- and high-energy neutrinos from gamma-ray bursts

How To Understand The Physics Of Electromagnetic Radiation

Planck Early Results: New light on Anomalous Microwave Emission from Spinning Dust Grains

The Evolution of GMCs in Global Galaxy Simulations

V6 AIRS Spectral Calibra2on

The Very High Energy source catalogue at the ASI Science Data Center

Solar Energy. Outline. Solar radiation. What is light?-- Electromagnetic Radiation. Light - Electromagnetic wave spectrum. Electromagnetic Radiation

New results on the importance of absorption in AGN

Modelling clumpy! galactic disks

GRAVITY A versa.le tool Designed for the Galac.c Center

UNIVERSIDAD COMPLUTENSE DE MADRID OBSERVATION OF ACTIVE GALACTIC NUCLEI WITH THE MAGIC TELESCOPE.

Heating & Cooling in Molecular Clouds

Top rediscovery at ATLAS and CMS

Searching for young proto-planetary disks from ALMA archival data Final presentation

The Unique, Optically-Dominated Quasar Jet of PKS

Resultados Concurso Apex 2014-A

165 points. Name Date Period. Column B a. Cepheid variables b. luminosity c. RR Lyrae variables d. Sagittarius e. variable stars

Big HI Data and Artificial Intelligence Team Up to Decode the Multiphase ISM in Galaxies

Measuring the Universe with Einstein s Gravita3onal Waves

A Preliminary Summary of The VLA Sky Survey

The Solar Journey: Modeling Features of the Local Bubble and Galactic Environment of the Sun

Demonstration of the Applicability of 3D Slicer to Astronomical Data Using

Class #14/15 14/16 October 2008

PDF hosted at the Radboud Repository of the Radboud University Nijmegen

Spectral Line II. G ij (t) are calibrated as in chapter 5. To calibrated B ij (ν), observe a bright source that is known to be spectrally flat

Yukikatsu Terada (Saitama Univ, Japan), on behalf of the Astro-H Software Calibration board

arxiv: v1 [astro-ph] 16 Aug 2007

Multi-wavelength study of the G supernova remnant

Stellar Evolution: a Journey through the H-R Diagram

7th Agile Meeting & The Bright Gamma-Ray Sky Frascati, 29 September - 1 October, Carlotta Pittori, on behalf of the ADC

A Quick primer on synchrotron radiation: How would an MBA source change my x-ray beam. Jonathan Lang Advanced Photon Source

Labs in Bologna & Potenza Menzel. Lab 3 Interrogating AIRS Data and Exploring Spectral Properties of Clouds and Moisture

Nuclear fusion in stars. Collapse of primordial density fluctuations into galaxies and stars, nucleosynthesis in stars

Treasure Hunt. Lecture 2 How does Light Interact with the Environment? EMR Principles and Properties. EMR and Remote Sensing

THE BOSTON UNIVERSITY FIVE COLLEGE RADIO ASTRONOMY OBSERVATORY GALACTIC RING SURVEY

Overview. What is EMR? Electromagnetic Radiation (EMR) LA502 Special Studies Remote Sensing

YSO Orion Molecular Cloud Aims Of Stahler & Bakk.N.R.T.P.R.T.T.

Ellipticals. Elliptical galaxies: Elliptical galaxies: Some ellipticals are not so simple M89 E0

Proton Nuclear Magnetic Resonance ( 1 H-NMR) Spectroscopy

Very-high-energy γ-ray observations of pulsar wind nebulae and cataclysmic variable stars with MAGIC and development of trigger systems for IACTs

Use the following image to answer the next question. 1. Which of the following rows identifies the electrical charge on A and B shown above?

Breakthrough Listen Follow-up of a Transient Signal from the RATAN-600 Telescope in the Direction of HD

Testing maser-based evolutionary schemes: a new search for 37.7-GHz methanol masers

Faber-Jackson relation: Fundamental Plane: Faber-Jackson Relation

Basic Properties and Application Examples of PGS Graphite Sheet

Magellanic Cloud planetary nebulae as probes of stellar evolution and populations. Letizia Stanghellini

Perspective of discoveries from Intergalactic Space. Matteo Viel INAF/OATS & INFN/TS Off-the-beaten-track workshop ICTP Trieste - 14 th April 2015

Activity: Multiwavelength Bingo

arxiv: v1 [astro-ph.ga] 17 Oct 2011

arxiv: v1 [astro-ph.he] 3 Nov 2014

Status of the XIS Orbital Calibration and Softwares

Resultados Concurso Apex 2007

A SUSY SO(10) GUT with 2 Intermediate Scales

Lecture 6: distribution of stars in. elliptical galaxies

7. In which part of the electromagnetic spectrum are molecules most easily detected? A. visible light B. radio waves C. X rays D.

