Obsolete Product(s) - Obsolete Product(s)

Similar documents
L78MxxAB L78MxxAC. Precision 500 ma regulators. Features. Description

ULN2801A, ULN2802A, ULN2803A, ULN2804A

Order code Temperature range Package Packaging

DDSL01. Secondary protection for DSL lines. Features. Description

ETP01-xx21. Protection for Ethernet lines. Features. Description. Applications. Benefits. Complies with the following standards

LM134-LM234-LM334. Three terminal adjustable current sources. Features. Description

ESDLIN1524BJ. Transil, transient voltage surge suppressor diode for ESD protection. Features. Description SOD323

BD241A BD241C. NPN power transistors. Features. Applications. Description. NPN transistors. Audio, general purpose switching and amplifier transistors

DSL01-xxxSC5. Secondary protection for DSL lines. Features. Description. Applications. Benefits. Complies with the following standards

Table 1. Absolute maximum ratings (T amb = 25 C) Symbol Parameter Value Unit. ISO C = 330 pf, R = 330 Ω : Contact discharge Air discharge

Description. Table 1. Device summary. Order code Temperature range Package Packaging Marking

ULN2001, ULN2002 ULN2003, ULN2004

Description. Table 1. Device summary. Order codes. TO-220 (single gauge) TO-220 (double gauge) D²PAK (tape and reel) TO-220FP

Description. Table 1. Device summary

STCS A max constant current LED driver. Features. Applications. Description

MC Low noise quad operational amplifier. Features. Description

LM337. Three-terminal adjustable negative voltage regulators. Features. Description

STN3NF06L. N-channel 60 V, 0.07 Ω, 4 A, SOT-223 STripFET II Power MOSFET. Features. Application. Description

BD135 - BD136 BD139 - BD140

2STBN15D100. Low voltage NPN power Darlington transistor. Features. Application. Description

STCS1A. 1.5 A max constant current LED driver. Features. Applications. Description

LM135-LM235-LM335. Precision temperature sensors. Features. Description

BD238. Low voltage PNP power transistor. Features. Applications. Description. Low saturation voltage PNP transistor

UA741. General-purpose single operational amplifier. Features. Applications. Description. N DIP8 (plastic package)

STP60NF06. N-channel 60V Ω - 60A TO-220 STripFET II Power MOSFET. General features. Description. Internal schematic diagram.

BZW50. Transil, transient voltage surge suppressor (TVS) Features. Description

STP60NF06FP. N-channel 60V Ω - 30A TO-220FP STripFET II Power MOSFET. General features. Description. Internal schematic diagram.

TN0023 Technical note

VN03. ISO high side smart power solid state relay PENTAWATT. Features. Description.

Description SO-8. series. Furthermore, in the 8-pin configuration Very low-dropout voltage (0.2 V typ.)

AN3353 Application note

STP10NK80ZFP STP10NK80Z - STW10NK80Z

ST High voltage fast-switching NPN power transistor. Features. Applications. Description

DVIULC6-4SC6. Ultra low capacitance ESD protection. Main applications. Complies with these standards: Description. Benefits. Features.

STP55NF06L STB55NF06L - STB55NF06L-1

STB4NK60Z, STB4NK60Z-1, STD4NK60Z STD4NK60Z-1, STP4NK60Z,STP4NK60ZFP

L6234. Three phase motor driver. Features. Description

Description. Table 1. Device summary. Order code Temperature range Package Packing Marking

P6KE. Transil, transient voltage surge suppressor (TVS) Features. Description. Complies with the following standards

HCF4010B HEX BUFFER/CONVERTER (NON INVERTING)

HCF4001B QUAD 2-INPUT NOR GATE

STCS2A. 2 A max constant current LED driver. Features. Applications. Description

VN05N. High side smart power solid state relay PENTAWATT. Features. Description

Obsolete Product(s) - Obsolete Product(s)

HCF4081B QUAD 2 INPUT AND GATE

Single LNB supply and control IC DiSEqC 1.X compliant with EXTM based on the LNBH29 in a QFN16 (4x4) Description

STGB10NB37LZ STGP10NB37LZ

AN3332 Application note

MC34063AB, MC34063AC, MC34063EB, MC34063EC

TDA W CAR RADIO AUDIO AMPLIFIER

HCF4056B BCD TO 7 SEGMENT DECODER /DRIVER WITH STROBED LATCH FUNCTION

STB75NF75 STP75NF75 - STP75NF75FP

HCF4070B QUAD EXCLUSIVE OR GATE

AN2760 Application note

UM1613 User manual. 16-pin smartcard interface ST8034P demonstration board. Introduction

EN: This Datasheet is presented by the m anufacturer. Please v isit our website for pricing and availability at ore.hu.

