Lecture 10: Dispersion Trading



Similar documents
Average Price Ratios

CHAPTER 2. Time Value of Money 6-1

10.5 Future Value and Present Value of a General Annuity Due

Report 52 Fixed Maturity EUR Industrial Bond Funds

The Time Value of Money

T = 1/freq, T = 2/freq, T = i/freq, T = n (number of cash flows = freq n) are :

FINANCIAL MATHEMATICS 12 MARCH 2014

6.7 Network analysis Introduction. References - Network analysis. Topological analysis

ANOVA Notes Page 1. Analysis of Variance for a One-Way Classification of Data

Banking (Early Repayment of Housing Loans) Order,

STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS. x, where. = y - ˆ " 1

The simple linear Regression Model

IDENTIFICATION OF THE DYNAMICS OF THE GOOGLE S RANKING ALGORITHM. A. Khaki Sedigh, Mehdi Roudaki

FINANCIAL FORMULAE. Amount of One or Future Value of One ($1, 1, 1, etc.) Present Value (or Present Worth) of One ($1, 1, 1, etc.)...

1. The Time Value of Money

Chapter 3. AMORTIZATION OF LOAN. SINKING FUNDS R =

CSSE463: Image Recognition Day 27

APPLYING THE BRINSON-HOOD- BEEBOWER METHOD TO THE RISK SIDE - DECISION-ORIENTED DECOMPOSITION OF EX-ANTE RISK

ANNEX 77 FINANCE MANAGEMENT. (Working material) Chief Actuary Prof. Gaida Pettere BTA INSURANCE COMPANY SE

Beta. A Statistical Analysis of a Stock s Volatility. Courtney Wahlstrom. Iowa State University, Master of School Mathematics. Creative Component

MDM 4U PRACTICE EXAMINATION

Performance Attribution. Methodology Overview

Report 05 Global Fixed Income

Estimating the Spot Covariation of Asset Prices. Statistical Theory and Empirical Evidence SFB E C O N O M I C R I S K B E R L I N

SHAPIRO-WILK TEST FOR NORMALITY WITH KNOWN MEAN

Chapter = 3000 ( ( 1 ) Present Value of an Annuity. Section 4 Present Value of an Annuity; Amortization

Geometric Mean Maximization: Expected, Observed, and Simulated Performance

Preprocess a planar map S. Given a query point p, report the face of S containing p. Goal: O(n)-size data structure that enables O(log n) query time.

ECONOMIC CHOICE OF OPTIMUM FEEDER CABLE CONSIDERING RISK ANALYSIS. University of Brasilia (UnB) and The Brazilian Regulatory Agency (ANEEL), Brazil

Classic Problems at a Glance using the TVM Solver

of the relationship between time and the value of money.

Stock Profit Patterns

Simple Linear Regression

Regression Analysis. 1. Introduction

n. We know that the sum of squares of p independent standard normal variables has a chi square distribution with p degrees of freedom.

Questions? Ask Prof. Herz, General Classification of adsorption

The analysis of annuities relies on the formula for geometric sums: r k = rn+1 1 r 1. (2.1) k=0

Curve Fitting and Solution of Equation

Loss Distribution Generation in Credit Portfolio Modeling

Credibility Premium Calculation in Motor Third-Party Liability Insurance

A NON-PARAMETRIC COPULA ANALYSIS ON ESTIMATING RETURN DISTRIBUTION FOR PORTFOLIO MANAGEMENT: AN APPLICATION WITH THE US AND BRAZILIAN STOCK MARKETS 1

Mathematics of Finance

Web Services Wind Tunnel: On Performance Testing Large-scale Stateful Web Services

How To Value An Annuity

MODELLING OF STOCK PRICES BY THE MARKOV CHAIN MONTE CARLO METHOD

Statistical Pattern Recognition (CE-725) Department of Computer Engineering Sharif University of Technology

Portfolio Loss Distribution

APPENDIX III THE ENVELOPE PROPERTY

Time Value of Money. (1) Calculate future value or present value or annuity? (2) Future value = PV * (1+ i) n

The Gompertz-Makeham distribution. Fredrik Norström. Supervisor: Yuri Belyaev

2 April 2001 ACTIVE TRADER

Geometric Motion Planning and Formation Optimization for a Fleet of Nonholonomic Wheeled Mobile Robots

Abraham Zaks. Technion I.I.T. Haifa ISRAEL. and. University of Haifa, Haifa ISRAEL. Abstract

A COMPARATIVE STUDY BETWEEN POLYCLASS AND MULTICLASS LANGUAGE MODELS

How To Make A Supply Chain System Work

Week 13 Introduction to the Greeks and Portfolio Management:

Application of geographic weighted regression to establish flood-damage functions reflecting spatial variation

Compressive Sensing over Strongly Connected Digraph and Its Application in Traffic Monitoring

Integrating Production Scheduling and Maintenance: Practical Implications

Index Options. James Bittman. Unique Features & Strategies. Senior Instructor The Options Institute at CBOE

