Rear Impact Dummy Biofidelity

Similar documents
ENHANCEMENT OF SEAT PERFORMANCE IN LOW-SPEED REAR IMPACT

ABSTRACT INJURY CRITERION TO ASSESS WHIPLASH INJURY IN FMVSS NO. 202 DYNAMIC TEST OPTION

Assessment of Whiplash Protection in Rear Impacts. Crash Tests and Real-life Crashes

COMPARISON OF BIORID INJURY CRITERIA BETWEEN DYNAMIC SLED TESTS AND VEHICLE CRASH TESTS

Minutes. GTR No. 7 / BioRID TEG. Group of Experts Whiplash Injury Criteria Meeting

WHIPLASH INJURIES, NOT ONLY A PROBLEM IN REAR-END IMPACT

Summary Report: Requirements and Assessment of Low-Speed Rear Impact Whiplash Dummies

Q dummy family. Fahrzeugsicherheit Berlin e.v. Robert Kant, Christian Kleessen (Humanetics)

A multi-body head and neck model for low speed rear impact analysis

PERFORMANCE OF SEATS WITH ACTIVE HEAD RESTRAINTS IN REAR IMPACTS

US FMVSS 202 Final Rule

Assessing the Female Neck Injury Risk

BioRID II Dummy Model Development -- Influence of Parameters in Validation and Consumer Tests

INVESTIGATION OF LOWER SPINE COMPRESSION FRACTURES IN FRONTAL CRASHES

Safety performance comparisons of different types of child seats in high speed impact tests

Thoracic Injury Criterion for Frontal Crash Applicable to All Restraint Systems

A NEW TEST METHOD FOR THE ASSESSMENT OF NECK INJURIES IN REAR-END COLLISIONS

Field Accident Data Analysis of 2 nd Row Children and Individual Case Reviews

Volvo Trucks view on Truck Rollover Accidents

Digges 1 INJURIES TO RESTRAINED OCCUPANTS IN FAR-SIDE CRASHES. Kennerly Digges The Automotive Safety Research Institute Charlottesville, Virginia, USA

INFLUENCE OF SEATBACK CONTENT AND DEFLECTION ON FMVSS 202A DYNAMIC RESPONSE

Pedestrian protection - Pedestrian in collision with personal car

SAE / Government Meeting. Washington, D.C. May 2005

LATIN AMERICAN & CARRIBEAN NEW CAR ASSESSMENT PROGRAMME (Latin NCAP) ASSESSMENT PROTOCOL ADULT OCCUPANT PROTECTION 2016

On Predicting Lower Leg Injuries. for the EuroNCAP Front Crash

Euro NCAP Whiplash Rating - Toyota Position & Proposal. May 2011

How To Compare Head Injury Risk From A Front Crash Test To Head Injury From A Head Injury

Injury Criteria for Q Dummies in Frontal Impact

Proposing a 2D Dynamical Model for Investigating the parameters Affecting Whiplash Injuries

DOCUMENT RETRIEVAL INFORMATION

Biomechanics of the Neck in Rear Impacts for improved Seat Design

Relationship of Dynamic Seat/Head Restraint Ratings to Real-world Neck Injury Rates

Evaluation of Seat Performance Criteria for Future Rear-end Impact Testing

ARP5765 : Analytical Methods for Aircraft Seat Design and Evaluation Prasanna Bhonge, PhD Cessna Aircraft Company Wichita, KS 7 August 2012

The safety of child wheelchair occupants in road passenger vehicles

DEVELOPMENT OF MOVING DEFORMABLE BARRIER IN JAPAN - PART 2 -

A NEW NECK INJURY CRITERION CANDIDATE FOR REAR-END COLLISIONS TAKING INTO ACCOUNT SHEAR FORCES AND BENDING MOMENTS

CORRELATION OF VEHICLE AND ROADSIDE CRASH TEST INJURY CRITERIA

Dynamic Analysis of Child in Misused CRS During Car Accident

NCAP New Car Assessment Programme

ADSEAT. An EU funded project within the 7th Framework Programme. Adaptive Seat to Reduce Neck Injuries for Female and Male Occupants

CIREN Improved Injury Causation Coding Methods; An Initial Review

Classification of Crash Pattern Based on Vehicle Acceleration and Prediction Algorithm for Occupant Injury

A pregnant woman model to study injury mechanisms in car crashes

Impact Kinematics of Cyclist and Head Injury Mechanism in Car to Bicycle Collision

The influence of passive safety systems on head injuries suffered by the vehicle s driver

Comparisons EBB 11/12/02 Snell M2000, DOT, BSI Type A and EN 22/05

Overview of evidence: Prognostic factors following whiplash injury

FIRST RESULTS FROM THE JAMA HUMAN BODY MODEL PROJECT

Pregnant Woman Model to Understand Injury Mechanisms in Case of Frontal Impact

A PROPOSED ROLLOVER AND COMPREHENSIVE RATING SYSTEM

Working Paper. Extended Validation of the Finite Element Model for the 2010 Toyota Yaris Passenger Sedan

F1 Fuel Tank Surging; Model Validation

INFLUENCE OF CRASH SEVERITY ON VARIOUS WHIPLASH INJURY SYMPTOMS: A STUDY BASED ON REAL-LIFE REAR-END CRASHES WITH RECORDED CRASH PULSES

Motor Vehicle Collision Form

Development of Improved Injury Criteria for the Assessment of Advanced Automotive Restraint Systems - II

THUMS User Community

TRAIN-TO-TRAIN IMPACT TEST OF CRASH ENERGY MANAGEMENT PASSENGER RAIL EQUIPMENT: OCCUPANT EXPERIMENTS

40,46 16,22 16,25. no fx thoracic sp. Fx lumbar spine. no fx lumbar. spine

UPDATED REVIEW OF POTENTIAL TEST PROCEDURES FOR FMVSS NO. 208

FE SIMULATIONS OF MOTORCYCLE CAR FRONTAL CRASHES, VALIDATION AND OBSERVATIONS

Chapter 8: Rotational Motion of Solid Objects

Understanding brain injury mechanism: integrating real world lesions, ATD response and finite element modeling

EFFECT OF VEHICLE DESIGN ON HEAD INJURY SEVERITY AND THROW DISTANCE VARIATIONS IN BICYCLE CRASHES

Side Impact Causes Multiplanar Cervical Spine Injuries

RCAR Low-speed structural crash test protocol

Address for Correspondence

PHY121 #8 Midterm I

Out-of-Position Occupant Testing (OOPS3 Series)

