Spam Filter Optimality Based on Signal Detection Theory



Similar documents
Bayesian Spam Filtering

A Two-Pass Statistical Approach for Automatic Personalized Spam Filtering

An Efficient Spam Filtering Techniques for Account

Detecting Spam Using Spam Word Associations

A MACHINE LEARNING APPROACH TO SERVER-SIDE ANTI-SPAM FILTERING 1 2

Lan, Mingjun and Zhou, Wanlei 2005, Spam filtering based on preference ranking, in Fifth International Conference on Computer and Information

CAS-ICT at TREC 2005 SPAM Track: Using Non-Textual Information to Improve Spam Filtering Performance

eprism Security Appliance 6.0 Intercept Anti-Spam Quick Start Guide

How To Filter Spam Image From A Picture By Color Or Color

Sender and Receiver Addresses as Cues for Anti-Spam Filtering Chih-Chien Wang

Savita Teli 1, Santoshkumar Biradar 2

Intercept Anti-Spam Quick Start Guide

T : Classification as Spam or Ham using Naive Bayes Classifier. Santosh Tirunagari :

AN EFFECTIVE SPAM FILTERING FOR DYNAMIC MAIL MANAGEMENT SYSTEM

Bayesian Spam Detection

Artificial Neural Network, Decision Tree and Statistical Techniques Applied for Designing and Developing Classifier

Journal of Information Technology Impact

Spam detection with data mining method:

Software Engineering 4C03 SPAM

Impact of Feature Selection Technique on Classification

Naïve Bayesian Anti-spam Filtering Technique for Malay Language

IMPROVING SPAM FILTERING EFFICIENCY USING BAYESIAN BACKWARD APPROACH PROJECT

Feature Subset Selection in Spam Detection

Evaluation & Validation: Credibility: Evaluating what has been learned

Simple Language Models for Spam Detection

Map of the course. Who is that person? 9.63 Laboratory in Visual Cognition. Detecting Emotion and Attitude Which face is positive vs. negative?

An Approach to Detect Spam s by Using Majority Voting

BARRACUDA. N e t w o r k s SPAM FIREWALL 600

Accelerating Techniques for Rapid Mitigation of Phishing and Spam s

Performance Measures for Machine Learning

Prevention of Spam over IP Telephony (SPIT)

Anti Spamming Techniques

A Content based Spam Filtering Using Optical Back Propagation Technique

SpamNet Spam Detection Using PCA and Neural Networks

Fighting spam in Australia. A consumer guide

A Case-Based Approach to Spam Filtering that Can Track Concept Drift

Spam Filtering using Naïve Bayesian Classification

Image Spam Filtering by Content Obscuring Detection

How To Filter From A Spam Filter

Image Spam Filtering Using Visual Information

Knowledge Discovery and Data Mining

Chapter 6. The stacking ensemble approach

Towards better accuracy for Spam predictions

Purchase College Barracuda Anti-Spam Firewall User s Guide

Spam Testing Methodology Opus One, Inc. March, 2007

Personalized Spam Filtering for Gray Mail

Spam Filtering Methods for Filtering

SURVEY PAPER ON INTELLIGENT SYSTEM FOR TEXT AND IMAGE SPAM FILTERING Amol H. Malge 1, Dr. S. M. Chaware 2

Marketing Do s and Don ts A Sprint Mail Whitepaper

A Game Theoretical Framework for Adversarial Learning

Why Bayesian filtering is the most effective anti-spam technology

Data Mining Algorithms Part 1. Dejan Sarka

An Efficient Three-phase Spam Filtering Technique

How To Send From A Netbook To A Spam Box On A Pc Or Mac Or Mac (For A Mac) On A Mac Or Ipo (For An Ipo) On An Ipot Or Ipot (For Mac) (For

Who will win the battle - Spammers or Service Providers?

