Welcome to SCHOTT Solar



Similar documents
Design of inductors and modeling of relevant field intensity

Photovoltaic Power: Science and Technology Fundamentals

PV Energy Payback. by Justine Sanchez. Single-Crystalline

The Current status of Korean silicon photovoltaic industry and market Sangwook Park LG Electronics Inc.

Thin Is In, But Not Too Thin!

ASI OEM Outdoor Solar Modules

PV Solar Electricity Supplies for Africa and Asia: Profitable Business and Expectations from a PV Manufacturer

Environmental Impacts of Crystalline Silicon Photovoltaic Module Production

Silicon Wafer Solar Cells

PV-FZ Silicon Wafers for High Efficiency Solar Cells

EPIA ROADMAP EUROPEAN PHOTOVOLTAIC INDUSTRY ASSOCIATION

Wafer-based silicon PV technology Status, innovations and outlook

Optical Disc and Solar Annual Press/Analyst Conference - March 26, 2010

Impact of Materials Prices on Cost of PV Manufacture Part I (Crystalline Silicon)

Fundamentals of Photovoltaic Materials

Laser Concepts for Industrial Thin Film PV Production

THE IMPACT OF YIELD STRENGTH OF THE INTERCONNECTOR ON THE INTERNAL STRESS OF THE SOLAR CELL WITHIN A MODULE

Thin Film Solar Cells based on CIS

From Space to Earth. CPV Competitive Solar Electricity for the South of Europe and the Sunbelt Region. Dr. Gerhard Strobl Munich, 20 June 2013

LONGTERM EXPERIENCE WITH PV POWER PLANTS IN GERMANY

AUSTENITIC STAINLESS DAMASCENE STEEL

For Touch Panel and LCD Sputtering/PECVD/ Wet Processing

Chapter 1 Introduction to The Semiconductor Industry 2005 VLSI TECH. 1

EMERGING POTENTIAL FOR SOLAR ENERGY

ELG4126: Photovoltaic Materials. Based Partially on Renewable and Efficient Electric Power System, Gilbert M. Masters, Wiely

Improved Contact Formation for Large Area Solar Cells Using the Alternative Seed Layer (ASL) Process

Solar Photovoltaic (PV) Cells

PHOTOVOLTAICS REPORT. Prepared by. Fraunhofer Institute for Solar Energy Systems, ISE with support of PSE AG

Cell-to-Module Gains and Losses in Crystalline Silicon PV. Andrew Gabor Gabor Photovoltaics Consulting, LLC July 10, Intersolar NA

Processi chimici localizzati per il fotovoltaico

Conductivity of silicon can be changed several orders of magnitude by introducing impurity atoms in silicon crystal lattice.

Company Presentation Bosch Solar Energy

FRAUNHOFER INSTITUTE FOR SOLAR ENERGY SYSTEMS ISE

Silicon Dioxide Layer Key to High Efficiency Crystalline Solar Cells

COMPETITIVE SOLAR TECHNOLOGIES

Wafer Manufacturing. Reading Assignments: Plummer, Chap 3.1~3.4

Electroless Nickel / Immersion Gold Process Technology for Improved Ductility of Flex and Rigid-Flex Applications

Characterization and Qualitative Assessment of Silicon Wafers with Photoluminescence Imaging at Room Temperature

Company Presentation. Thalheim June 6, 2009

Long-term performance of photovoltaic modules Artur Skoczek

Light management for photovoltaics. Ando Kuypers, TNO Program manager Solar

Simulation of Embedded Components in PCB Environment and Verification of Board Reliability

Photovoltaic System Technology

Ribbon Silicon for Cost Reduction in Photovoltaics. Advantages and Challenges

Innovative Wafer and Interconnect Technologies - Enabling High Volume Low Cost RFID Solutions

1.Introduction. Introduction. Most of slides come from Semiconductor Manufacturing Technology by Michael Quirk and Julian Serda.

S Tile : a new player in the photovoltaic market in Europe. Press file

Embedding components within PCB substrates

Design qualification and type approval of PV modules

Injection molding equipment

Crystalline Silicon Terrestrial Photovoltaic Cells Supply Chain Procurement Specification Guideline

Growth by the Heat Exchanger Method and Characterization of Multi-crystalline Silicon ingots for PV

High power picosecond lasers enable higher efficiency solar cells.

Unit 6: EXTRUSION. Difficult to form metals like stainless steels, nickel based alloys and high temperature metals can also be extruded.