STUDY OF COMPRESSION-RELATED LUMBAR SPINE FRACTURE CRITERIA USING A FULL BODY FE HUMAN MODEL

Work Package Number 1 Task Number 1.1 Literature review, accident analysis and injury mechanisms

ACCELERATION CHARACTERISTICS OF VEHICLES IN RURAL PENNSYLVANIA

Cyclist kinematics in car impacts reconstructed in simulations and full scale testing with Polar dummy

FIMCAR III Car-to-Car Test Results

A Systematic Approach for Improving Occupant Protection in Rollover Crashes

How Do Euro NCAP Results Correlate with Real-Life Injury Risks? A Paired Comparison Study of Car-to-Car Crashes

Determining the Posture, Shape and Mobility of the Spine

Car Safety for Children with Cerebral Palsy

SEAT BELT Installation Manual

CASPER CHILD ADVANCED SAFETY PROJECT FOR EUROPEAN ROADS. Car Technology. SPEAKER: Britta Schnottale BASt. CASPER and EPOCh Final Workshop 13 th -15

Wheelchair Back Supports

Thorsten Adolph, Marcus Wisch, Andre Eggers, Heiko Johannsen, Richard Cuerden, Jolyon Carroll, David Hynd, Ulrich Sander

Study of Davit-Launched Lifeboats During Lowering, Water Entry, Release and Sailaway

ASSESSING MOTORCYCLE CRASH-RELATED HEAD INJURIES USING FINITE ELEMENT SIMULATIONS

THE EURO NCAP WHIPLASH TEST

SPECIFIC SPINAL EXERCISE

PREDICTING THROW DISTANCE VARIATIONS IN BICYCLE CRASHES

Clinical Biomechanics

Motorcycle accident reconstruction in VL Motion


Time Domain and Frequency Domain Techniques For Multi Shaker Time Waveform Replication

Transcription:

GTR 7 Informal Working Group February 28 March 1 211 Brussels, Belgium Rear Impact Dummy Biofidelity Kevin Moorhouse, Ph.D. NHTSA Yun-Seok Kang Ohio State University

Objectives & Tasks Evaluate biofidelity of available RIDs (BioRID, RID3D, HyIII) Choose biofidelity test condition Develop experimental seat for rear impact sled testing Conduct sled tests PMHS (Post-Mortem Human Subjects) Dummies (BioRID II, RID3D, Hybrid III) Assess biofidelity and repeatability of dummies Investigate the mechanism of injury Develop and validate 3-D cervical spine kinematic instrumentation Identify injurious kinematics (if possible) Choose appropriate dummy & injury criterion Assess efficacy of various ICs (if possible)

Objectives & Tasks Evaluate biofidelity of available RIDs (BioRID, RID3D, HyIII) Choose biofidelity test condition Develop experimental seat for rear impact sled testing Conduct sled tests PMHS (Post-Mortem Human Subjects) Dummies (BioRID II, RID3D, Hybrid III) Assess biofidelity and repeatability of dummies Investigate the mechanism of injury Develop and validate 3-D cervical spine kinematic instrumentation Identify injurious kinematics (if possible) Choose appropriate dummy & injury criterion Assess efficacy of various ICs (if possible)

Objectives & Tasks Evaluate biofidelity of available RIDs (BioRID, RID3D, HyIII) Choose biofidelity test condition Develop experimental seat for rear impact sled testing Conduct sled tests PMHS (Post-Mortem Human Subjects) Dummies (BioRID II, RID3D, Hybrid III) Assess biofidelity and repeatability of dummies Investigate the mechanism of injury Develop and validate 3-D cervical spine kinematic instrumentation Identify injurious kinematics (if possible) Choose appropriate dummy & injury criterion Assess efficacy of various ICs (if possible)

Pulses: Low & Moderate speed 12.5 1 Low (16.7kph/8.5g)-ATD Low (16.7kph/8.5g)-PMHS Moderate (24kph/1.5g)-ATD Moderate (24kph/1.5g) - PMHS Acceleration[g] 7.5 5 2.5-2.5-2 2 4 6 8 1 12 14 16 18 2 22 24 26 Time [msec]

Objectives & Tasks Evaluate biofidelity of available RIDs (BioRID, RID3D, HyIII) Choose biofidelity test condition Develop experimental seat for rear impact sled testing Conduct sled tests PMHS (Post-Mortem Human Subjects) Dummies (BioRID II, RID3D, Hybrid III) Assess biofidelity and repeatability of dummies Investigate the mechanism of injury Develop and validate 3-D cervical spine kinematic instrumentation Identify injurious kinematics (if possible) Choose appropriate dummy & injury criterion Assess efficacy of various ICs (if possible)

Experimental Seat Design goals for experimental seat: Repeatable & Reproducible Two seats side-by-side Capable of measuring/evaluating external biofidelity 6 load cells in seat back 4 load cells in seat pan 4 load cells in head restraint Able to match the yielding seat back motion of a typical OEM seat Durable and Reusable Withstand multiple tests without degradation in response

Head restraint Diameter :17 mm Damper One-way damper ( 2) Experimental Seat Angular rate sensor Mass : 5.5 kg Seat -Mass: 3 kg -Padding / cushions / seat cover of 1999 Toyota Camry seat Seat instrumentation HR LCs SB LCs Spring Stiffness: 135 N/m ( 2) SP LCs

R&R Steel Ballast: Experimental Seat Driver- Seat back rotation Passenger- Seat back rotation Rotation[Deg] 4 3 2 1 DTS Test1 DTS Test2 DTS Test3 DTS Test4 DTS Test5 TEMA Test1 TEMA Test2 TEMA Test3 TEMA Test4 TEMA Test5 Rotation[Deg] 4 3 2 1 DTS Test#1 DTS Test#2 DTS Test#4 DTS Test#5 TEMA Test#1 TEMA Test#2 TEMA Test#3 TEMA Test#4 TEMA Test#5-1 2 4 6 8 1 12 14 16 18 2 Time [msec] -1 2 4 6 8 1 12 14 16 18 2 Time [msec] Repeatability (driver): CV = 3.4 % (DTS); CV = 3.5 % (Video) Repeatability (passenger): CV = 2.7 % (DTS); CV = 2.7 % (Video) Reproducibility: CV = 3. % (DTS); CV = 3. % (Video)