Reputation Network Analysis for Filtering

Detection Sensitivity and Response Bias

Increasing the Accuracy of a Spam-Detecting Artificial Immune System

Groundbreaking Technology Redefines Spam Prevention. Analysis of a New High-Accuracy Method for Catching Spam

A Collaborative Approach to Anti-Spam

escan Anti-Spam White Paper

An Efficient Two-phase Spam Filtering Method Based on s Categorization

Adaptive Filtering of SPAM

OIS. Update on the anti spam system at CERN. Pawel Grzywaczewski, CERN IT/OIS HEPIX fall 2010

MICROSOFT OUTLOOK 2011

SIP Service Providers and The Spam Problem

Non-Parametric Spam Filtering based on knn and LSA

Detecting Spam in VoIP Networks

INSIDE. Neural Network-based Antispam Heuristics. Symantec Enterprise Security. by Chris Miller. Group Product Manager Enterprise Security

An Overview of Spam Blocking Techniques

A Proposed Algorithm for Spam Filtering s by Hash Table Approach

Abstract. Find out if your mortgage rate is too high, NOW. Free Search

Filtering Junk Mail with A Maximum Entropy Model

A Personalized Spam Filtering Approach Utilizing Two Separately Trained Filters

Protecting your business from spam

SECURITY S INSIDER SECRETS

International Journal of Research in Advent Technology Available Online at:

Naive Bayes Spam Filtering Using Word-Position-Based Attributes

How to keep spam off your network

SPAM. What can be done by governments, to prevent spam? What can be done by IT professional bodies?

ContentCatcher. Voyant Strategies. Best Practice for Gateway Security and Enterprise-class Spam Filtering

Tweaking Naïve Bayes classifier for intelligent spam detection

Flavio D. Garcia Department of Computer Science, University of Nijmegen, the Netherlands

Detecting Spam in VoIP Networks. Ram Dantu Prakash Kolan

Spam Filtering Based On The Analysis Of Text Information Embedded Into Images

Why Content Filters Can t Eradicate spam

A Novel Technique of Classification for Spam Detection

Keywords - Algorithm, Artificial immune system, Classification, Non-Spam, Spam

Throttling Outgoing SPAM for Webmail Services

MINIMIZING THE TIME OF SPAM MAIL DETECTION BY RELOCATING FILTERING SYSTEM TO THE SENDER MAIL SERVER

Combining Global and Personal Anti-Spam Filtering

K7 Mail Security FOR MICROSOFT EXCHANGE SERVERS. v.109

Achieve more with less

AntiSpam QuickStart Guide

IDENTIFIC ATION OF SOFTWARE EROSION USING LOGISTIC REGRESSION

Why Bayesian filtering is the most effective anti-spam technology

Adjust Webmail Spam Settings

Measuring Intrusion Detection Capability: An Information-Theoretic Approach

How To Stop Spam From Being A Problem

Transcription:

Spam Filter Optimality Based on Signal Detection Theory ABSTRACT Singh Kuldeep NTNU, Norway HUT, Finland kuldeep@unik.no Md. Sadek Ferdous NTNU, Norway University of Tartu, Estonia sadek@unik.no Unsolicited bulk email, commonly known as spam, represents a significant problem on the Internet. The seriousness of the situation is reflected by the fact that approximately 97% of the total e-mail traffic currently (2009) is spam. To fight this problem, various anti-spam methods have been proposed and are implemented to filter out spam before it gets delivered to recipients, but none of these methods are entirely satisfactory. In this paper we analyze the properties of spam filters from the viewpoint of Signal Detection Theory (SDT). The Bayesian approach of Signal Detection Theory provides a basis for determining the optimality of spam filters, i.e. whether they provide positive utility to users. In the process of decision making by a spam filter various tradeoffs are considered as a function of the costs of incorrect decisions and the benefits of correct decisions. Categories and Subject Descriptors D.m [Software]: Miscellaneous; D.m [Software]: Miscellaneous General Terms performance, security, measurement Keywords Spam, e-mail, filters, tradeoffs, Optimality, Signal Detection Theory (SDT) 1. INTRODUCTION Spam in the form of unwanted email is a huge and growing problem. The amount of spam that circulates through Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. SIN 09, October 6 10, 2009, North Cyprus, Turkey. Copyright 2009 ACM 978-1-60558-412-6/09/10...$10.00. Jøsang Audun University of Oslo, Norway QUT, Australia josang@unik.no Ravishankar Borgaonkar HUT, Finland KTH, Sweden ravishankar@unik.no the Internet is increasing day by day, and is affecting everyone on the Internet, ranging from network providers to Internet Service Providers (ISPŠs), companies and end users. Manually deleting spam in the inbox every day is annoying and time consuming for all Internet users. In [1] it has been found that approximately 97% of the total email traffic these days consists of spam. The problem gets even worse when spam is used to actively harm the recipients by attacks like such as phishing and 419 Scams [11, 7]. Apart from these threats, spam causes waste of time and money. For example in a survey conducted in 2006 among employees of 500 large companies in US and Finland, it was found that on an average an employee spends 13 minutes of his daily working time in reading, deleting or replying to spam messages[12]. The increasing amount of spam has attracted the attention of Internet and security experts. As a result many anti spam strategies have been proposed and implemented. Current work also investigates methods to completely block spam. The main reason behind the increasing amount of spam lies in the cost imbalance between senders and recipients. Sending large amounts of spam has a very small cost compared to the relatively high cost of viewing and deleting a single spam message. Millions of emails can be sent per hour with just 56 kbps of bandwidth[6]. According to[14], if even one among 500,000 spam messages of direct-mail print campaigns attracts a recipient to buy the product then the whole cost incurred in sending 500,000 spams is covered. On the other hand the recipients and the ISPs have to carry significant costs. The most obvious cost is the bandwidth consumed for processing spam. In large organization the charging for Internet connections is based on traffic, and because of spam traffic these firms end up paying significant amounts for non-productive traffic. On the ISP side the cost comes from wasted bandwidth and CPU time. It is important to understand, analyze and measure the effectiveness and efficiency of the spam filters in order to improve their quality. In the context of spam filters, effectiveness means the degree to which genuine spam is detected and removed. On the other hand, efficiency means the degree to which genuine email messages are correctly delivered. A filter that removes most spam messages will have high effectiveness, but if it removes many genuine email messages together with spam messages it will have poor efficiency.