STTH1R04-Y. Automotive ultrafast recovery diode. Features. Description

AN2680 Application note

EVL185W-LEDTV. 185 W power supply with PFC and standby supply for LED TV based on the L6564, L6599A and Viper27L. Features.

STTH2R06. High efficiency ultrafast diode. Features. Description

AN2604 Application note

STOD2540. PMOLED display power supply. Features. Application. Description

AN2866 Application note

LM2901. Low-power quad voltage comparator. Features. Description

NE555 SA555 - SE555. General-purpose single bipolar timers. Features. Description

STLM20. Ultra-low current 2.4 V precision analog temperature sensor. Features. Applications

AN2389 Application note

TDA2004R W stereo amplifier for car radio. Features. Description

L6219. Stepper motor driver. Features. Description

High-Speed, Low r ON, SPST Analog Switch (1-Bit Bus Switch)

DG2302. High-Speed, Low r ON, SPST Analog Switch. Vishay Siliconix. (1-Bit Bus Switch with Level-Shifter) RoHS* COMPLIANT DESCRIPTION FEATURES

TDA CHANNEL VOLUME CONTROLLER 1 FEATURES 2 DESCRIPTION. Figure 1. Package

LF00AB/C SERIES VERY LOW DROP VOLTAGE REGULATORS WITH INHIBIT

.OPERATING SUPPLY VOLTAGE UP TO 46 V

Triple single-pole double-throw analog switch

ST19NP18-TPM-I2C. Trusted Platform Module (TPM) with I²C Interface. Features

AN4368 Application note

.LOW POWER DISSIPATION .HIGH NOISE IMMUNITY M74HC154 4 TO 16 LINE DECODER/DEMULTIPLEXER. HIGH SPEED tpd = 15 ns (TYP.) at VCC =5V

AN3998 Application note

AN4108 Application note

AN2703 Application note

STDP2690. Advanced DisplayPort to DisplayPort (dual mode) converter. Features. Applications

Description. IO and RF AGC. ASIC controller and power management. Carrier recovery loop. GPIO switch matrix. Lock indicator and monitoring DVBS2 FEC

3-input EXCLUSIVE-OR gate. The 74LVC1G386 provides a 3-input EXCLUSIVE-OR function.

STTH3R02QRL. Ultrafast recovery diode. Main product characteristics. Features and benefits. Description. Order codes DO-15 STTH3R02Q DO-201AD STTH3R02

TDA2822 DUAL POWER AMPLIFIER SUPPLY VOLTAGE DOWN TO 3 V LOW CROSSOVER DISTORSION LOW QUIESCENT CURRENT BRIDGE OR STEREO CONFIGURATION

AN3110 Application note

700 MHz, -3 db Bandwidth; Dual SPDT Analog Switch

EMIF06-mSD02C3. Mini and micro-sd card IPAD EMI filtering and ESD protection. Features. Description. Application

STM6315. Open drain microprocessor reset. Features

NE555 SA555 - SE555. General-purpose single bipolar timers. Features. Description

STP62NS04Z N-CHANNEL CLAMPED 12.5mΩ - 62A TO-220 FULLY PROTECTED MESH OVERLAY MOSFET

CAN bus ESD protection diode

8-channel analog multiplexer/demultiplexer

HEF4011B. 1. General description. 2. Features and benefits. 3. Ordering information. 4. Functional diagram. Quad 2-input NAND gate

HCF4028B BCD TO DECIMAL DECODER

STLQ ma, ultra low quiescent current linear voltage regulator. Description. Features. Application

NS3L V, 8-Channel, 2:1 Gigabit Ethernet LAN Switch with LED Switch

USBP01-5M8. ESD protection for enhanced micro USB interface. Features. Applications. Description. Complies with following standards