Objectives & Tasks Evaluate biofidelity of available RIDs (BioRID, RID3D, HyIII) Choose biofidelity test condition Develop experimental seat for rear impact sled testing Conduct sled tests PMHS (Post-Mortem Human Subjects) Dummies (BioRID II, RID3D, Hybrid III) Assess biofidelity and repeatability of dummies Investigate the mechanism of injury Develop and validate 3-D cervical spine kinematic instrumentation Identify injurious kinematics (if possible) Choose appropriate dummy & injury criterion Assess efficacy of various ICs (if possible)

Test Matrix Test Number Three repeats at each speed Test Speed Dummies Driver Side Dummy Passenger Side Dummy 1 L Hybrid III 5 th BioRID II 2 L Hybrid III 5 th BioRID II 3 L RID3D BioRID II 4 L RID3D BioRID II 5 L RID3D Hybrid III 5 th 6 M RID3D Hybrid III 5 th 7 M RID3D Hybrid III 5 th 8 M RID3D BioRID II 9 M RID3D BioRID II 7 PMHS at each speed Test Number PMHS Test Speed Driver Side Dummy 1 M PMHS 1 2 L (4) PMHS 2 3 L/M PMHS 3 4 L/M PMHS 4 5 L/M PMHS 5 6 L/M PMHS 6 7 L/M PMHS 7 8 L/M PMHS 8 1 M Hybrid III 5 th BioRID II

Internal Biofidelity Measures Accelerometers (x, z) Accelerometers (x, z) & angular rate sensor (y) Load cell Aluminum tetrahedron -9au -3aω -6aω ω y (DTS3LL) A z2 (ACC-2LR) A y (ACC-3UP) x 3 z A z (ACC-2UP) 2 y A ω z (DTS2LL) y3 (ACC-3LR) A x (ACC-1UP) <RID3D> <BioRID II> <Hybrid III> ω x (DTS1LL) A x1 (ACC-1LR) <PMHS> 1 RID 3D BioRID II Hybrid III PMHS Head Two Acc (x, z) Two Acc (x, z) Two Acc (x, z) One ARS (y) One ARS (y) One ARS (y) 6aω T1 Two Acc (x, z) One ARS (y) Two Acc (x, z) One ARS (y) Two Acc (x, z) One ARS (y) Two Acc (x, z) One ARS (y) T8 None Two Acc (x, z) None Two Acc (x, z) T12 Two Acc (x, z) None None L1 None Two Acc (x, z) None Pelvis Two Acc (x, z) One ARS (y) Two Acc (x, z) One ARS (y) Two Acc (x, z) One ARS (y) Two Acc (x, z) Two Acc (x, z) One ARS (y) RID 3D BioRID II Hybrid III PMHS Skull Cap Fx, Fz Fx, Fz None None Upper neck Fx, Fz, My Fx, Fz, My Fx, Fz, My None Lower neck Fx, Fz, My Fx, Fz, My Fx, Fz, My None Lumbar Fx, Fz, My Fx, Fz, My Fx, Fz, My None Muscle Substitute (front) Muscle Substitute (rear) None Fx None None None Fx None None

Sled Tests Low Speed (8.5 g, 16.7 kph FMVSS 22) RID3D PMHS 1 BioRID II Hybrid III

Sled Tests Moderate Speed (1.5 g, 24. kph) RID3D PMHS1 BioRID II Hybrid III

Methodology Create Biomechanical Targets from PMHS data Calculate mean and standard deviation curves Phase shift optimally aligned (Donnelly & Moorhouse, 21) Calculate ATD mean curves Calculate biofidelity ranking Updated NHTSA Biofidelity Ranking System Calculate Repeatability Peak %CV Average time-based %CV

Methodology Create Biomechanical Targets from PMHS data Calculate mean and standard deviation curves Phase shift optimally aligned (Donnelly & Moorhouse, 21) Calculate ATD mean curves Calculate biofidelity ranking Updated NHTSA Biofidelity Ranking System Calculate Repeatability Peak %CV Average time-based %CV

Methodology (Phase Alignment) Acceleration [g] 16 14 12 1 8 6 4 2-2 PMHS2 PMHS3 PMHS4 PMHS5 PMHS6 PMHS7 PMHS8-4 -2 2 4 6 8 1 12 14 16 18 2 22 24 26

Methodology (Phase Alignment) Acceleration [g] 16 14 12 1 8 6 4 2-2 PMHS2 PMHS3 PMHS4 PMHS5 PMHS6 PMHS7 PMHS8 Mean -4-2 2 4 6 8 1 12 14 16 18 2 22 24 26

Methodology (Phase Alignment) Acceleration [g] 16 14 12 1 8 6 4 2-2 PMHS2 PMHS3 PMHS4 PMHS5 PMHS6 PMHS7 PMHS8-4 -2 2 4 6 8 1 12 14 16 18 2 22 24 26

Methodology (Phase Alignment) Acceleration [g] 16 14 12 1 8 6 4 2-2 PMHS2 PMHS3 PMHS4 PMHS5 PMHS6 PMHS7 PMHS8-4 -2 2 4 6 8 1 12 14 16 18 2 22 24 26

Methodology (Phase Alignment) Acceleration [g] 16 14 12 1 8 6 4 2-2 PMHS2 PMHS3 PMHS4 PMHS5 PMHS6 PMHS7 PMHS8 Mean -4-2 2 4 6 8 1 12 14 16 18 2 22 24 26

Methodology (Phase Alignment) Acceleration [g] 16 14 12 1 8 6 4 2-2 PMHS2 PMHS3 PMHS4 PMHS5 PMHS6 PMHS7 PMHS8 Mean -4-2 2 4 6 8 1 12 14 16 18 2 22 24 26

Methodology (Phase Alignment) Acceleration [g] 16 14 12 1 8 6 4 2-2 PMHS2 PMHS3 PMHS4 PMHS5 PMHS6 PMHS7 PMHS8 Mean -4-2 2 4 6 8 1 12 14 16 18 2 22 24 26

Methodology Create Biomechanical Targets from PMHS data Calculate mean and standard deviation curves Phase shift optimally aligned (Donnelly & Moorhouse, 21) Calculate ATD mean curves Calculate biofidelity ranking Updated NHTSA Biofidelity Ranking System Calculate Repeatability Peak %CV Average time-based %CV

Methodology Create Biomechanical Targets from PMHS data Calculate mean and standard deviation curves Phase shift optimally aligned (Donnelly & Moorhouse, 21) Calculate ATD mean curves Calculate biofidelity ranking Updated NHTSA Biofidelity Ranking System Calculate Repeatability Peak %CV Average time-based %CV