Dynamic Two-phase Truncated Rayleigh Model for Release Date Prediction of Software

Three Dimensional Interpolation of Video Signals

Overview of Performance Attribution. Version 2.0 Date: April 2010 Produced by: Dr. Stefan J. Illmer

Basic statistics formulas

Reinsurance and the distribution of term insurance claims

Numerical Methods with MS Excel

Speeding up k-means Clustering by Bootstrap Averaging

Forecasting Trend and Stock Price with Adaptive Extended Kalman Filter Data Fusion

Relaxation Methods for Iterative Solution to Linear Systems of Equations

Time Value of Money. First some technical stuff. HP10B II users

EMERGING MARKETS: STOCK MARKET INVESTING WITH POLITICAL RISK. Ephraim Clark and Radu Tunaru

ON SLANT HELICES AND GENERAL HELICES IN EUCLIDEAN n -SPACE. Yusuf YAYLI 1, Evren ZIPLAR 2. yayli@science.ankara.edu.tr. evrenziplar@yahoo.

Settlement Prediction by Spatial-temporal Random Process

CHAPTER 13. Simple Linear Regression LEARNING OBJECTIVES. USING Sunflowers Apparel

ROULETTE-TOURNAMENT SELECTION FOR SHRIMP DIET FORMULATION PROBLEM

Chapter 5 Unit 1. IET 350 Engineering Economics. Learning Objectives Chapter 5. Learning Objectives Unit 1. Annual Amount and Gradient Functions

α 2 α 1 β 1 ANTISYMMETRIC WAVEFUNCTIONS: SLATER DETERMINANTS (08/24/14)

Lecture 4: Exchange-Traded Funds

Must the growth rate decline? Baumol s unbalanced growth revisited

CALCULATION OF THE VARIANCE IN SURVEYS OF THE ECONOMIC CLIMATE

VALUATION OF AN OIL FIELD USING REAL

Optimal multi-degree reduction of Bézier curves with constraints of endpoints continuity

Efficient Traceback of DoS Attacks using Small Worlds in MANET

Caput Derivatives: October 30, 2003

Transcription:

Lecture 0: Dserso Tradg Marco Avellaeda G63.936.00 Srg Semester 009

What s dserso tradg? Dserso tradg refers to trades whch oe -- sells dex otos ad buys otos o the dex comoets, or -- buys dex otos ad sells otos o the dex comoets All trades are delta-eutral (hedged wth stock) The ackage s mataed delta-eutral over the horzo of the trade Dserso tradg: -- sellg dex volatlty ad buyg volatlty of the dex comoets -- buyg dex volatlty ad sellg volatlty o the dex comoets

Why Dserso Tradg? Motvato: to roft from rce dffereces volatlty markets usg dex otos ad otos o dvdual stocks Oortutes: Market segmetato, temorary shfts correlatos betwee assets, dosycratc ews o dvdual stocks

dex Arbtrage versus Dserso Tradg Stock N * * * * Stock 3 dex dex Arbtrage: Recostruct a dex or ETF usg the comoet stocks Stock Stock Dserso Tradg: Recostruct a dex oto usg otos o the comoet stocks

Ma U.S. dces ad sectors Maor dces: SPX, DJX, NDX SPY, DA, QQQQ (Exchage-Traded Fuds) Sector dces: Semcoductors: SMH, SOX Botech: BBH, BTK Pharmaceutcals: PPH, DRG Facals: BKX, XBD, XLF, RKH Ol & Gas: XNG, XO, OSX Hgh Tech, WWW, Boxes: MSH, HHH, XBD, XC Retal: RTH

S ds S ds Cov S ds Var d Var w S S ds S ds w S w ds d w w S ρ, shares dex umber of tuto Far value relato for volatltes assumg a gve correlato matrx

The trade ctures Sell dex call dex Buy calls o dfferet stocks. Stock Stock Delta-hedge usg dex ad stocks

Proft-loss scearos for a dserso trade a sgle day Scearo Scearo.5.5.5 stadard move 0.5 0-0.5 - stadard move 0.5 0-0.5 - -.5 -.5 - -.5-3 4 5 6 7 8 9 0 3 4 5-3 3 4 5 6 7 8 9 0 3 4 5 stock # stock # Stock P/L: -.30 dex P/L: - 0.0 Total P/L: -.4 Stock P/L: +9.4 dex P/L: - 0. Total P/L: +9.8

Frst aroxmato to the dserso ackage: ``trsc Value Hedge M w S w umber of shares, scaled by ``dvsor' ' K M w K VH: use dex weghts for oto hedge max C ( K,0) w max( S K,0) M (, K, T ) w C ( S, K, T ) M VH: remum from dex s less tha remum from comoets Suer-relcato Makes sese for dee- --the-moey otos

trsc-value Hedgg s `exact oly f stocks are erfectly correlated ( T ) w S ( T ) M ρ N M w Fe N T N stadardzed ormal Solve for X : K Set : max K M Fe w Fe ( ( T ) K,0) w max( S ( T ) K,0) T M X T X T Smlar to Jamshda (989) for rcg bod otos -factor model