The TOTEM experiment at the LHC: results and perspective

Coronal Heating Problem

Data Analysis Software for ESPRESSO

RX-AM4SF Receiver. Pin-out. Connections

INTI COLLEGE MALAYSIA A? LEVEL PROGRAMME CHM 111: CHEMISTRY MOCK EXAMINATION: DECEMBER 2000 SESSION m/e

Polarization, magnetic fields and radio galaxies in galaxy clusters. Gianfranco Gentile Universiteit Gent / Vrije Universiteit Brussel (Belgium)

Transcription:

Supernova Remnants interac1ng with molecular clouds as seen with H.E.S.S. MaJ DALTON, Peter EGER, Diane FERNANDEZ, Hélène LAFFON, Jérémie MEHAULT, Stefan OHM, Igor OYA, MaJhieu RENAUD on behalf of the H.E.S.S. collabora1on Rencontres de Moriond Very High Energy Phenomena in the Universe March 916, 2013 La Thuile, Italy

Features of SNRs interac1ng w/ MCs: SNRs interac1ng w/ MCs: W28N, W49B, W51C, IC443, W44 Luminous GeV & weak TeV sources Spectral break at a few GeV, steep at VHE FermiLAT D. Willasch h IC 443 Op1cal image SNR ΔIndex Ebreak (GeV) W28N 0.65±0.30 1.0±0.2 W49B 0.72±0.20 4.8±1.6 IC443 0.63±0.11 3.3±0.6 W44 0.96±0. 1.9±0.2 W51C 1.3±0.1 1.7±0.5 0.61.3 15 GeV Abdo et al., 2009 Abdo et al., 20 Aleskic et al., 2012 Ackermann et al., 2013 D. FERNANDEZ March 916, 2013 2

H.E.S.S. Galac1c Plane Survey D. FERNANDEZ March 916, 2013 3

3 H.E.S.S. sources associated to a SNRMC interac1on W51C W49B W28 D. FERNANDEZ March 916, 2013 4

3 H.E.S.S. sources coincident w/ SNRMC interac1on but PWN emission possibly dominant W51C W49B Kes78 W28 W30 CTB 37A D. FERNANDEZ March 916, 2013 5

4 new H.E.S.S. sources possibly associated to a SNRMC interac1on HESS J1834087 HESS J1832092 W51C W49B Kes78 W28 W30 CTB 37A RaDec HESS J1641463 HESS J1640465 D. FERNANDEZ March 916, 2013 6

J1834087: Discovered with the HESS survey (Aharonian et al., 2005) MAGIC dedicated paper (Albert et al., 2006) Images at the same scale MAGIC HESS Δ CCO SNR (NRAO, 20 cm) 13 CO (GRS, 7482 km/s) Black contours: 12 CO 90 cm VLA radio contours MAGIC tracking posi1ons MAGIC analysis source region D. FERNANDEZ March 916, 2013 7

HESS J1834087 HESS J1832092 HESS J1834087 HESS J1834087: Δ CCO SNR (NRAO, 20 cm) 13 CO (GRS, 7482 km/s) 2 H.E.S.S. components from the center of the remnant: Ptlike (coincident w/ CCO) + Extended (Ø=21 ) components k coincident w/ SNR G23.30.3 (W41): 4.2 kpc, 6x 4 yrs, Ø=27 f coincident w/ 12 CO (Dame et al., 1986) & 13 CO (Jackson et al., 2006) 13 CO peak density not compa1ble w/ VHE emission Possible OH maser (Green et al., 1996) but not confirmed f Xray CCO at the center of the remnant, no pulsa1ons Nonthermal Xray diffuse emission => PWN candidate (Misanovic et al., 2011; Mukherjee et al., 2009) coincident w/ a FermiLAT extended source (compa1ble w/ CCO) PL spectrum ( no exp. cutoff) D. FERNANDEZ March 916, 2013 8