Symbol Parameter Value Unit V i-o Input-output Differential Voltage 40 V I O Output Current Intenrally Limited Top

Transcription:

Features STHDMI002A Wide bandwidth, 2 to 1 HDMI switch with single enable Compatible with HDMI v1.2, DVI v1.0 digital interfaces 165MHz speed operation supports all video formats up to 1080p and SXGA (1280 x 1024 at 75Hz) Data rate per channel for UXGA: 1.65Gbps Low R ON : 5.5 Ω(typ) V CC operating range: 3.135V to 3.465V Low current consumption: 20µA ESD human body model HBM Voltage: ±2KV for all I/Os Channel ON capacitance: 6pF (typ) Switching speed: 9ns Near-zero propagation delay: 250ps Low crosstalk: -32dB at 825MHz Bit-to-bit skew: 200ps Very low ground bounce in flow through mode Data and control inputs provide an undershoot clamp diode Wide bandwidth minimizes skew and jitter Hot insertion capable Isolated Digital Display Control (DDC) bus for unused ports 5V tolerance to all DDC and HPD_SINK inputs Supports bi-directional operation Available in the TQFP48 package 40 C to 85 C operating temperature range Applications Advanced TVs Front projectors LCD TVs PDPs LCD monitors Notebook PCs STB and DVD players Description The STHDMI002A is a differential Single Pole Double Throw (SPDT) 2 to 1, low Ron, bi-directional HDMI switch designed for advanced TV applications supporting HDMI/DVI which demand high definition superior image quality. The differential signal from the 2 ports of HDMI is multiplexed through the switch to form a single output HDMI channel going to the HDMI receiver while the unselected output goes to the high-z state. It is designed for very low cross-talk, low bit-to-bit skew, high channel-to-channel noise isolation and low I/O capacitance. The switch offers very little or practically no attenuation of the high-speed signals at the outputs, thus preserving the signal integrity to pass stringent requirements. The STHDMI002A also includes the DDC as well as the HPD line switching. The pin layout is optimized for easy PCB routing to the HDMI connector and HDMI receivers. The maximum DVI/HDMI data rate of 1.65Gbps provides the resolution required by the advanced HDTV and PC graphics. Advantages TQFP48 STHDMI002A provides the ability to switch a single source output to various display devices or switch video display devices between multiple sources. It reduces the overall BOM costs by eliminating the need for more costly multi inputoutput controllers. October 2006 Rev 1 1/26 www.st.com 26

Contents STHDMI002A Contents 1 Functional diagram............................................ 4 2 Functional description......................................... 5 2.1 HPD pins..................................................... 5 2.2 DDC channels................................................. 5 3 Application diagram........................................... 6 4 Pin configuration............................................. 7 4.1 Function table................................................ 9 5 Maximum rating.............................................. 10 6 DC electrical characteristics................................... 11 6.1 Capacitance................................................. 13 6.2 Power supply characteristics..................................... 13 6.3 Dynamic electrical characteristics................................. 13 6.4 Dynamic switching characteristics................................ 14 6.5 ESD performance............................................. 14 7 Test circuit for electrical characteristics.......................... 15 8 Timing waveforms............................................ 18 9 Application information....................................... 20 9.1 Power supply sequencing....................................... 20 2/26

STHDMI002A Contents 9.2 Supply bypassing............................................. 20 9.3 Differential traces............................................. 20 10 Package mechanical data...................................... 21 11 Order codes................................................. 24 12 Revision history.............................................. 25 3/26

Functional diagram STHDMI002A 1 Functional diagram Figure 1. Functional diagram 4/26