SDT (Signal Detection Theory)[10, 2] is a mathematical model that is suitable for analyzing the effectiveness and efficiency of spam filters. SDT provides a rational basis for decision making under conditions of uncertainty. For example, the question Is this my dog barking, or is it just the television? is a typical situation where SDT can be applied to guide the dog owner to the most optimal action, i.e. to ignore the sound, or to go to look after the dog. Visualization techniques used in SDT can provide additional decision support in situations of uncertainty. Section 2 briefly describes related studies on analyzing spam filter performance. Section 3 presents the background of SDT, Section 4 describes how SDT can be applied to spam filter analysis, Section 5 discusses the presented technique, and Section 6 concludes this paper. 2. RELATED WORK In the context of spam filtering, genuine (non-spam) email messages are commonly called ham. Since spam filters are trying to identify spam, a message identified as spam is called a positive. A ham message incorrectly classified as spam therefore represents an instance of false positive (FP), and a spam message identified as ham represents a false negative (FN). Various analyzes of the performance of spam filters have been done in previous studies. The effectiveness of a spam filter is affected by the domain in which it is used. For example the cost of a lost genuine email message incorrectly detected as spam will depend on the recipient s (and sender s) business area, as well as on the recipient s (and sender s) perception, attitude and level of frustration. A method for analyzing spam filters was proposed by Garcia et al. in 2004 [8]. Garcia s analysis was restricted to open source filters, and only considered content based filters, i.e. not for example black/white lists. In [8] apart from computing false positive and false negative rates, a function was proposed for calculating a single measure of a filteršs error rate as a function of its false positive and false negative rates. Another approach to analyzing spam filter performance is through the Precision and Recall metrics. This method was extensively used for spam filter classification in [13]. Precision is the ratio of spam messages classified as spam relative to the total number of messages classified as spam, and Recall is the ratio of spam messages classified as spam relative to the total number of spam messages. For example, if 5 out of 10 spam messages are correctly identified as spam then the Recall rate is 0.5. As long as no ham messages are classified as spam the Precision will be 1, but as soon as some ham messages are incorrectly classified as spam the Precision falls below 1. For spam filters, an instance of FP is normally considered more problematic than an instance of FN. Precision which reflects a filter s FP property is therefore considered to be a more important measure than Recall which reflects the filter s FN property. The Precision value therefore needs to be higher than the Recall value, but at the same time there should be a proper balance between the two values. Another proposed method for measuring the effectiveness of spam filters is Weighted Accuracy which uses the accuracy and error rate as measures [5]. They assign equal relative weights (λ) to the error types FP (False Positive) and FN (False Negative), as well as to the correct classification types. An instance of FP counts λ times an instance of FN. An instance of TN (true negative), i.e. a correct classification of a genuine email message, counts λ times an instance of TP (true positive), i.e. a correct classification of spam. This method reflects that an instance of FP is λ times more costly than an instance of FN. In [4], 10-fold cross validation is used as an evaluation method to estimate how well the filter works after training. According to this method the corpus is spilt into 10 mutually exclusive parts and the subject is tested against all of these parts. And finally the estimation is made on the basis of the mean of all the tests. The ROC (Receiver Operating Characteristics) curve is another method for spam filter evaluation suggested by Hidalgo in [2]. It has a discrimination threshold value which when varied produces the trade-off between FP and TP. From a visualization viewpoint, if the ROC curve of one filter is uniformly above than that of another filter, then it can be inferred that the performance of the first filter is superior that of the other. 3. SIGNAL DETECTION THEORY This section presents a model for analyzing spam filters based on SDT (Signal Detection Theory)[10, 2, 9, 15]. SDT is based on probability theory and is an effective means to analyze ambiguous data. In the SDT framework each event is assumed to be either: 1) signal (from a known process) or 2) noise (from an unknown process). SDT provides a formal framework for setting optimal thresholds for distinguishing between signal and noise. For example, in radar system the operator tries to determine from the display on the radar screen whether it is a signal (aircraft) or a noise (bird or something else), and setting the optimal decision threshold is importance for the success of military operations. SDT assumes that signal and noise distributions overlap each other and that an observed stimulus may come from any side of the distribution. In addition to this SDT also assumes that the signal is added to the noise and that the decision maker tries to find out the optimal performance by balancing cost and benefit. Fig.1 shows the SDT model with the two distributions (signal and noise) assuming that both distributions are normal with equal standard deviations. The X-axis / horizontal axis represents the strength of the internal response (also called hidden variable, decision variable or internal variable) which is a function of the external observed stimulus. The Y-axis / vertical axis represents the probability of the internal response. These distributions are used in the process of making the decision whether the stimulus represents signal or noise. The vertical line between the two distributions is the criterion threshold for the internal response that is used to make a decision. In the process of decision making any internal response with a value less than the criterion is determined to come from the noise distribution while an internal response with a value greater than the criterion is determined to come from the signal distribution. After receiving the stimulus the decision maker has to decide whether to accept or reject it. The overlapping between noise distribution and signal distribution results in four possible decisions which are shown in Fig.(2).