HESS J1834087 HESS J1832092 HESS J1834087 HESS J1834087: 2 H.E.S.S. components from the center of the remnant: Ptlike (coincident w/ CCO) + Extended (Ø=21 ) components k coincident w/ SNR G23.30.3 (W41): 4.2 kpc, 6x 4 yrs, Ø=27 f coincident w/ 12 CO (Dame et al., 1986) & 13 CO (Jackson et al., 2006) 13 CO peak density not compa6ble w/ VHE emission Possible OH maser (Green et al., 1996) but not confirmed f Xray CCO at the center of the remnant, no pulsa6ons Nonthermal Xray diffuse emission => PWN candidate (Misanovic et al., 2011; Mukherjee et al., 2009) Δ CCO SNR (NRAO, 20 cm) 13 CO (GRS, 7482 km/s) coincident w/ a FermiLAT extended source (compa1ble w/ CCO) PL spectrum ( no exp. cutoff) D. FERNANDEZ March 916, 2013 Against SNR shell emission Against SNR MC emission Against PSR scenario 9

HESS J1834087 HESS J1832092 HESS J1834087 HESS J1834087: Δ CCO SNR (NRAO, 20 cm) 13 CO (GRS, 7482 km/s) Possible PWN emission 2 H.E.S.S. components from the center of the remnant: Ptlike (coincident w/ CCO) + Extended (Ø=21 ) components k coincident w/ SNR G23.30.3 (W41): 4.2 kpc, 6x 4 yrs, Ø=27 f coincident w/ 12 CO (Dame et al., 1986) & 13 CO (Jackson et al., 2006) 13 CO peak density not compa6ble w/ VHE emission Possible OH maser (Green et al., 1996) but not confirmed f Xray CCO at the center of the remnant, no pulsa6ons Nonthermal Xray diffuse emission => PWN candidate (Misanovic et al., 2011; Mukherjee et al., 2009) Possible SNRMC shock coincident w/ a FermiLAT extended source (compa1ble w/ CCO) PL spectrum ( no exp. cutoff) D. FERNANDEZ March 916, 2013

HESS J1834087: HESS J1834087 SNRMC interac=on scenario: Fermi + HESS extended region spectra Hadronic emission: W CR ~ 50 erg Broad GeV plasorm: 10GeV => E break ~ 0 GeV Δ CCO SNR (NRAO, 20 cm) 13 CO (GRS, 7482 km/s) PWN scenario : HESS central region spectrum Spin down power : 36 37 erg/s SNRMC and PWN scenario : Fermi + 2 HESS components spectra Γ=2.15±0.16 Γ=2.60±0.07 Γ=2.67±0.11 Φ extended (130 TeV) 5% Crab Φ central (130 TeV) 2% Crab D. FERNANDEZ March 916, 2013 11

Integrated 13 CO antenna temperature (arbitrary units) HESS J1832092 HESS J1834087 Cloud a: 2.3kpc 2631 km/s HESS J1832092: Cloud b: 4.5kpc 7381 km/s HESS excess contours (801 γ) White: radio contours H.E.S.S. source: pointlike or extension 0.09 (99% CL) close to the G22.70.2 radio rim coincident with 2 clouds : 13 CO (J=0>1) (Jackson et al., 2006) Xray pointlike source 1 away from the H.E.S.S. source bestfit posi1on (No pulsa1ons No extended emission) No counterpart with FermiLAT (Nolan et al., 2012) HESS J1834087 D. FERNANDEZ March 916, 2013 12

Integrated 13 CO antenna temperature (arbitrary units) HESS J1832092 HESS J1834087 Against SNRMC scenario Against PSRPWN scenario Cloud a: 2.3kpc 2631 km/s HESS J1832092: H.E.S.S. source: pointlike or extension 0.09 (99% CL) close to the G22.70.2 radio rim coincident with 2 clouds : 13 CO (J=0>1) (Jackson et al., 2006) Xray pointlike source 1 away from the H.E.S.S. source bestfit posi1on (No pulsa6ons No extended emission) No counterpart with FermiLAT (Nolan et al., 2012) HESS J1834087 Cloud b: 4.5kpc 7381 km/s HESS excess contours (801 γ) White: radio contours Possible SNRMC shock Possible PSR PWN scenario D. FERNANDEZ March 916, 2013 13