STHDMI002A Functional description 2 Functional description The STHDMI002A routes physical layer signals for high bandwidth digital video and is compatible with low voltage differential signaling standards like TMDS. The device multiplexes differential outputs from a video source to one of the two corresponding outputs to a common display. The low on-resistance and low I/O capacitance of STHDMI002A result in a very small propagation delay. The device integrates SPDT-type switches for 3 differential data TMDS channels and 1 differential clock channel. Additionally it integrates the switches for DDC and HPD lines switching. The I²C interface of the selected input port is linked to the I²C interface of the output port, and the hot plug detector (HPD) of the selected input port is output to HPD_SINK. For the unused ports, the I²C interfaces are isolated, and the HPD pins are also isolated. 2.1 HPD pins The input of the Y_HPD is 5V tolerant, allowing direct connection to 5V signals. The switch is able to pass both 0V and 5V signal levels. The HPD switch resistance depends on the input voltage level. At low (near to 0V) input voltage levels, the resistance is 20Ω typically and at high (near to 5V) input voltage levels, the resistance is 150Ω typically. 2.2 DDC channels The DDC channels are designed with a bi-directional NMOS gate, providing 5V signal tolerance. The 5V tolerance allows direct connection to a standard I²C bus, thus eliminating the need for a level shifter. When the input is a 5V, the NMOS switch is turned off and the pull up resistor on either side of the switch determines the high voltage potential. 5/26

Application diagram STHDMI002A 3 Application diagram Figure 2. Application diagram 6/26

STHDMI002A Pin configuration 4 Pin configuration Figure 3. Pin connections TQFP48 (pitch = 0.5mm) 7/26

Pin configuration STHDMI002A Table 1. Pin description Pin number Pin Name Type Function 1 VCC Power Supply voltage (3.3V ± 5%) 2 ACLK- Input TMDS Clock- for port A 3 ACLK+ Input TMDS Clock+ for port A 4 GND Power Ground 5 A0- Input TMDS Data 0- for port A 6 A0+ Input TMDS Data 0+ for port A 7 GND Power Ground 8 A1- Input TMDS Data 1- for port A 9 A1+ Input TMDS Data 1+ for port A 10 GND Power Ground 11 A2- Input TMDS Data 2- for port A 12 A2+ Input TMDS Data 2+ for port A 13 VCC Power Supply voltage (3.3V ± 5%) 14 B_HPD Output Hot Plug Detect (HPD) output for port B 15 GND Power Ground 16 B_DDC_SDA I/O DDC SDA input for port B 17 B_DDC_SCL I/O DDC SCL input for port B 18 VCC Power Supply voltage (3.3V ± 5%) 19 BCLK- Input TMDS Clock- for port B 20 BCLK+ Input TMDS Clock+ for port B 21 GND Power Ground 22 B0- Input TMDS Data 0- for port B 23 B0+ Input TMDS Data 0+ for port B 24 GND Power Ground 25 B1- Input TMDS Data 1- for port B 26 B1+ Input TMDS Data 1+ for port B 27 GND Power Ground 28 B2- Input TMDS Data 2- for port B 29 B2+ Input TMDS Data 2+ for port B 30 SEL Input Select control input to select port A or port B 31 Y2+ Output TMDS Data2+ output 32 Y2- Output TMDS Data2- output 33 GND Power Ground 34 Y1+ Output TMDS Data1+ output 8/26

STHDMI002A Pin configuration Table 1. Pin number Pin name Type Function 4.1 Function table Table 2. 35 Y1- Output TMDS Data1- output 36 GND Power Ground 37 Y0+ Output TMDS Data0+ output 38 Y0- Output TMDS Data0- output 39 GND Power Ground 40 YCLK+ Output TMDS Clock+ output 41 YCLK- Output TMDS Clock- output 42 Y_DDC_SCL I/O DDC SCL output 43 Y_DDC_SDA I/O DDC SDA output 44 Y_HPD Input Sink side hot plug detector input High : 5V power signal asserted from source to sink and EDID is ready Low : No 5V power signal is asserted from source to sink or EDID is not ready 45 A_HPD Output Hot Plug Detect (HPD) output for port A 46 VCC Power Supply voltage (3.3V ± 5%) 47 A_DDC_SDA I/O DDC SDA input for port A 48 A_DDC_SCL I/O DDC SCL input for port A Function table SEL Signal status DDC Status HPD Status L H Pin description Y= TMDS Data, Clock for port A Port B is in Z state Y=TMDS Data, Clock for port B Port A is in Z state Y = DDC for port A DDC for port B is Z Y = DDC for port B DDC for port A is Z Y= HPD for port A HPD for port B is Z Y= HPD for port B HPD for port A is Z 9/26