Figure 1: SDT model showing overlap between signal and noise distribution False Negative (FN): Stimulus coming from the signal distribution incorrectly detected as noise 1. True Positive (TP): Stimulus coming from the signal distribution correctly detected as signal 2. False Positive (FP): Stimulus coming from the noise distribution incorrectly detected as signal 3. True Negative (TN): Stimulus coming from the noise distribution correctly detected as noise 4. FP and FN are also known as Type I error and Type II errors respectively in statistics. The SDT decision making method is based on the concepts of TP Rate and FP Rate. The TP Rate is the total number of times a genuine signal is detected as signal divided by the total number of genuine signals. Hence, it can be calculated as follows: TP Rate = TP TP + FN The FP Rate is the total number of times genuine noise is detected as signal, divided by the total number of genuine noise instances. Hence the FP Rate can be calculated using the following formula: FP Rate = FP FP + TN It can be noted that the sum of the TP and FN Rates, as well as the sum of the FP and TN Rates both are equal to 1. This can be expressed as: FN Rate = 1 TP Rate (3) TN Rate = 1 FP Rate Fig. 3 illustrates the analysis of TP and FP rates. The lower half of Fig. 3 sets the criterion at the left-most edge 1 Called Miss in SDT terminology. 2 Called Hit in SDT terminology. 3 Called False Alarm or FA in SDT terminology. 4 Called Correct Identification or CI or Correct Rejection or CR in SDT terminology. (1) (2) Figure 2: The model of SDT showing TP,FN,FP and TN of the signal distribution. Statistically, it means that the TP Rate is 100%. Let us assume the example of a doctor who makes the decision whether there is a tumor in the brain based on the internal response of a brain scan. If the value of the criterion is lowered such that the TP Rate is 100% then the FP Rate also increases as shown in the lower half of Fig. 3. The doctor will therefore never miss a real tumor, but a negative side-effect of increasing TP Rate is a corresponding increase in the FP rate. In case the criterion value is increased to the rightmost edge of the noise distribution as shown in the upper half of Fig.3 then the FP Rate becomes 0%, but at the same time the TP Rate also gets very low. This means that the doctor gets no false alarms, but will miss many real tumors. The optimal criterion value will depend on the cost of FPs and FNs. SDT assumes that it is practically impossible to simultaneously have a 100% TP Rate and 0% FP Rate because of the overlap between the signal and the noise distributions. STD offers a method for defining the criterion value which will result in optimal decision making. Thus the choice of the criterion value is important. In this paper we use STD and Bayesian methods for analyzing spam filters with regard to their inherent criterion values. SDT based decision making is mainly influenced by two values: 1. Likelihood Ratio (LR) which can be called as Actual LR. 2. Optimal LR (LR ) which is compared with the actual LR to find out the optimality of the decision maker. Actual LR is calculated using the following formula: LR = TP Rate FP Rate (4)

