Optimization under uncertainty. Antonio J. Conejo The Ohio State University 2014



Similar documents
On-Line Fault Detection in Wind Turbine Transmission System using Adaptive Filter and Robust Statistical Features

Medium and long term. Equilibrium models approach

Robust Design of Public Storage Warehouses. Yeming (Yale) Gong EMLYON Business School

Credit Limit Optimization (CLO) for Credit Cards

A hybrid global optimization algorithm based on parallel chaos optimization and outlook algorithm

Institute of Informatics, Faculty of Business and Management, Brno University of Technology,Czech Republic

NON-CONSTANT SUM RED-AND-BLACK GAMES WITH BET-DEPENDENT WIN PROBABILITY FUNCTION LAURA PONTIGGIA, University of the Sciences in Philadelphia

Optimization of network mesh topologies and link capacities for congestion relief

An MILP model for planning of batch plants operating in a campaign-mode

ECONOMIC load dispatch (ELD) is a non-linear constrained

ANALYZING THE RELATIONSHIPS BETWEEN QUALITY, TIME, AND COST IN PROJECT MANAGEMENT DECISION MAKING

Feature selection for intrusion detection. Slobodan Petrović NISlab, Gjøvik University College

Project Networks With Mixed-Time Constraints

The Greedy Method. Introduction. 0/1 Knapsack Problem

A method for a robust optimization of joint product and supply chain design

Study on Model of Risks Assessment of Standard Operation in Rural Power Network

Support Vector Machines

Dynamic optimization of the LNG value chain

iavenue iavenue i i i iavenue iavenue iavenue

HYDROGEN STORAGE FOR MIXED WIND-NUCLEAR POWER PLANTS IN THE CONTEXT OF A HYDROGEN ECONOMY

On the Optimal Control of a Cascade of Hydro-Electric Power Stations

Optimal Pricing for Integrated-Services Networks. with Guaranteed Quality of Service &

行 政 院 國 家 科 學 委 員 會 補 助 專 題 研 究 計 畫 成 果 報 告 期 中 進 度 報 告

Ants Can Schedule Software Projects

Formulating & Solving Integer Problems Chapter

How To Get A Tax Refund On A Retirement Account

Residential Demand Response under Uncertainty

A Lyapunov Optimization Approach to Repeated Stochastic Games

Investment Portfolio Evaluation by the Fuzzy Approach

GRAVITY DATA VALIDATION AND OUTLIER DETECTION USING L 1 -NORM

An Integrated Semantically Correct 2.5D Object Oriented TIN. Andreas Koch

Sciences Shenyang, Shenyang, China.

A GENETIC ALGORITHM-BASED METHOD FOR CREATING IMPARTIAL WORK SCHEDULES FOR NURSES

benefit is 2, paid if the policyholder dies within the year, and probability of death within the year is ).

Modern Problem Solving Techniques in Engineering with POLYMATH, Excel and MATLAB. Introduction

Feasibility of Using Discriminate Pricing Schemes for Energy Trading in Smart Grid

A DYNAMIC CRASHING METHOD FOR PROJECT MANAGEMENT USING SIMULATION-BASED OPTIMIZATION. Michael E. Kuhl Radhamés A. Tolentino-Peña

Answer: A). There is a flatter IS curve in the high MPC economy. Original LM LM after increase in M. IS curve for low MPC economy

OPTIMAL INVESTMENT POLICIES FOR THE HORSE RACE MODEL. Thomas S. Ferguson and C. Zachary Gilstein UCLA and Bell Communications May 1985, revised 2004

Preventive Maintenance and Replacement Scheduling: Models and Algorithms

Game theory in Oligopoly

CALL ADMISSION CONTROL IN WIRELESS MULTIMEDIA NETWORKS

Chapter 4 ECONOMIC DISPATCH AND UNIT COMMITMENT

Heuristic Static Load-Balancing Algorithm Applied to CESM

Dynamic Constrained Economic/Emission Dispatch Scheduling Using Neural Network

Copyright. Satish V S K Ukkusuri

How To Solve An Onlne Control Polcy On A Vrtualzed Data Center

How To Trade Water Quality

The OC Curve of Attribute Acceptance Plans

Number of Levels Cumulative Annual operating Income per year construction costs costs ($) ($) ($) 1 600,000 35, , ,200,000 60, ,000

Application of Multi-Agents for Fault Detection and Reconfiguration of Power Distribution Systems

Simulation and optimization of supply chains: alternative or complementary approaches?

Naglaa Raga Said Assistant Professor of Operations. Egypt.

SIMULATION OPTIMIZATION: APPLICATIONS IN RISK MANAGEMENT

SCHEDULING OF CONSTRUCTION PROJECTS BY MEANS OF EVOLUTIONARY ALGORITHMS

Maintenance Scheduling by using the Bi-Criterion Algorithm of Preferential Anti-Pheromone

2. RELATED WORKS AND PROBLEM STATEMENT

UTILIZING MATPOWER IN OPTIMAL POWER FLOW

DEVELOPMENT & IMPLEMENTATION OF SUPPLY CHAIN MANAGEMENT FOCUSING ON PROCUREMENT PROCESSES & SUPPLIERS 1.