Maximum rating STHDMI002A 5 Maximum rating Stressing the device above the rating listed in the absolute maximum ratings table may cause permanent damage to the device. these are stress ratings only and operation of the device at these or any other conditions above those indicated in the operating sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Refer also to the STMicroelectronics sure program and other relevant quality documents. Table 3. Absolute maximum ratings Symbol Parameter Value Unit V CC Supply voltage to Ground -0.5 to +4.0 V DC Input Voltage (TMDS A,B ports) 1.7 to +4.0 V V I SEL -0.5 to +4.0 V A_DDC_SDA, A_DDC_SCL, B_DDC_SDA, B_DDC_SCL, Y_DDC_SDA, Y_DDC_SCL, Y_HPD, A_HPD, B_HPD -0.5 to +6.0 V V IC DC control input voltage -0.5 to +4.0 V I O DC output current 120 ma T STG Storage temperature -65 to +150 C T L Lead temperature (10 sec) 300 C V ESD Electrostatic discharge voltage on IOs (1)1 Human body model -2 to +2 kv Contact discharge -2 to +2 kv 1. In accordance with the MIL STD 883 method 3015 Table 4. Thermal data Symbol Description Value Unit R thja Thermal Resistance Junction-ambient TBA C/W 10/26

STHDMI002A DC electrical characteristics 6 DC electrical characteristics Table 5. T A = -40 to +85 C, V CC = 3.3V ± 5% DC electrical characteristics Symbol Parameter Test conditions Min Typ Max Unit V IH HIGH level input voltage (SEL pin) High level guaranteed 2.0 V V IL LOW level input voltage (SEL pin) Low level guaranteed -0.5 0.8 V V IK Clamp Diode voltage (All IOs) V CC = 3.465V, I IN = -18mA -0.8-1.2 V I IH Input high current (SEL pin, A, B data ports) V CC = 3.465V, V IN = V CC ±5 µa I IL Input low current (SEL pin, A, B data ports) V CC = 3.465V, V IN = GND ±5 µa I OFF Power down leakage current R ON Switch ON resistance (1) R FLAT ON resistance flatness (1) (2) R ON DDC I/O Pins I I(leak) I OFF ON resistance match between channels R ON = R ONMAX - R (1) (3) ONMIN Input leakage current Power down leakage current V CC = 0V; Outputs (Y-port) = 0V; Inputs (A-port) = 3.465V; Inputs (B-port) = 3.465V V CC = 3.135 V, V IN = 1.5 to V CC I IN = -40mA V CC = 3.135 V, V IN = 1.5 to V CC I IN = -40mA V CC = 3.135 V, V IN = 1.5 to V CC I IN = -40mA V CC = 3.465V V I (max) = 5.3V on isolated DDC ports Y= 0.0V V CC = 0V; Outputs (Y-port) = 0V; Inputs (A-port) = 5.3V; Inputs (B-port) = 5.3V ±5 µa 5.5 7.5 Ω 0.8 Ω 1.0 1.3 Ω 0.1 +2 µa C I/O Switch off capacitance Switch on capacitance V I =0V, V CC =3.3V, T= 25 C F = 1 MHz 5 9 ±5 µa pf pf 11/26

DC electrical characteristics STHDMI002A Table 5. DC electrical characteristics Symbol Parameter Test conditions Min Typ Max Unit V CC = 3.3V I O =3mA; V O =0.0V 32 Ω R ON Switch resistance V CC = 3.3V I O =3mA; V O =0.4V V CC = 3.3V I O =3mA; V O =0.8V 36 Ω 42 Ω Status pins (Y_HPD) I I(leak) I OFF Input leakage current Power down leakage current Status pins (A_HPD, B_HPD) C I/O R ON Switch off capacitance Switch on capacitance Switch resistance V CC = 3.3V I O =3mA; V O =1.5V V CC = 3.465V V I (max) = 5.3V on isolated HPD port Y= 0.0V V CC = 0V; (Y-port) = 0V; (A-port) = 5.3V; (B-port) = 5.3V V I =0V, V CC =3.3V, T= 25 C F = 1 MHz V CC = 3.3V I O =3mA; V O =0.0V V CC = 3.3V I O =3mA; V O =5.0V 62 Ω 0.1 +2 µa 5 9 ±5 µa pf pf 24 Ω 150 Ω 1. Measured by voltage drop between channels at the indicated current through the switch. On-resistance is determined by the lower of the two voltages. 2. Flatness is defined as the difference between the R ONMAX and the R ONMIN of the on resistance over the specified range. 3. R ON measured at the same V CC, temperature and voltage level. 12/26