4. SIGNAL DETECTION THEORY USED FOR SPAM FILTER ANALYSIS Spam filters are used to separate spam from ham. A spam filter carries out this separation in different ways. For example, content based filtering [8] is done by analyzing the body of the message. Origin based filtering[8] is done by judging the source of the message. SDT can be used to analyze the spam filters based on a single method as well as filters based on multiple methods like those used by email service providers like: Gmail, Yahoo mail and Hotmail. When applying SDT to spam filter analysis, we will use the terminology convention that an instance of spam is considered as a signal, and an instance of ham is considered as noise. Within the SDT framework, the difficulty of distinguishing between spam and ham increases with the degree of overlap between the two distributions, as would be expected. The overlap between spam and ham distributions results in two types of incorrect and two types of correct decisions, defined as: 1. Ham classified as ham (TN) 2. Spam classified as ham (FN) 3. Spam classified as spam (TP) 4. Ham classified as spam (FP) Figure 3: SDT model showing showing criterion at two different places: FP Rates=0% and TP Rates=100% The Optimal LR value is dependent on the base rate probabilities of stimulus being signal or noise, and also on the costs of incorrect and the benefits of correct detection and it is calculated by multiplying the ratio of the base rate probability of noise P(noise) and the base rate probability of signal P(signal) with a constant K that incorporates the costs of errors and benefits of correct identifications. Note that for every stimulus, the equation P(noise) + P(signal) = 1 holds. LR = P(noise) P(signal) K (5) where the constant K is calculated as follows: K = Benefits of TN Costs of FP Benefits of TP Costs of FN In the process of decision making in SDT the four possible outcomes are TP, FN, FP and TN. The decision matrix of the spam detector is shown in Fig.4. Eq.(6) is useful in deciding whether the decision maker is behaving optimally or not. The all four values in the Eq.(6) can be different and there could be significantly large difference. For example, in the case of Tsunami detection the cost of FN is very high while in the case of Spam detection the cost of FP is relatively high in comparison with the cost of FN. The Bayesian approach used in this paper for decision making considers all the costs and benefits and various tradeoffs. (6) The 3rd and 4th outcomes are important from the SDT point of view as they are used in the mathematical expressions. In the following S denotes a genuine spam message, and S denotes an assumed spam message. Similarly, H denotes a genuine ham message, and H denotes an assumed ham message. The four possible outcomes of the spam filter are shown in Table 4. P(S S), P(H S), P(S H) and P(H H) in the Fig. 4 represents the four conditional probabilities. Figure 4: Decision Matrix for a spam filter showing four possible cases All the four possible cases are dependent on each other. For example, when the message really is spam (1st row) the proportion of TP and FN add up to 1 because the filter can only respond in one of the two ways- either Yes or No. Likewise when the message really is ham (2nd row), the proportion of FP and TN add up to 1. Thus all the information in the decision matrix can be obtained from TP and FP. Therefore we have P(H S) = 1 P(S S) (7) P(H H) = 1 P(S H) (8)