HESS J1832092.s -1 ] -2 dn/de [erg.cm 2 E -11-12 FermiLAT H.E.S.S. Γ=2.5±0.3 HESS J1834087 Against SNRMC scenario Against PSRPWN scenario -13 HESS J1832092: H.E.S.S. source: pointlike or extension 0.09 (99% CL) close to the G22.70.2 radio rim coincident with 2 clouds : 13 CO (J=0>1) (Jackson et al., 2006) Xray pointlike source 1 away from the H.E.S.S. source bestfit posi1on (No pulsa6ons No extended emission) No counterpart with FermiLAT (Nolan et al., 2012) -2 Φ(>1TeV) 1% Crab -1 1 E [TeV] Possible SNRMC shock Possible PSR PWN scenario Assuming a SNRMC interac=on : kkk D. FERNANDEZ March 916, 2013 14

4 new H.E.S.S. sources possibly associated to a SNRMC interac1on HESS J1834087 HESS J1832092 W51C W49B Kes78 W28 W30 CTB 37A RaDec HESS J1641463 HESS J1640465 D. FERNANDEZ March 916, 2013 15

E > 4TeV HESS excess map: HESS best fit posi1on HESS extension: Ø=9 HESS J1640-465 HESS J1640465: Radio contours O HESS J1641463 O FermiLAT source bestfit posi1on O XMM: PWN candidate Extended H.E.S.S. source Coincident w/ the northern part of the G338.30.0 SNR shell: D 8kpc or D 13kpc (Lemière et al., 2009; Davies et al., 2012), Ø=8 HII region between SNR G338.30.0 & SNR G338.5+0.1 Nearby stellar cluster Mc81 Coincident w/ an extended Xray source (Funk et al., 2007) + Ptlike Xray source (Lemière et al., 2009) Coincident w/ a FermiLAT source (Slane et al., 20) D. FERNANDEZ March 916, 2013 16

E > 4TeV HESS excess map: HESS best fit posi1on HESS extension: Ø=9 HESS J1640-465 HESS J1640465: Radio contours O HESS J1641463 O FermiLAT source bestfit posi1on O XMM: PWN candidate Extended H.E.S.S. source Coincident w/ the northern part of the G338.30.0 SNR shell: D 8kpc or D 13kpc (Lemière et al., 2009; Davies et al., 2012), Ø=8 HII region between SNR G338.30.0 & SNR G338.5+0.1 Nearby stellar cluster Mc81 Coincident w/ an extended Xray source (Funk et al., 2007) + Ptlike Xray source (Lemière et al., 2009) Coincident w/ a FermiLAT source (Slane et al., 20) First interpreted as PSRPWN scenario (Lemière et al., 2009; Slane et al., 20) D. FERNANDEZ March 916, 2013 17

dn/de [erg.cm -2.s -1 ] 2 - -11 FermiLAT Γ=2.3±0.1 HESS excess map: HESS best fit posi1on HESS extension: Ø=9 E -12 H.E.S.S. Γ=2.15±0. Ecut = 7.3 TeV -13-4 Φ(>1TeV) 8% Crab -3 u -2-1 1 E [TeV] HESS J1640465: Extended H.E.S.S. source Coincident w/ the northern part of the G338.30.0 SNR shell: D 8kpc or D 13kpc (Lemière et al., 2009; Davies et al., 2012), Ø=8 HII region between SNR G338.30.0 & SNR G338.5+0.1 Nearby stellar cluster Mc81 Coincident w/ an extended Xray source (Funk et al., 2007) + Ptlike Xray source (Lemière et al., 2009) Coincident w/ a FermiLAT source (Slane et al., 20) Radio contours O HESS J1641463 O FermiLAT source bestfit posi1on O XMM: PWN candidate The new H.E.S.S. results and MWL data suggest that at least part of the TeV emission is likely of hadronic origin. Total energy in interac1ng protons of up to W p n H 4x 52 (d/kpc) erg cm 3 D. FERNANDEZ March 916, 2013 18

E > 4TeV All events HESS J1641-463 E > 4TeV HESS J1640-465 HESS J1641463: H.E.S.S. source: ptlike or small extension (Ø=3.6 ) Coincident w/ SNR G338.50.1: D 11kpc (Kothes & Dougherty, 2007) Ø=9 (Green, 2009) or Ø=5 (Whiteoak et al.,1996) HII region between SNR G338.30.0 & SNR G338.5+0.1 Nearby stellar cluster Mc81 No evident Xray counterpart No GeV counterpart D. FERNANDEZ March 916, 2013 19