STHDMI002A DC electrical characteristics 6.1 Capacitance T A = 25 C, f = 1MHz Table 6. Capacitance Symbol Parameter Test conditions Min Typ Max Unit C IN Input capacitance V IN = 0V 2 3 pf C OFF Port x0 to Port x1, Switch off (Note 4) V IN = 0V 4 6 pf C ON Capacitance switch on (x to x0 or x to x1) (1) V IN = 0V 6 12 pf 1. x = Port Y; x0 = Port A; x1 = Port B 6.2 Power supply characteristics Table 7. T A = -40 to +85 C Power supply characteristics Symbol Parameter Test conditions Min Typ Max Unit I CC Quiescent power supply current 6.3 Dynamic electrical characteristics Table 8. T A = -40 to +85 C, V CC = 3.3V ± 5% Dynamic electrical characteristics V CC = 3.465 V, V IN = V CC or GND 50 500 µa Symbol Parameter Test conditions Min Typ Max Unit X TALK Non-adjacent channel Cross-talk R L = 100Ω, f = 370MHz -32 db R L = 100Ω, f = 825MHz -31 db O IRR Off Isolation R L = 100Ω, f = 370MHz -36 db R L = 100Ω, f = 825MHz -30 db BW -3dB bandwidth 850 MHz D R Data rate per channel 1.65 Gbps 13/26

DC electrical characteristics STHDMI002A 6.4 Dynamic switching characteristics Table 9. Note: T A = -40 to +85 C, V CC = 3.3V ± 5% Dynamic switching characteristics Symbol Parameter Test conditions Min Typ Max Unit t PD Propagation delay V CC = 3.135V to 3.465V 0.30 ns t PZH, t PZL Line Enable Time, SEL to x to x0 or x to x1 V CC = 3.135V to 3.465V 0.5 6.5 9 ns t PHZ, t PLZ Line Disable Time, SEL to x to x0 or x to x1 V CC = 3.135V to 3.465V 0.5 6.5 8.5 ns t SK(O) t SK(P) DDC I/O pins t PD(DDC) Output skew between center port to any other port x = Port Y; x0 = Port A; x1 = Port B 6.5 ESD performance V CC = 3.135V to 3.465V 0.1 0.2 ns Skew between opposite transition of the same output (t PHL - t PLH) V CC = 3.135V to 3.465V 0.1 0.2 ns Propagation delay from A_DDC_SDA/ B_DDC_SDA to Y_DDC_SDA or A_DDC_SCL/B_DDC_SCL to Y_DDC_SCL or Y_DDC_SDA to A_DDC_SDA/ B_DDC_SDA C L = 10pF 2.5 ns t PZH, t PZL Line Enable Time, SEL to x to x0 or x to x1 V CC = 3.135V to 3.465V 6.5 9 ns t PHZ, t PLZ Line Disable Time, SEL to x to x0 or x to x1 V CC = 3.135V to 3.465V 6.5 8.5 ns Status pins (Y_HPD, A_HPD, B_HPD) t PD(HPD) Propagation delay (from Y_HPD to the active port of HPD) C L = 10pF 2.5 ns t PZH, t PZL Line Enable Time, SEL to x to x0 or x to x1 V CC = 3.135V to 3.465V 6.5 9 ns t PHZ, t PLZ Line Disable Time, SEL to x to x0 or x to x1 V CC = 3.135V to 3.465V 6.5 8.5 ns Table 10. ESD performance Symbol Parameter Test conditions Min Typ Max Unit ESD MIL STD 883 method 3015 (all pins) Human Body Model (HBM) ±2 kv 14/26

STHDMI002A Test circuit for electrical characteristics 7 Test circuit for electrical characteristics Figure 4. Timing measurement test circuit Note: 1 CL = Load capacitance: includes jig and probe capacitance. 2 RT = Termination resistance: should be equal to ZOUT of the Pulse Generator. Note: Figure 5. Bandwidth measurement test circuit C L includes probe and jig capacitance Frequency response is measured at the output of the ON channel. For example, when VSEL = 0 and Y0+ is the input, the output is measured at A0+. All unused analog I/O ports are left open. HP8753ES set up: Average = 4 RBW = 3kHz VBIAS = 0.35V ST = 2s P1 = 0dBm 15/26