The conditional probabilities P(S S) and P(S H) represent the TP and FP rates respectively. The TP rate indicates the successful filtering of spam messages, and can therefore be used to analyze the effectiveness of the spam filter. The FP rate on the other hand shows errors which can be used to determine the efficiency of spam filters. Efficiency can be increased by reducing the FP rate. The effectiveness of the spam filter increases as the TP rate gets closer to 1 and the efficiency increases as the FP rate gets closer to 0. It can be easily concluded that spam filters will behave in the best way when the TP rate is maximum and the FP rate is minimum. Practically no automated spam filter can be both 100% effective and 100% efficient at the same time. The reason for this is of course that clever composition of spam messages give them similar characteristics to ham messages. For automated filters that do not have the same cognitive and semantic capabilities as humans, separation between ham and spam is not always possible. Spam filters makes use of the TP rate and the FP rate to calculate the LR (Likelihood Ratio). The formula to calculate the LR is as follows: LR = TP FP = P(S S) P(S H) After the Actual LR has been calculated it is compared with the Optimal LR (LR ). The LR is calculated using the base rate probabilities of occurrence of spam messages in a representative set of messages. In addition, LR is also based on the cost associated incorrect and the benefits associated with correct decisions. With the goal of maximizing the gains and minimizing the losses, LR value can be calculated as follows: LR = P(H) P(S) (BH H C H) S (9) (10) where P(H) and P(S) represent the base rate probabilities of ham and spam in the message set. The additivity P(H)+ P(S) = 1 always holds. In the above equation B H H denotes the benefit associated with TN, and B S S denotes the benefit associated with TP. Similarly C S H denotes the cost associated with FP, and C H S denotes the cost associated with FN. Eq.(10) shows that the optimal LR value depends on two factors: 1. Base rates of spam and ham 2. Relative costs of errors and benefits of correct identification In Eq.(10) if the cost of errors is the same as the benefits of correct responses then the value of LR becomes equal to the fraction of base rate probabilities of spam and ham i.e. LR = P(H)/P(S). From empirical researches [13, 5, 3] it has been found that the base rate probability of spam affects the detection of spam. The base rate probability will therefore influence the criterion value. The cost of FP is normally significantly higher than the cost of FN. People are normally more concerned about the loss of a ham that about receiving a spam. With the help of Eq.(11) different aspects of the spam filter can be evaluated and analyzed. While comparing LR and LR the most optimal tuning of the spam filter is when the following equation holds: P(S S) P(S H) = P(H) P(S) (BH H C H) S (11) In case the LR is equal to LR then it can be concluded that the spam filter is optimal for the particular user otherwise not. Eq.(11) represents the equation for a filter equipped with just one technique to distinguish between ham and spam, meaning that it will maximize the utility for the user. When a spam filter has more than one filtering techniques, which is generally the case, then additional considerations must be taken. All the filtering techniques are assumed to be in sequence. In addition to this, the inherent characteristics of each filtering technique are statistically independent of each other. If the filtering techniques are not statistically independent then the sequential set of filters is assumed to consist of just one filtering technique, and this filter would be relatively less effective. A filtering technique at one point in the chain will change the base rate probabilities for the next filtering technique in the chain. If the base rate probabilities are changed by the stimulus emanating from the 1st filtering technique, it should result in LR equal to that of Eq.(9). This new value will be denoted as LR 1. Therefore: or equivalently LR 1 = P(S 1 S) P(S 1 H) (12) P(S 1 S) P(H) = P(S 1 H) P(S) (BH H C H) S P(S 1 S) P(S) P(S 1 H) P(H) = (BH H C H) S (13) (14) In the above equation the left hand side determines the new base rate probability for the 2nd filtering technique. The base rate probability and the LR changes every time an e- mail passes through the new filtering technique. LR 1 indicates the LR after the 1st filtering technique. If the filter incorporates n filtering techniques then the Eq.13 changes to: i=n i=1 P(S i S) P(H) = P(S i H) P(S) (BH H C H) S (15) Eq.15 can be used for analyzing multiple technique spam filters. 5. DISCUSSION It can be concluded from the Eq.(11) that if the base rate probabilities of spam and ham are equal, then we get P(H)/P(S) = 1. (16)