Methodology (Biofidelity) Biomechanical Target Mean PMHS response ± one standard deviation NHTSA Bio Rank (Rhule et al., 22, 29) B m j= 1 V = m j j= 1 n k = 1 V j n R j,k B = biofidelity rank V = test condition weight R = response measurement comparison value (DCV/CCV) j = test condition k = response measurement m = # of test conditions n = # of response measurements per test condition

Methodology (Biofidelity) Biomechanical Target Mean PMHS response ± one standard deviation NHTSA Bio Rank (Rhule et al., 22, 29) B m j= 1 V = m j j= 1 n k = 1 V j n R j,k B = biofidelity rank V = test condition weight R = response measurement comparison value (DCV/CCV) j = test condition k = response measurement m = # of test conditions n = # of response measurements per test condition

Methodology (Biofidelity) Biomechanical Target Biomechanical Target Mean PMHS response ± one standard deviation NHTSA Bio Rank (Rhule et al., 22) B m j= 1 V = m j j= 1 n k = 1 V j n R j,k R = DCV / B = biofidelity CCVrank V = test Mean condition + 1 SDweight R = response 1 SD measurement comparison value (DCV/CCV) j = test Mean condition k = response n measurement m = # of test conditions n = # of Mean response 1 SD 1 measurements per test condition

Methodology (Biofidelity) Biomechanical Target Mean PMHS response ± one standard deviation NHTSA Bio Rank (Rhule et al., 22) B m j= 1 V = m j j= 1 n k = 1 V j n R j,k R = DCV / B = biofidelity CCVrank V = test condition weight R = response measurement comparison value (DCV/CCV) t j = test = condition e 2 DCV ( Dummy(t) MeanPMHS(t) ) k = response ts measurement m = # of test conditions n = # of response measurements per test condition

Methodology (Biofidelity) Biomechanical Target Mean PMHS response ± one standard deviation NHTSA Bio Rank (Rhule et al., 22) B m j= 1 V = m j j= 1 n k = 1 V j n R j,k R = DCV / B = biofidelity CCVrank V = test condition weight R = response te measurement comparison value 2 CCV = (DCV/CCV) ( MeanPMHS(t) + SD(t) MeanPMHS(t) ) ts te j = test condition 2 = ( SD(t) ) k = response measurement ts te m = # of test conditions = VariancePMHS(t) ts n = # of response measurements per test condition

Methodology (Biofidelity) Biomechanical Target Mean PMHS response ± one standard deviation NHTSA Bio Rank (Rhule et al., 22, 29) B m j= 1 V = m j j= 1 n k = 1 V j n R j,k B = biofidelity rank V = test condition weight R = response measurement comparison value (DCV/CCV) j = test condition k = response measurement m = # of test conditions n = # of response measurements per test condition

Methodology Create Biomechanical Targets from PMHS data Calculate mean and standard deviation curves Phase shift optimally aligned (Donnelly & Moorhouse, 21) Calculate ATD mean curves Calculate biofidelity ranking Updated NHTSA Biofidelity Ranking System Calculate Repeatability Peak %CV Average time-based %CV

Methodology (Repeatability) Peak analysis (Rhule 25) Coefficient of variation R&R rating C.V. % Excellent to 5 Good >5 to 8 Acceptable >8 to 1 Poor >1

Methodology (Repeatability) Peak analysis (Rhule 25) Coefficient of variation R&R rating C.V. % Excellent to 5 Good >5 to 8 Acceptable >8 to 1 Poor >1 Time based analysis (J Shaw 26) Average C.V. across time Upper 5% only 1 8 6 4 2-2 2 4 6 8 1 12 14 16

External Biofidelity Parameters Measured Signals SB Upper Left SB Upper Right SB Center Left SB Center Right SB Lower Left SB Lower Right SP Rear Left SP Rear Right SP Front Left SP Front Right HR Contact Time HR Fx Top HR Fx Bottom HR Fz Left HR Fz Right Lap Belt Tension

External Biofidelity Parameters Measured Signals SB Upper Left SB Upper Right SB Center Left SB Center Right SB Lower Left SB Lower Right SP Rear Left SP Rear Right SP Front Left SP Front Right HR Contact Time HR Fx Top HR Fx Bottom HR Fz Left HR Fz Right Lap Belt Tension Included in BioRank Sum SB Total Sum SP Total HR Contact Time Sum HR Fx Sum HR Fz

Internal Biofidelity Parameters Measured Signals Head Acc x Head Acc z Head Ang Vy T1 Acc x T1 Acc z T1 Ang Vy T8 Acc x T8 Acc z T12 Acc x T12 Acc z Pelvis Acc x Pelvis Acc z Pelvis Ang Vy

Internal Biofidelity Parameters Measured Signals Head Acc x Head Acc z Head Ang Vy T1 Acc x T1 Acc z T1 Ang Vy T8 Acc x T8 Acc z T12 Acc x T12 Acc z Pelvis Acc x Pelvis Acc z Pelvis Ang Vy Included in BioRank Head Acc Res Head Rotation T1 Acc Res T1 Rotation T8 Acc Res T12 Acc Res Pelvis Acc Res Pelvis Rotation HIC Head to T1 Rotation

External Biofidelity Low Speed Total Seat Back Load 1-1 Force [N] -2-3 -4-5 -6-7 PMHS2 PMHS3 PMHS4 PMHS5 PMHS6 PMHS7 PMHS8 Mean -2 2 4 6 8 1 12 14 16 18 2 22 24 26

External Biofidelity Low Speed Total Seat Back Load 1 Force [N] -1-2 -3-4 -5-6 -7 HybridIII RID3D BioRIDII PMHS -2 2 4 6 8 1 12 14 16 18 2 22 24 26 R R 2.61 1.34.73

External Biofidelity Low Speed Total Seat Back Load 1 Force [N] -1-2 -3-4 -5-6 -7 HybridIII RID3D BioRIDII PMHS -2 2 4 6 8 1 12 14 16 18 2 22 24 26 %CV %CV (Peak) (Avg).6 2.8 3.5 5.9 5.8 5.5

External Biofidelity Low Speed Total Seat Pan Load 2-2 Force [N] -4-6 -8-1 PMHS2 PMHS3 PMHS4 PMHS5 PMHS6 PMHS7 PMHS8 Mean -2 2 4 6 8 1 12 14 16 18 2 22 24 26

External Biofidelity Low Speed Total Seat Pan Load 2 HybridIII RID3D BioRIDII PMHS Force [N] -2-4 -6-8 R R 1.45.99.77-1 -2 2 4 6 8 1 12 14 16 18 2 22 24 26