Update on Elkem Solar. Torgeir Ulset VP Sales & Marketing, Elkem Solar Cleantech Agder

Your Sharp system will be supplied with one of the following sets of panels:

Crystalline Silicon Modules: The Brick Stones for a Photovoltaic Electricity Supply

Sheet metal operations - Bending and related processes

Dry Film Photoresist & Material Solutions for 3D/TSV

Electricity from PV systems how does it work?

c- Si Metrology: Perspec;ves from Across the Supply Chain

Education of Solar Cells at Budapest University of Technology and Economics

Development of High-Speed High-Precision Cooling Plate

Developments in Photoluminescence Characterisation for Silicon PV

LightCab Technology concept International Panel, SAE Congress 2013, 8 th October Jörg Ohlsen, CEO EDAG

APPLICATION OF X-RAY COMPUTED TOMOGRAPHY IN SILICON SOLAR CELLS

Materials Matter For Higher Returns

Package Trends for Mobile Device

FLEXIBLE CIRCUITS MANUFACTURING

Mogelijkheden van grote en flexibele en licht gewichte PV modules van HyET Solar. Edward Hamers and Jos Lenssen

IBS - Ion Beam Services

LECTURE SUMMARY September 30th 2009

As published in PIM International

The different type of photovoltaic systems and their applications

VeMet, Utrecht, NL «Solution in Wear Protection» Dipl.-Ing. Wolfgang Leichnitz. Quit

2 nd Israeli-German Conference on the Commercialization of Future Technologies. Organic Photovoltaics turn a great idea into a great company

Photovoltaic modules - current status, further trends and reliability issue

R&D from material preparation up to next generation manufacturing: opportunities for local companies

Module 3. Solar Photovoltaic. Osamu Iso. Workshop on Renewable Energies November 14-25, 2005 Nadi, Republic of the Fiji Islands

Silicon-On-Glass MEMS. Design. Handbook

Industrial n-type solar cells with >20% cell efficiency

Continuous, Automated Manufacturing of String Ribbon Si PV Modules

GOM Optical Measuring Techniques. Deformation Systems and Applications

Environmental Stress Crack Resistance of Polyethylene Pipe Materials

KALPANA INDUSTRIES LTD. TECHNICAL DATA SHEET

Dual Integration - Verschmelzung von Wafer und Panel Level Technologien

To meet the requirements of demanding new

Dynamic mechanical load testing

Technology Developments Towars Silicon Photonics Integration

h e l p s y o u C O N T R O L

Silicon Drift Detector Product Brochure Update 2013

Der Einfluss thermophysikalischer Daten auf die numerische Simulation von Gießprozessen

Basic Properties and Application of Auto Enamels

Transcription:

SolarInnovativ Thüringen Welcome to SCHOTT Solar Europe's largest producer of PV solar electricity components EFG, ein kostengünstiges Produktionsverfahren für Si-Wafer Dr. Ingo A. Schwirtlich SolarInnovativ Thüringen 25. / 26. Oktober 2006 1

SolarInnovativ Thüringen The SCHOTT Synopsis *! " # $% % % & # 2

AEG Telefunken DASA 50% MBB PST NUKEM 50% 100% NUKEM GmbH ASE GmbH 100% TESSAG 100% RWE Solutions AG RWE Solar GmbH Joint Venture RWE Solutions SCHOTT Glas SCHOTT Solar GmbH RWE SCHOTT Solar GmbH Mobil Tyco Solar Energy Mobil Solar Energy ASE Americas Inc. ASE Americas Inc. RWE SCHOTT Solar Inc. 1960 1970 1980 1990 1994 1996 1999 2001 2002 2005 3

SCHOTT AG SCHOTT Solar Group Employess: ca. 900 world-wide Turnover: ~320 Mio. in 2006 (forecast) SCHOTT Solar GmbH Subsidiaries 100 % SCHOTT Solar, Inc. Billerica (MA) USA Fully integrated production of wafers, cells and modules SCHOTT Solar Inc. Rocklin (CA) USA System integration Sales of modules and systems RWE SCHOTT Solar CR Valasske Mezirici, CR Production of modules Alzenau, Headquarters Fully integrated production of wafers, cells and modules Phototronics (PST) Putzbrunn Production of thin film modules Jena Buildup of a 30 MW production line of ASI thin film modules 4

SmartSolarFab - Alzenau OEM Zellenfertigung Heilbronn, D 5

The Value Chain of the SCHOTT Solar Group Modules Cells Wafer 6

17% 18 % 10 % 25 % 15 % poly Si Wafer Cell Module BOS 24% (15) 26% (25) 14 % (20) 36% (40) 100 % (100) Increasingly important is the industry to produce manufacturing equipment and materials for the whole value chain. 15 % Installation 100 % Today's 2005 Value Added Chain for grid-connected PV Systems (2004 in brackets) 7

Relative Module Manufacturing cost as Function of Efficiency relative module cost (%) 130 120 110 100 90 80 70 mc = 1 EFG = 0.7 mc CZ/Ga = 1.5 mc CZ/B = 1.35 mc 10 12 14 16 18 20 22 24 Efficiency [%] 8

Advantages of ribbon technologies 5 Energy Pay-Back Time [a] 4 3 2 1 BOS frame laminate 0 ribbon S-Eur. ribbon M-Eur. multi S-Eur. multi M-Eur. mono S-Eur. mono M-Eur. From: E. Alsema et al. 20th EUPVSEC 2005 9