Test circuit for electrical characteristics STHDMI002A Figure 6. Crosstalk measurement test circuit Note: 1 CL includes probe and jig capacitance 2 A 50Ω termination resistor is needed to match the loading network analyzer Crosstalk is measured at the output of the non-adjacent ON channel. For example, when VSEL = 0, and Y0- is the input, the output is measured at Y1-. All unused analog input ports (Y) are connected to GND and output ports (A,B) are left open. HP8753ES set up: Average = 4 RBW = 3kHz VBIAS = 0.35V ST = 2s P1 = 0dBm 16/26

STHDMI002A Test circuit for electrical characteristics Figure 7. Off-isolation measurement test circuit Note: 1 CL includes probe and jig capacitance 2 A 50Ω termination resistor is needed to match the loading network analyzer Off-isolation is measured at the output of the OFF channel. For example, when VSEL=0, and Y0- is the input, the output is measured at B0-. All unused analog input ports (Y) are connected to GND and output ports (A,B) are left open. HP8753ES set up: Average = 4 RBW = 3kHz VBIAS = 0.35V ST = 2s P1 = 0dBm 17/26

Timing waveforms STHDMI002A 8 Timing waveforms Figure 8. Propagation delay times Figure 9. Enable and disable times 18/26

STHDMI002A Timing waveforms Figure 10. Output skew Figure 11. Pulse skew 19/26

Application information STHDMI002A 9 Application information 9.1 Power supply sequencing Proper power-supply sequencing is advised for all CMOS devices. It is recommended to always apply V CC before applying any signals to the input/output or control pins. 9.2 Supply bypassing Bypass each of the V CC pins with 0.1µF and 1nF capacitors in parallel as close to the device as possible, with the smaller-valued capacitor as close to the V CC pin of the device as possible. 9.3 Differential traces The high-speed TMDS inputs are the most critical parts for the device. There are several considerations to minimize discontinuities on these transmission lines between the connectors and the device. a) Maintain 100-Ω differential transmission line impedance into and out of the STHDMI002A. b) Keep an uninterrupted ground plane below the high-speed I/Os. c) Keep the ground-path vias to the device as close as possible to allow the shortest return current path. d) Layout of the TMDS differential inputs should be with the shortest stubs from the connectors. Output trace characteristics affect the performance of the STHDMI002A. Use controlled impedance traces to match trace impedance to both the transmission medium impedance and termination resistor. Run the differential traces close together to minimize the effects of the noise. Reduce skew by matching the electrical length of the traces. Avoid discontinuities in the differential trace layout. Avoid 90 degree turns and minimize the number of vias to further prevent impedance discontinuities. 20/26

STHDMI002A Package mechanical data 10 Package mechanical data In order to meet environmental requirements, ST offers these devices in ECOPACK packages. These packages have a Lead-free second level interconnect. The category of second Level Interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com. 21/26

Package mechanical data STHDMI002A Figure 12. TQFP48 package dimensions 22/26

STHDMI002A Package mechanical data Figure 13. TQFP48 Tape and reel dimensions Tape & Reel TQFP48 MECHANICAL DATA DIM. mm. inch MIN. TYP MAX. MIN. TYP. MAX. A 330 12.992 C 12.8 13.2 0.504 0.519 D 20.2 0.795 N 60 2.362 T 22.4 0.882 Ao 9.5 9.7 0.374 0.382 Bo 9.5 9.7 0.374 0.382 Ko 2.1 2.3 0.083 0.091 Po 3.9 4.1 0.153 0.161 P 11.9 12.1 0.468 0.476 23/26

Order codes STHDMI002A 11 Order codes Table 11. Order codes Part number Temperature range Package Packing STHDMI002ABTR 65 C to +150 C TQFP48 Tape and reel 24/26

STHDMI002A Revision history 12 Revision history Table 12. Revision history Date Revision Change 10-Oct-2006 1 First release 25/26

STHDMI002A Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ( ST ) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST s terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER S OWN RISK. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. 2006 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com 26/26