External Biofidelity Low Speed Total Seat Pan Load 2 HybridIII RID3D BioRIDII PMHS Force [N] -2-4 -6-8 %CV %CV (Peak) (Avg) 1.5 6.5 7.7 7.5 4.1 5.3-1 -2 2 4 6 8 1 12 14 16 18 2 22 24 26

External Biofidelity Low Speed HR Contact Time HR Contact Time (Low Speed) PMHS 113. ± 7.4 ms HybridIII RID3D BioRIDII 17.2 121.4 112.4 18.1 119.3 115.8 11.1 123.4 117.6 Mean 18.5 121.4 115.3 HR Contact Time (Low Speed) HybridIII RID3D BioRIDII R.38 1.29.1 Peak C.V. 1.4 1.7 2.3

External Biofidelity Low Speed Total HR Load (Front) 5-5 Force [N] -1-15 -2-25 -3-35 PMHS2 PMHS3 PMHS4 PMHS5 PMHS6 PMHS7 PMHS8 Mean -2 2 4 6 8 1 12 14 16 18 2 22 24 26

External Biofidelity Low Speed Total HR Load (Front) 5 Force [N] -5-1 -15-2 -25-3 -35 HybridIII RID3D BioRIDII PMHS -2 2 4 6 8 1 12 14 16 18 2 22 24 26 R R 2.1 2.31 2.9

External Biofidelity Low Speed Total HR Load (Front) 5 Force [N] -5-1 -15-2 -25-3 -35 HybridIII RID3D BioRIDII PMHS -2 2 4 6 8 1 12 14 16 18 2 22 24 26 %CV %CV (Peak) (Avg) 1.4 3.3 15. 14.2 4.5 5.8

External Biofidelity Low Speed Results External Biofidelity (Low Speed) HybridIII RID3D BioRIDII R Sum SB Total 2.61 1.34.73 Sum SP Total 1.45.99.77 HR Contact Time.38 1.29.1 Sum HR Fx 2.1 2.31 2.9 Sum HR Fz N/A N/A N/A Mean 1.61 1.48.92

Internal Biofidelity Low Speed Head Acceleration (Resultant) Acceleration [g] 16 14 12 1 8 6 4 2-2 PMHS2 PMHS3 PMHS4 PMHS5 PMHS6 PMHS7 PMHS8 Mean -4-2 2 4 6 8 1 12 14 16 18 2 22 24 26

Internal Biofidelity Low Speed Head Acceleration (Resultant) 16 14 12 HybridIII RID3D BioRIDII PMHS Acceleration [g] 1 8 6 4 2-2 -4-2 2 4 6 8 1 12 14 16 18 2 22 24 26 R R 5.9 3.54 4.58

Internal Biofidelity Low Speed Head Acceleration (Resultant) 16 14 12 HybridIII RID3D BioRIDII PMHS Acceleration [g] 1 8 6 4 2-2 %CV %CV (Peak) (Avg) 3.2 3.3 2.1 14.2 8.9 5.8-4 -2 2 4 6 8 1 12 14 16 18 2 22 24 26

Internal Biofidelity Low Speed Head Rotation Rotation [deg] 6 5 4 3 2 1 PMHS2 PMHS3 PMHS4 PMHS5 PMHS6 PMHS7 PMHS8 Mean -1-2 -2 2 4 6 8 1 12 14 16 18 2 22 24 26

Internal Biofidelity Low Speed Head Rotation 6 5 4 HybridIII RID3D BioRIDII PMHS Rotation [deg] 3 2 1-1 R R 1.32 1.23 1.19-2 -2 2 4 6 8 1 12 14 16 18 2 22 24 26

Internal Biofidelity Low Speed Head Rotation Rotation [deg] 6 5 4 3 2 1-1 HybridIII RID3D BioRIDII PMHS %CV %CV (Peak) (Avg) 4.1 5. 5.2 8.3 4.8 6.3-2 -2 2 4 6 8 1 12 14 16 18 2 22 24 26

Internal Biofidelity Low Speed T1 Acceleration (Resultant) Acceleration [g] 5 4 3 2 PMHS2 PMHS3 PMHS4 PMHS5 PMHS6 PMHS7 PMHS8 Mean 1-2 2 4 6 8 1 12 14 16 18 2 22 24 26

Internal Biofidelity Low Speed T1 Acceleration (Resultant) 5 4 HybridIII RID3D BioRIDII PMHS Acceleration [g] 3 2 1 R R 2.24 2.39 3.32-2 2 4 6 8 1 12 14 16 18 2 22 24 26

Internal Biofidelity Low Speed T1 Acceleration (Resultant) 5 4 HybridIII RID3D BioRIDII PMHS Acceleration [g] 3 2 1 %CV %CV (Peak) (Avg) 28.4 39.4 4.8 3.5 9.1 12.2-2 2 4 6 8 1 12 14 16 18 2 22 24 26

Internal Biofidelity Low Speed T1 Rotation Rotation [deg] 5 4 3 2 1 PMHS2 PMHS3 PMHS4 PMHS5 PMHS6 PMHS7 PMHS8 Mean -1-2 2 4 6 8 1 12 14 16 18 2 22 24 26

Internal Biofidelity Low Speed T1 Rotation 5 4 HybridIII RID3D BioRIDII PMHS Rotation [deg] 3 2 1 R R 1.31.92.48-1 -2 2 4 6 8 1 12 14 16 18 2 22 24 26

Internal Biofidelity Low Speed T1 Rotation 5 4 HybridIII RID3D BioRIDII PMHS Rotation [deg] 3 2 1 %CV %CV (Peak) (Avg) 4.5 5. 5.5 6.5 1.3 2.6-1 -2 2 4 6 8 1 12 14 16 18 2 22 24 26

Internal Biofidelity Low Speed T8 Acceleration (Resultant) Acceleration [g] 2 18 16 14 12 1 8 6 4 2 PMHS2 PMHS3 PMHS4 PMHS5 PMHS6 PMHS8 Mean -2 2 4 6 8 1 12 14 16 18 2 22 24 26

Internal Biofidelity Low Speed T8 Acceleration (Resultant) 2 18 16 BioRIDII PMHS Acceleration [g] 14 12 1 8 6 4 2-2 2 4 6 8 1 12 14 16 18 2 22 24 26 R R N/A N/A 1.