E > 4TeV All events HESS J1641-463 E > 4TeV HESS J1640-465 HESS J1641463: H.E.S.S. source: ptlike or small extension (Ø=3.6 ) Coincident w/ SNR G338.50.1: D 11kpc (Kothes & Dougherty, 2007) Ø=9 (Green, 2009) or Ø=5 (Whiteoak et al.,1996) HII region between SNR G338.30.0 & SNR G338.5+0.1 Nearby stellar cluster Mc81 No evident Xray counterpart No GeV counterpart SNR shell much larger than VHE source: PWN scenario? Against PSRPWN scenario D. FERNANDEZ March 916, 2013 20

E > 4TeV Radio image (843MHz) 5,6,7,8σ contours (E>4TeV) G338.5+00.1 Jy/beam HII Region G338.39+0.16 Γ=1.99±0.13 Φ(>1TeV) 1.7% Crab HII Region G338.45+0.06 HESS J1640-465 HESS J1641463: HESS J1640-465 2FGL J1640.5-4633 SNR G338.3-0.0 H.E.S.S. source: ptlike or small extension (Ø=3.6 ) Coincident w/ SNR G338.50.1: D 11kpc (Kothes & Dougherty, 2007) Ø=9 (Green, 2009) or Ø=5 (Whiteoak et al.,1996) HII region between SNR G338.30.0 & SNR G338.5+0.1 Nearby stellar cluster Mc81 No evident Xray counterpart No GeV counterpart HII bridge + similari1es between the 2 SNRs: Emission from same hadronic origin? D. FERNANDEZ March 916, 2013 21

H.E.S.S. sources associated and possibly associated to a SNRMC interac1on HESS J1834087 HESS J1832092 W51C W49B Kes78 W28 W30 CTB 37A HESS J1640465 HESS J1641463 D. FERNANDEZ March 916, 2013 22

Comparison of integrated GeV and TeV fluxes for different kind of TeV sources coincident w/ a SNR.s -1 ] -2 I(1-0GeV) [cm -7-8 -9 W49B W28N W51C W30 IC443 CTB37A W41 J1640 J1641 CasA J1832 J1731 SN06 Tycho RCW86 VelaJr RXJ1713 TeV emission from: SNRMC shock Possible SNRMC shock Isolated SNR -13 1% Crab -12-11 -2 I(1-0TeV) [cm.s -1 ] D. FERNANDEZ March 916, 2013 23

Ra1o of integrated GeV and TeV fluxes vs SNR age for different kind of TeV sources coincident w/ a SNR I(1-0GeV)/I(1-0TeV) 6 5 4 3 CasA W49B CTB37A Tycho SN06 RCW86 VelaJr J1640 J1731 IC443 W51C W30 W41 W28N TeV emission from: SNRMC shock Possible SNRMC shock Isolated SNR RXJ1713 2 3 4 5 Age [yrs] D. FERNANDEZ March 916, 2013 24

Conclusion and outlook (1/2) : Some trends between the two popula1ons of SNRs (SNRMC & isolated SNRs) are apparent in the data : SNRs interac=ng w/ MCs: W28, W51C, W49B, IC443 I GeV >> I TeV : Steepening of the spectra around E γ = 1 GeV Isolated SNRs: Vela Jr, HESS J1731347, RCW 86, RX J1713.73946, SN06 Young SNRs I GeV /I TeV much lower than for SNRMC systems: Hard GeV & strong TeV sources H.E.S.S. new sources possibly interac=ng w/ MCs : HESS J1834087, HESS J1832092, HESS J1640465, HESS J1641463 I GeV vs I TeV : sources between the two popula1ons of SNRs I GeV /I TeV vs Age: sources between the two popula1ons of SNRs D. FERNANDEZ March 916, 2013 25

Conclusion and outlook (2/2) : H.E.S.S. II: lower energy threshold Improved sensi1vity and resolu1on FermiLAT HESS II HESS I W44: a SNRMC undetected at VHE Will be further explored with H.E.S.S. II Ackermann et al., 2013 D. FERNANDEZ March 916, 2013 26

Thank you for your ajen1on. D. FERNANDEZ March 916, 2013 27