Fuzzy TOPSIS Method in the Selection of Investment Boards by Incorporating Operational Risks

DEFINING %COMPLETE IN MICROSOFT PROJECT

"Research Note" APPLICATION OF CHARGE SIMULATION METHOD TO ELECTRIC FIELD CALCULATION IN THE POWER CABLES *

Extending Probabilistic Dynamic Epistemic Logic

Mooring Pattern Optimization using Genetic Algorithms

A Self-Organized, Fault-Tolerant and Scalable Replication Scheme for Cloud Storage

An Efficient Recovery Algorithm for Coverage Hole in WSNs

Ant Colony Optimization for Economic Generator Scheduling and Load Dispatch

A multi-start local search heuristic for ship scheduling a computational study

Complex Service Provisioning in Collaborative Cloud Markets

Power-of-Two Policies for Single- Warehouse Multi-Retailer Inventory Systems with Order Frequency Discounts

Research Article A Time Scheduling Model of Logistics Service Supply Chain with Mass Customized Logistics Service

Research Article Enhanced Two-Step Method via Relaxed Order of α-satisfactory Degrees for Fuzzy Multiobjective Optimization

Optimal Joint Replenishment, Delivery and Inventory Management Policies for Perishable Products

Transcription:

Optmzaton under uncertant Antono J. Conejo The Oho State Unverst 2014

Contents Stochastc programmng (SP) Robust optmzaton (RO) Power sstem applcatons A. J. Conejo The Oho State Unverst 2

Stochastc Programmng (SP) A. J. Conejo The Oho State Unverst 3

SP References Two-stage stochastc programmng Decson framework Decson tree Scenaro formulaton Node formulaton EVPI VSS A. J. Conejo The Oho State Unverst 4

SP References J. R. Brge and F. Louveaux. Introducton to Stochastc Programmng. Sprnger New York 1997. J. L. Hgle. Tutorals n Operatons Research INFORMS 2005. Chapter 2: Stochastc Programmng: Optmzaton When Uncertant Matters. INFORMS Hanover Marland 2005. A. J. Conejo M. Carrón J. M. Morales Decson Makng Under Uncertant n Electrct Markets Sprnger New York. 2010 Chapters 23 and 4. A. J. Conejo The Oho State Unverst 5

Expectaton Two-stage SP CVaR Stochastc vector mnmze subject to x O h g f x x 0 x 0 A. J. Conejo The Oho State Unverst 6

Decson framework Decsons x are made (here & now) Stochastc vector λ realzes n a scenaro λ Gven x decsons (xλ) are made for each realzaton of λ λ (wat & see) A. J. Conejo The Oho State Unverst 7

Decson tree Scenaro 1 Scenaro Scenaro n 1st stage decsons here & now 2nd stage decsons wat & see Recourse A. J. Conejo The Oho State Unverst 8

Scenaro formulaton 1 2 3 2 3 1 hgh average low Realzaton Probablt A. J. Conejo The Oho State Unverst 9

Scenaro formulaton 3 2 1 3 1 123 0 123 0 subject to mnmze S 3 2 1 3 2 1 x x x x g x h x f Z x x x A. J. Conejo The Oho State Unverst 10 Here & Now Non-antcpatvt Expectaton

Non-antcpatvt constrants x x x 1 2 3 Decsons cannot depend on the unknown future! A. J. Conejo The Oho State Unverst 11

Node formulaton 3 12 0 123 0 subject to mnmze 3 1 3 2 1 x g x h x f Z S x Non-antcpatvt constrants are mplct! A. J. Conejo The Oho State Unverst 12 Just one x

EVPI Expected Value of the Perfect Informaton Measure of the value of perfect nformaton A. J. Conejo The Oho State Unverst 13

EVPI 3 12 0 123 0 subject to mnmze 3 1 3 2 1 3 2 1 x g x f x f Z P x x x No non-antcpatvt constrants: we perfectl foresee the future A. J. Conejo The Oho State Unverst 14

EVPI EVPI S Z Z P EVPI s non-negatve A. J. Conejo The Oho State Unverst 15

VSS (onl expectaton) Value of the Stochastc Soluton Measure of the relevance (gan) of usng a stochastc approach A. J. Conejo The Oho State Unverst 16

VSS maxmze x f x avg subject to h g x x avg avg Soluton x D Average! A. J. Conejo The Oho State Unverst 17

VSS A. J. Conejo The Oho State Unverst 18 3 12 0 123 0 subject to mnmze 3 1 3 2 1 x g x h x f Z D D D D Ths problem decomposes b scenaro