Internal Biofidelity Low Speed T8 Acceleration (Resultant) 2 18 16 BioRIDII PMHS Acceleration [g] 14 12 1 8 6 4 2 %CV %CV (Peak) (Avg) N/A N/A N/A N/A 11. 12.5-2 2 4 6 8 1 12 14 16 18 2 22 24 26

Internal Biofidelity Low Speed T12/L1 Acceleration (Resultant) Acceleration [g] 12 1 8 6 4 PMHS2 PMHS3 PMHS4 PMHS5 PMHS6 PMHS7 PMHS8 Mean 2-2 2 4 6 8 1 12 14 16 18 2 22 24 26

Internal Biofidelity Low Speed T12/L1 Acceleration (Resultant) 12 1 RID3D BioRIDII PMHS Acceleration [g] 8 6 4 2 R R N/A 1.4.67-2 2 4 6 8 1 12 14 16 18 2 22 24 26

Internal Biofidelity Low Speed T12/L1 Acceleration (Resultant) 12 1 RID3D BioRIDII PMHS Acceleration [g] 8 6 4 2 %CV %CV (Peak) (Avg) N/A N/A 6.4 1.8 8. 7.6-2 2 4 6 8 1 12 14 16 18 2 22 24 26

Internal Biofidelity Low Speed Pelvis Acceleration (Resultant) Acceleration [g] 25 2 15 1 PMHS2 PMHS3 PMHS4 PMHS6 PMHS7 PMHS8 Mean 5-2 2 4 6 8 1 12 14 16 18 2 22 24 26

Internal Biofidelity Low Speed Pelvis Acceleration (Resultant) 25 2 HybridIII RID3D BioRIDII PMHS Acceleration [g] 15 1 5 R R 1.61 1.64 1.8-2 2 4 6 8 1 12 14 16 18 2 22 24 26

Internal Biofidelity Low Speed Pelvis Acceleration (Resultant) 25 2 HybridIII RID3D BioRIDII PMHS Acceleration [g] 15 1 5 %CV %CV (Peak) (Avg).8 3.6 29.7 8.2 11.3 6.1-2 2 4 6 8 1 12 14 16 18 2 22 24 26

Internal Biofidelity Low Speed Pelvis Rotation Rotation [deg] 5 4 3 2 1 PMHS2 PMHS3 PMHS4 PMHS6 PMHS7 PMHS8 Mean -1-2 -3-2 2 4 6 8 1 12 14 16 18 2 22 24 26

Internal Biofidelity Low Speed Pelvis Rotation 5 4 3 HybridIII RID3D BioRIDII PMHS Rotation [deg] 2 1-1 -2 R R.34.78.24-3 -2 2 4 6 8 1 12 14 16 18 2 22 24 26

Internal Biofidelity Low Speed Pelvis Rotation Rotation [deg] 5 4 3 2 1-1 -2 HybridIII RID3D BioRIDII PMHS %CV %CV (Peak) (Avg) 4.9 45.9 21.9 26.6 5.4 7.4-3 -2 2 4 6 8 1 12 14 16 18 2 22 24 26

Internal Biofidelity Low Speed Head to T1 Rotation 5 25 Rotation [deg] -25-5 -75-1 PMHS2 PMHS3 PMHS4 PMHS5 PMHS6 PMHS7 PMHS8 Mean -2 2 4 6 8 1 12 14 16 18 2 22 24 26

Internal Biofidelity Low Speed Head to T1 Rotation 5 25 Rotation [deg] -25-5 -75-1 HybridIII RID3D BioRIDII Mean -2 2 4 6 8 1 12 14 16 18 2 22 24 26 R R 1.25 1.3.96

Internal Biofidelity Low Speed HIC PMHS 39.1 ± 8.5 HIC (Low Speed) HybridIII RID3D BioRIDII 176.5 175.6 136.3 183.3 137.8 164.6 163.3 281.7 177.8 Mean 174.4 198.4 159.6 HIC (Low Speed) HybridIII RID3D BioRIDII R 3.98 4.25 3.75 Peak C.V. 5.8 37.6 13.3

Internal Biofidelity Low Speed Results Internal Biofidelity (Low Speed) HybridIII RID3D BioRIDII R Head Acc Res 5.9 3.54 4.58 Head Rotation 1.32 1.23 1.19 T1 Acc Res 2.24 2.39 3.32 T1 Rotation 1.31.92.48 T8 Acc Res N/A N/A 1. T12 Acc Res N/A 1.4.67 Pelvis Acc Res 1.61 1.64 1.8 Pelvis Rotation.34.78.24 Head to T1 1.25 1.3.96 HIC 3.98 4.25 3.75 Mean 2.14 1.81 1.73

Sled Pulse Moderate Speed (1.5 g, 24. kph) Acceleration [g] 14 12 1 8 6 4 2 HybridIII RID3D BioRIDII PMHS Velocity [km/h] 3 25 2 15 1 5 HybridIII RID3D BioRIDII PMHS -2-4 -2 2 4 6 8 1 12 14 16 18 2 22 24 26-5 -2 2 4 6 8 1 12 14 16 18 2 22 24 26

External Biofidelity Moderate Speed Total Seat Back Load 2-2 Force [N] -4-6 -8-1 PMHS1 PMHS3 PMHS4 PMHS5 PMHS6 PMHS7 PMHS8 Mean -2 2 4 6 8 1 12 14 16 18 2 22 24 26

External Biofidelity Moderate Speed Total Seat Back Load 2 Force [N] -2-4 -6-8 -1 HybridIII RID3D BioRIDII PMHS -2 2 4 6 8 1 12 14 16 18 2 22 24 26 R R 3.35 1.82.74

External Biofidelity Moderate Speed Total Seat Back Load 2 Force [N] -2-4 -6-8 -1 HybridIII RID3D BioRIDII PMHS -2 2 4 6 8 1 12 14 16 18 2 22 24 26 %CV %CV (Peak) (Avg) 2.1 4.8 4.9 4.4 6.5 4.8

External Biofidelity Moderate Speed Total Seat Pan Load 2-2 Force [N] -4-6 -8-1 -12 PMHS1 PMHS3 PMHS4 PMHS5 PMHS6 PMHS7 PMHS8 Mean -2 2 4 6 8 1 12 14 16 18 2 22 24 26

External Biofidelity Moderate Speed Total Seat Pan Load 2 HybridIII RID3D BioRIDII PMHS Force [N] -2-4 -6-8 -1 R R 1.43.71.91-12 -2 2 4 6 8 1 12 14 16 18 2 22 24 26

External Biofidelity Moderate Speed Total Seat Pan Load 2 HybridIII RID3D BioRIDII PMHS Force [N] -2-4 -6-8 -1 %CV %CV (Peak) (Avg).9 8.2 3.9 5.8 2.2 1.7-12 -2 2 4 6 8 1 12 14 16 18 2 22 24 26