If in addition the cost benefit differences are balanced, expressed by (B H H + C S H) = (B S S + C H S), (17) then the LR becomes equal to 1. This means TP rate is equal to FP rate which is not good at all from the filter s efficiency and affectivity point of view. Considering the scenario from FP rate and FN rate point of view then we can easily conclude that either the FP can be minimized or the FN can be minimized but not both at the same time. Therefore Eq.(11) helps in finding out the optimal criterion value. In case of e-mails one would normally prefer receiving a spam message over losing a ham message because the cost of a FP is significantly higher than cost of a FN. Therefore, in order to be more efficient, spam filters should use a stricter criterion while classifying e-mails. Since a spam message represents a signal for the spam filter, by behaving stricter the spam filter would classify incoming messages as ham, even with a certain likelihood of being a spam. This would eventually result in ham messages ending up in the normal inbox. Hence, resulting in less FPs. If we consider the Eq.(15) derived from the perspective of multi-technique spam filters then we can find interesting results. Assuming that benefits of correct responses are approximately equal. The major difference lies between the costs associated with the FN and FP (generally the main concern is with the FP and FN rates). Therefore, assuming the payoffs as the ratio of cost of a FP and cost of a FN. Moreover, considering modern day spam and spam filters we assume that the base rate probability of spam is equal to 97% i.e. P(H) P(S) = 3/97 and the TP and FP rates are 80% and 20% respectively and also assuming the payoffs at right hand side of Eq.(15) to be 1000/1 then a filter needs to incorporate three filtering techniques to satisfy the needs and provide positive utility to the user as shown by the calculation: (80/20)*(80/20)*(80/20) which is greater than (3/97)*1000/1. This means likelihood ratio is greater and hence means less FP rate and more TP rate. Smaller the difference between the LR and LR, lesser the tuning will be needed for the spam filters to behave optimally for the particular user. 6. CONCLUSIONS This paper describes the analysis of spam filters within the framework of signal detection theory. The criterion value plays an important part in decision making. It represents the environment in which the spam filter operates as well as the user s subjective view of the cost and benefits of false and correct filtering. For a spam filter that is perfect, the cost and benefits of false and correct filtering are less important. The spam filter will normally make optimal filtering decisions and provide positive utility for the user. However, if the spam filter characteristics are not close to optimal, the values that the user assigns to the cost of incorrect filtering and the benefits of correct filtering do matter for determining whether the filter behaves optimally, i.e. whether it provides positive utility. If not, the user would be better of not using the spam filter, because that would provide better utility. 7. REFERENCES [1] Security intelligence. Technical report, Microsoft, December 2008. [2] H. Abdi. Signal detection theory (sdt) overview. [3] A. R. Agustin Orfila, Javier Carbo. Decision model analysis for spam. Information and Security: An International Journal, 15(2):151 161, 2004. [4] G. P. F. R. Andre Bergholz, Jeong-Ho Chang and S. Strobel. Improved phishing detection using model-based features. In Fifth Conference on Email and Anti-Spam. CEAS, August 2008. [5] I. Androutsopoulos, J. Koutsias, K. V. Ch, G. Paliouras, and C. D. Spyropoulos. An evaluation of naive bayesian anti-spam filtering. In Proceedings of the workshop on Machine Learning in the New Information Age, G. Potamias, V. Moustakis and M. van Someren (eds.), 11th European Conference on Machine Learning, pages 9 17, 2000. [6] A. Cournane and R. Hunt. An analysis of the tools used for the generation and prevention of spam. [7] M. A. Dyrud. i brought you a good news : An analysis of nigerian 419 letters. In Proc. of the 2005 Association for Business Communication Annual Convention, 2005. [8] F. D. Garcia, J. henk Hoepman, and J. V. Nieuwenhuizen. Spam filter analysis. In in Proceedings of 19th IFIP International Information Security Conference, WCC2004-SEC, pages 395 410. Kluwer Academic Publishers, 2004. [9] D. M. Green and J. A. Swets. Signal Detection Theory and Psychophysics. Peninsula Publishing, 1966. [10] D. Heeger. Signal detection theory. Technical report, November 1997. Available at:http://www.cns.nyu.edu/ david/handouts/sdtadvanced.pdf. [11] A. Jøsang and S. Pope. User centric identity management. In in Asia Pacific Information Technology Security Conference, AusCERT2005, Austrailia, pages 77 89, 2005. [12] S. Mikko and S. Carl. Effective anti-spam strategies in companies: An international study. In HICSS 06: Proceedings of the 39th Annual Hawaii International Conference on System Sciences, page 127.3, Washington, DC, USA, 2006. IEEE Computer Society. [13] M. Sahami, S. Dumais, D. Heckerman, and E. Horvitz. A bayesian approach to filtering junk e-mail. In AAAI Workshop on Learning for Text Categorization, July 1998. [14] S. Shirali-Shahreza and A. Movaghar. A new anti-spam protocol using captcha. pages 234 238, April 2007. [15] T. D. Wickens. Elementary Signal Detection Theory. Oxford University Press (OUP), 2001.