VSS Z D 3 1 f x D We evaluate the determnstc soluton n all scenaros A. J. Conejo The Oho State Unverst 19

VSS D VSS Z Z VSS s non-negatve S A. J. Conejo The Oho State Unverst 20

Robust Optmzaton A. J. Conejo The Oho State Unverst 21

Outlne Wh Robust Optmzaton (RO)? RO wthout recourse RO wth recourse Schedulng energ and reserve A. J. Conejo The Oho State Unverst 22

Wh RO? A. J. Conejo The Oho State Unverst 23

References Bertsmas D. Brown D.B. Caramans C. Theor and applcatons of robust optmzaton. SIAM Rev. vol. 53 pp. 464 501 2011. Bertsmas D. Sm M. Robust dscrete optmzaton and network flows Math. Program Ser. B vol. 98 no. 13 pp. 49 71 2003. Bertsmas D. Ltvnov E. Sun X. A. Zhao J. Zheng T. Adaptve robust optmzaton for the securt constraned unt commtment problem. IEEE Transactons on Power Sstems n press 2012. A. J. Conejo The Oho State Unverst 24

RO wthout recourse Uncertant set A. J. Conejo The Oho State Unverst 25

RO wthout recourse A. J. Conejo The Oho State Unverst 26

RO wthout recourse Under certan condtons over the robust set: Determnstc problem LP MILP NLP Robust counterpart Larger LP Larger MILP Larger NLP A. J. Conejo The Oho State Unverst 27

RO wth recourse Make schedulng decsons (mn) Uncertant realzes (max) Make operaton (recourse) decsons (mn) A. J. Conejo The Oho State Unverst 28

RO wth recourse A. J. Conejo The Oho State Unverst 29

RO wth recourse: Example A. J. Conejo The Oho State Unverst 30

RO wth recourse Make schedulng decsons x wth a prognoss of the future The uncertant w realzes Make operaton (recourse) decsons A. J. Conejo The Oho State Unverst 31

Power sstem applcatons A. J. Conejo The Oho State Unverst 32

ISO ISO market clearng: large-scale stochastc? Maxmze Expected Socal Welfare subject to: Market equlbrum Producer constrants Consumer constrants A. J. Conejo The Oho State Unverst 33

Producer Offerng b non-strategc producers: stochastc Maxmze Expected Proft subject to: Producer constrants A. J. Conejo The Oho State Unverst 34

Stochastc producer Offerng b non-dspatchable producers: stochastc Maxmze Expected Proft subject to: Producer constrants A. J. Conejo The Oho State Unverst 35

Producer Futures market nvolvement (forward contracts and optons) Maxmze Expected Proft subject to: Producer constrants Contractng constrants A. J. Conejo The Oho State Unverst 36

Producer Insurances If sellng through forward contracts and the producton unts fal an nsurance s advsable A. J. Conejo The Oho State Unverst 37

Consumer Consumer energ procurement Maxmze Expected Cost subject to: Consumer constrants Contractng constrants A. J. Conejo The Oho State Unverst 38

Producer Capact nvestment b non-dspatchable producers UPPER LEVEL Maxmze Proft from Wnd Generaton INVESTMENT DECISIONS LMPs LOWER LEVEL Maxmze SW MARKET CLEARING 1 MARKET CLEARING 2 MARKET CLEARING N Dfferent load and wnd condtons! A. J. Conejo The Oho State Unverst 39

TSO Transmsson capact nvestment A. J. Conejo The Oho State Unverst 40

TSO Transmsson capact nvestment Upper-Level Trade Maxmzaton subject to Lnes bult Lower-Level Socal Welfare Maxmzaton (Market Clearng) A. J. Conejo The Oho State Unverst 41

ISO Transmsson mantenance Upper-Level Securt Maxmzaton subject to Lnes n mantenance Lower-Level Socal Welfare Maxmzaton (Market Clearng) A. J. Conejo The Oho State Unverst 42

Conclusons (Electrcal) Energ problems are mportant! A. J. Conejo The Oho State Unverst 43

Conclusons How man coal plants are currentl beng bult n planet Earth? A. J. Conejo The Oho State Unverst 44

Conclusons If renewables are consdered: Major uncertant: stochastc producton facltes No such thng n the past (just demand uncertant) No such thng n models for ndustr (producton facltes are generall determnstc) A. J. Conejo The Oho State Unverst 45

Conclusons If renewables are consdered: Complex uncertant: multple dependences Spatal correlatons () among producton facltes () among demands and () among demands and producton facltes. Temporal correlatons for demands and producton facltes A. J. Conejo The Oho State Unverst 46

Conclusons If renewables are consdered: Mult-stage modelng s a must: future nvestment cost n stochastc sources s hghl uncertan: the technolog s not mature No two-stage stochastc models No adaptve robust optmzaton A. J. Conejo The Oho State Unverst 47

A. J. Conejo The Oho State Unverst 48