External Biofidelity Moderate Speed HR Contact Time HRContact Time (Moderate Speed) PMHS 124.3 ± 11.5 ms HybridIII RID3D BioRIDII 16.7 127.5 117.4 126.5 11.3 115.8 111.1 12.4 114.6 121.5 Mean 114.8 119.9 116. HR Contact Time (Moderate Speed) HybridIII RID3D BioRIDII R.69.14.53 Peak C.V. 9. 6. 1.2

External Biofidelity Moderate Speed Total HR Load (Front) 1 5-5 -1 Force [N] -15-2 -25-3 -35-4 -45 PMHS1 PMHS3 PMHS4 PMHS5 PMHS6 PMHS7 PMHS8 Mean -2 2 4 6 8 1 12 14 16 18 2 22 24 26

External Biofidelity Moderate Speed Total HR Load (Front) Force [N] 1 5-5 -1-15 -2-25 -3-35 -4-45 HybridIII RID3D BioRIDII PMHS -2 2 4 6 8 1 12 14 16 18 2 22 24 26 R R 1.47 1.72 1.66

External Biofidelity Moderate Speed Total HR Load (Front) Force [N] 1 5-5 -1-15 -2-25 -3-35 -4-45 HybridIII RID3D BioRIDII PMHS -2 2 4 6 8 1 12 14 16 18 2 22 24 26 %CV %CV (Peak) (Avg) 8.4 15.8 16.2 13.2 4.4 4.6

External Biofidelity Moderate Speed Total HR Load (Top) Force [N] 22 2 18 16 14 12 1 8 6 4 2 PMHS1 PMHS3 PMHS4 PMHS5 PMHS6 PMHS7 PMHS8 Mean -2-2 2 4 6 8 1 12 14 16 18 2 22 24 26

External Biofidelity Moderate Speed Total HR Load (Top) 22 2 18 16 HybridIII RID3D BioRIDII PMHS Force [N] 14 12 1 8 6 4 2-2 -2 2 4 6 8 1 12 14 16 18 2 22 24 26 R R 1.44 1.9 1.41

External Biofidelity Moderate Speed Total HR Load (Top) 22 2 18 HybridIII RID3D BioRIDII PMHS Force [N] 16 14 12 1 8 6 %CV %CV (Peak) (Avg) N/A N/A 35.8 34.3 4 2-2 -2 2 4 6 8 1 12 14 16 18 2 22 24 26 N/A N/A

External Biofidelity Moderate Speed Results External Biofidelity (Moderate Speed) HybridIII RID3D BioRIDII R Sum SB Total 3.35 1.82.74 Sum SP Total 1.43.71.91 HR Contact Time.69.14.53 Sum HR Fx 1.47 1.72 1.66 Sum HR Fz 1.44 1.9 1.41 Mean 1.68 1.1 1.5

Internal Biofidelity Moderate Speed Head Acceleration (Resultant) Acceleration [g] 2 18 16 14 12 1 8 6 4 2 PMHS1 PMHS3 PMHS4 PMHS5 PMHS6 PMHS7 PMHS8 Mean -2-2 2 4 6 8 1 12 14 16 18 2 22 24 26

Internal Biofidelity Moderate Speed Head Acceleration (Resultant) 2 18 16 HybridIII RID3D BioRIDII PMHS Acceleration [g] 14 12 1 8 6 4 2-2 -2 2 4 6 8 1 12 14 16 18 2 22 24 26 R R 3.6 2.9 2.33

Internal Biofidelity Moderate Speed Head Acceleration (Resultant) 2 18 16 HybridIII RID3D BioRIDII PMHS Acceleration [g] 14 12 1 8 6 4 2-2 -2 2 4 6 8 1 12 14 16 18 2 22 24 26 %CV %CV (Peak) (Avg) 12.2 14.6 11.5 9.8 8.4 7.4

Internal Biofidelity Moderate Speed Head Rotation Rotation [deg] 1 75 5 25 PMHS1 PMHS3 PMHS4 PMHS5 PMHS6 PMHS7 PMHS8 Mean -25-2 2 4 6 8 1 12 14 16 18 2 22 24 26

Internal Biofidelity Moderate Speed Head Rotation 1 75 HybridIII RID3D BioRIDII PMHS Rotation [deg] 5 25 R R 2.67 1.91 1.55-25 -2 2 4 6 8 1 12 14 16 18 2 22 24 26

Internal Biofidelity Moderate Speed Head Rotation 1 75 HybridIII RID3D BioRIDII PMHS Rotation [deg] 5 25 %CV %CV (Peak) (Avg) 8.2 5. 7.5 6.6 3.8 3.2-25 -2 2 4 6 8 1 12 14 16 18 2 22 24 26

Internal Biofidelity Moderate Speed T1 Acceleration (Resultant) Acceleration [g] 14 12 1 8 6 4 PMHS1 PMHS3 PMHS4 PMHS5 PMHS6 PMHS7 PMHS8 Mean 2-2 -2 2 4 6 8 1 12 14 16 18 2 22 24 26

Internal Biofidelity Moderate Speed T1 Acceleration (Resultant) 14 12 1 HybridIII RID3D BioRIDII PMHS Acceleration [g] 8 6 4 2 R R 1.3 1.6 2.71-2 -2 2 4 6 8 1 12 14 16 18 2 22 24 26

Internal Biofidelity Moderate Speed T1 Acceleration (Resultant) 14 12 HybridIII RID3D BioRIDII PMHS Acceleration [g] 1 8 6 4 2 %CV %CV (Peak) (Avg) 3.4 11.3 8. 8.2 17.9 15.4-2 -2 2 4 6 8 1 12 14 16 18 2 22 24 26

Internal Biofidelity Moderate Speed T1 Rotation Rotation [deg] 8 6 4 2 PMHS1 PMHS3 PMHS4 PMHS5 PMHS6 PMHS7 PMHS8 Mean -2-2 2 4 6 8 1 12 14 16 18 2 22 24 26

Internal Biofidelity Moderate Speed T1 Rotation 8 6 HybridIII RID3D BioRIDII PMHS Rotation [deg] 4 2 R R 1.18 1.3 1.15-2 -2 2 4 6 8 1 12 14 16 18 2 22 24 26

Internal Biofidelity Moderate Speed T1 Rotation 8 6 HybridIII RID3D BioRIDII PMHS Rotation [deg] 4 2 %CV %CV (Peak) (Avg) 3.7 2.6 3. 6.5 1.2 1. -2-2 2 4 6 8 1 12 14 16 18 2 22 24 26