Estimated reduction of silicon consumption 16 14 g Si/Wp 12 10 8 15 % EFG 85 % mono / multi - Si mono / multi - Si 6 4 EFG 2 0 2005 2010 2015 2020 2025 Specific feed stock consumption per Wp for different wafer technologies 10

Si - Blockguß 11

Blockguß-Anlage Deutsche Solar Freiberg 12

Silicium - Block Abmessungen: 66 cm x 66 cm Gewicht: ca. 250 kg 13

Säulenherstellung Deutsche Solar Freiberg 14

Drahtsägetechnik slurry & abrasive ingot main drive slave drive wire web Typische Sägeparameter Drahtdurchmesser 150-250 µm Drahtgeschwindigkeit 5-15 m/s Öl- oder Glykol-basierte Slurry SiC Vol. Anteil 30-60% 15

Multikristalline Silicium - Scheiben Multikristalliner Wafer aus dem Blockgußverfahren EFG-Wafer nach dem Folienziehverfahren von SCHOTT 16

SmartSolarFab - Wafer Production EFG-Wafer Production (Edge-defined Film-fed Growth) 17

Productivity Increase and Cost Reduction for c-si Wafers 1990 Actual 2003 1. Step 2. Step 3. Step Long-Term Si-Material Wafer Thickness [µm] 450 300 200 150 100 50 (-83%) EFG-Wafer Tube circumference [dm] 9x0,5 4,5 8x1 8 8x1,25 10 12x1,25 15 12x1,5 18 circle 1,3m 40 Productivity 0,6 1(norm.) 1,2 1,9 2,2 5 Material add-on 2 1 1,2 1,7 2 4 (-20%) Personnel 1,5 1 1 1,1 1,2 1,3 (-74%) Depr/Interest 1,5 1 1 1,1 1,2 1,3 (-74%) 18

EFG history v. Gompertz 1922: Growth of metal wires from a wetted capillary. LaBelle 1971: EFG of sapphire tubes. Ciszek 1972: EFG of silicon ribbons. Taylor 1981: EFG of polygonal silicon tubes (nonagons with 50 mm faces). 19

EFG of silicon octagons Wald 1985 (Mobil Solar Energy): EFG production of silicon octagons with 100 mm faces. RWE SCHOTT Solar 2003: EFG production of silicon octagons with 125 mm faces. 20

Edge-defined film-fed growth (EFG) v s t Crystal thickness t = f(v s, T, h, wetting angles) Fixed: h, wetting angles Control parameters: v s, T melt crystal 1412 C wetting angles T die h melt (T melt ) T 21

EFG crystal growth: schematic Silicon Tube Octagonal Die Molten Silicon Induction Heater 22

125 mm EFG: scales 7 m 0.3 mm 125 mm 23

SOLAR 100 mm and 125 mm octagons Increase of throughput by more than 25 %. No loss of materials quality. No increase of wafer thickness. 0 10 20 30 cm Increase in productivity by growing 125 mm wide faced octagons instead of 100 mm 24

Cutting of tubes by laser for wafer production Several tubes per day and furnace up to 7 m length. Less than 10 % silicon loss at cutting step. Wafers are immediately processed after light etch. 25

6x150mm growth First 150x150mm samples 100x100 125x125 150 x 150 26

EG wafer properties: carrier lifetime distribution As grown lifetimes up to 10 µs. The distribution mainly correlates to dislocation density variations. 27

Access Buckling 28

Advanced process modeling: 3D stress and strain tensile 45 MPa v stress compressive -45 MPa Non-uniform cooling of edges and faces can result in tube deformation during growth. Danger of remaining deformations by residual stress, creep and plastic deformation. interface In collaboration of ACCESS e.v., Aachen 29

Latest stage of development: Dodekagons Oktagon 125 mm Dodekagon 125 mm 30

200 micron thin EFG silicon wafers 31

EFG wafer properties: mechanical strength 100 90 Failure rate [%] 80 70 60 50 40 30 20 10 mc - Si as grown mc - Si damage etched EFG as etched 0 0 100 200 300 400 500 600 700 800 900 1000 1100 Fracture strength [MPa] Biaxial test: fracture strength of 550 MPa (60% failure rate value) for EFG. As-grown surface is free of serious damage. In collaboration with TU Freiberg 32

Wafer breakage? Elaborated crack free edge design and stress free volume is required to minimize breakage of thin wafers. 33

SOLAR EFG wafer properties: wafer edge As cut, 4 min Sirtl etched Standard etched 34

SmartSolarFab - Cell Production EFG-Zelle EFG-Zelle MAIN-Zelle MAIN-Zelle 100 x 100 mm 2 125 x 125 mm 2 100 x 100 mm 2 125 x 125 mm 2 35

Process sequence for the fabrication of EFG solar cells Wafer cleaning P - doping Oxide-etching ARC-deposition Rear side metallisation Front side contact Final inspection Solder pads Al-contact & Firing 36

SmartSolarFab - Module Production High Quality Modules ASE-275-DG-FT 37

SolarInnovativ Thüringen Many thanks for your attention 38