Internal Biofidelity Moderate Speed T8 Acceleration (Resultant) Acceleration [g] 7 6 5 4 3 2 PMHS1 PMHS3 PMHS4 PMHS5 PMHS6 PMHS7 PMHS8 Mean 1-2 2 4 6 8 1 12 14 16 18 2 22 24 26

Internal Biofidelity Moderate Speed T8 Acceleration (Resultant) 7 6 BioRIDII PMHS Acceleration [g] 5 4 3 2 1 R R N/A N/A 2.47-2 2 4 6 8 1 12 14 16 18 2 22 24 26

Internal Biofidelity Moderate Speed T8 Acceleration (Resultant) 7 6 BioRIDII PMHS Acceleration [g] 5 4 3 2 1 %CV %CV (Peak) (Avg) N/A N/A N/A N/A 2.1 5.8-2 2 4 6 8 1 12 14 16 18 2 22 24 26

Internal Biofidelity Moderate Speed T12/L1 Acceleration (Resultant) Acceleration [g] 18 15 12 9 6 PMHS1 PMHS3 PMHS4 PMHS5 PMHS6 PMHS7 PMHS8 Mean 3-2 2 4 6 8 1 12 14 16 18 2 22 24 26

Internal Biofidelity Moderate Speed T12/L1 Acceleration (Resultant) 18 15 RID3D BioRIDII PMHS Acceleration [g] 12 9 6 3 R R N/A 1.34 1.26-2 2 4 6 8 1 12 14 16 18 2 22 24 26

Internal Biofidelity Moderate Speed T12/L1 Acceleration (Resultant) 18 15 RID3D BioRIDII PMHS Acceleration [g] 12 9 6 3 %CV %CV (Peak) (Avg) N/A N/A 14.1 1.8 8.5 11.9-2 2 4 6 8 1 12 14 16 18 2 22 24 26

Internal Biofidelity Moderate Speed Pelvis Acceleration (Resultant) Acceleration [g] 4 35 3 25 2 15 PMHS1 PMHS4 PMHS7 PMHS8 Mean 1 5-2 2 4 6 8 1 12 14 16 18 2 22 24 26

Internal Biofidelity Moderate Speed Pelvis Acceleration (Resultant) 4 35 3 HybridIII RID3D BioRIDII PMHS Acceleration [g] 25 2 15 1 5 R R 1.77 1.89 1.26-2 2 4 6 8 1 12 14 16 18 2 22 24 26

Internal Biofidelity Moderate Speed Pelvis Acceleration (Resultant) 4 35 HybridIII RID3D BioRIDII PMHS Acceleration [g] 3 25 2 15 1 5 %CV %CV (Peak) (Avg) 4.9 9.8 13.3 11.8 14. 8.6-2 2 4 6 8 1 12 14 16 18 2 22 24 26

Internal Biofidelity Moderate Speed Pelvis Rotation Rotation [deg] 4 3 2 1-1 PMHS1 PMHS3 PMHS6 PMHS7 PMHS8 Mean -2-3 -2 2 4 6 8 1 12 14 16 18 2 22 24 26

Internal Biofidelity Moderate Speed Pelvis Rotation 4 3 HybridIII RID3D BioRIDII PMHS Rotation [deg] 2 1-1 -2 R R.62 1.33.85-3 -2 2 4 6 8 1 12 14 16 18 2 22 24 26

Internal Biofidelity Moderate Speed Pelvis Rotation 4 3 HybridIII RID3D BioRIDII PMHS Rotation [deg] 2 1-1 -2 %CV %CV (Peak) (Avg) 2.3 23.5 16. 19.7 8.5 8.6-3 -2 2 4 6 8 1 12 14 16 18 2 22 24 26

Internal Biofidelity Moderate Speed Head to T1 Rotation 5 25 Rotation [deg] -25-5 -75-1 PMHS1 PMHS3 PMHS4 PMHS5 PMHS6 PMHS7 PMHS8 Mean -2 2 4 6 8 1 12 14 16 18 2 22 24 26

Internal Biofidelity Moderate Speed Head to T1 Rotation 5 25 Rotation [deg] -25-5 -75-1 HybridIII RID3D BioRIDII Mean -2 2 4 6 8 1 12 14 16 18 2 22 24 26 R R 1.29 1.12.99

Internal Biofidelity Moderate Speed HIC HIC (Moderate Speed) PMHS 62.3 ± 18. HybridIII RID3D BioRIDII 239.2 47.3 193.9 385.1 467.4 183.7 37.8 613.3 139.3 346.5 Mean 331.7 475.7 172.3 HIC (Moderate Speed) HybridIII RID3D BioRIDII R 3.84 4.75 2.46 Peak C.V. 24.3 16.1 3.8

Internal Biofidelity Moderate Speed Results Internal Biofidelity (Moderate Speed) HybridIII RID3D BioRIDII R Head Acc Res 3.6 2.9 2.33 Head Rotation 2.67 1.91 1.55 T1 Acc Res 1.3 1.6 2.71 T1 Rotation 1.18 1.3 1.15 T8 Acc Res N/A N/A 2.47 T12 Acc Res N/A 1.34 1.26 Pelvis Acc Res 1.77 1.89 1.26 Pelvis Rotation.62 1.33.85 Head to T1 1.29 1.12.99 HIC 3.84 4.76 2.46 Mean 1.93 1.92 1.7

Final Biofidelity Results Final Biofidelity Results HybridIII RID3D BioRIDII R External (Low) 1.61 1.48.92 Internal (Low) 2.14 1.81 1.73 Total (Low) 1.88 1.65 1.32 External (Moderate) 1.69 1.17 1.6 Internal (Moderate) 1.93 1.92 1.7 Total (Moderate) 1.81 1.55 1.38

Repeatability Results Repeatability (Peak CV) Repeatability (Avg CV) HybridIII RID3D BioRIDII % C.V. (Peak) Low Speed 8.4 13.3 6.9 Moderate Speed 13.3 13.5 7.3 HybridIII RID3D BioRIDII % C.V. (Avg) Low Speed 11. 1.4 6.8 Moderate Speed 12.2 9.7 7.5

Conclusions Biofidelity Low Speed External Biofidelity BioRID II Internal Biofidelity BioRID II, RID3D Total Biofidelity BioRID II Moderate Speed External Biofidelity BioRID II, RID3D Internal Biofidelity BioRID II Total Biofidelity BioRID II, RID3D Repeatability BioRID II had best overall repeatability (all dummies acceptable)

Questions? Thank you