VH : Hedge wth ``equal-delta otos ( ) costat Deltas costat log- moeyess costat N l l + d d T K F T X T F K T X Fe K T T X

What haes after you eter a oto trade? Uhedged call oto Hedged oto 35 7 30 6 5 5 0 4 5 3 0 5 0 70 75 80 85 90 95 00 05 0 5 0 5 30 0-70 75 80 85 90 95 00 05 0 5 0 5 30 Proft-loss for a hedged sgle oto osto (Black Scholes) P / L ( ) tme - decay (dollars), + d NV S S t, NV ormalzed Vega C ~ stadardzed move

Gamma P/L for a dex Oto ( ) ( ) ( ) dex P/L dex Gamma P/L M M M M w S w S ρ ρ + Assume 0 d

Gamma P/L for Dserso Trade th stock P/L ( ) DsersoTrade P/L M + ( ) + ( ρ ) dagoal term: realzed sgle-stock movemets vs. mled volatltes off-dagoal term: realzed cross-market movemets vs. mled correlato

Dserso Statstc ( ) ( ) ( ) Θ + Θ + + + Θ Θ + + P/L, D D Y S S X Y X D N N N N N N N N N

Summary of Gamma P/L for Dserso Trade Θ + Gamma P/L D N dosycratc Gamma Dserso Gamma Tme-Decay Examle: ``Pure log dserso (zero dosycratc Gamma): 0 > Θ

30 Payoff fucto for a trade wth short dex/log otos (VH), stocks 5 0 5 30 0 0 5 0 70 75 80 85 90 95 00 05 0 5 0 5 30 0 00 90 80 70 5 0 5 Value fucto (B&S) for the VH osto as a fucto of stock rces ( stocks) 0 5 0 70 75 80 85 90 95 00 05 0 5 0 5 30 70 8 0 30 0 0 0 0 90 geeral: short dex VH s short-gamma alog the dagoal, log-gamma for ``trasversal moves

Gamma Rsk: Negatve exosure for arallel shfts, ostve exosure to trasverse shfts +0.84 0.3 30 5 -.9 0 5 0 05 00 95 30% 40% ρ.5 5.80 0.49 90 85 80 75-6.80 +7.88 70 70 75 80 85 90 95 00 05 0 5 0 5 30

Gamma-Rsk for Baskets.E+06 8.E+05 6.E+05 4.E+05.E+05 0.E+00 -.E+05-4.E+05-6.E+05-8.E+05 -.E+06 -.E+06 ormalzed dserso. 0.3 0.07 0.0 0 0.3 0.06-0.0-0.08-0.5 dex X D D S S N N / Y Y ( X Y ) ( ) X / Y D Dserso, or cross-sectoal move, D/(Y*Y) Normalzed Dserso From realstc ortfolo

Vega Rsk Sestvty to volatlty: erturb all sgle-stock mled volatltes by the same ercet amout Vega P/L M M M Vega + Vega ( NV ) + ( NV ) ( NV ) + ( NV ) NV ormalzed vega V

Market/Volatlty Rsk 70% 80% 90% 00% 0% vol % multler 0% 30% 30 5 0 5 0 05 00 95 90 85 80 75 70 market level 0 9 8 7 6 5 4 3 0 9 8 7 6 5 4 3 0 Market level 30 5 0 5 0 05 00 95 90 85 80 75 70% 70 85% 00% 5% 30% Vol % multler Short Gamma o a erfectly correlated move Mootoe-creasg deedece o volatlty (VH)

``Rega : Sestvty to correlato ( ) ( ) [ ] ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) M M M NV NV + + 0 (0) () (0) () (0) () (0) () Rega Correlato P/L,, ρ ρ ρ ρ ρ ρ ρ ρ

Market/Correlato Sestvty 30 5. 4.8 4.5 4. 3.9 3.6 3.3 3.7.4..8.5. 0.9 0.6 0.3 0-0.3-0. -0. corr chage 0 0. 0. 0.3 70 90 0 30 market level -0.3-0. -0. 0 0. corr chage 0. 5 0 5 0 05 00 market level 95 90 85 80 75 0.3 70 Short Gamma o a erfectly correlated move Mootoe-decreasg deedece o correlato

A model for dserso tradg sgals (takg to accout volatlty skews) Gve a dex (DJX, SPX, NDX) costruct a roxy for the dex wth small resdual. d ds β + ε m k k k Sk (multle regresso) Alteratvely, trucate at a gve catalzato level ad kee the orgal weghts, modelg the remader as a stock w/o otos. Buld a Weghted Mote Carlo smulato for the dyamcs of the m stocks ad value the dex otos wth the model Comare the model values wth the bd/offer values for the dex otos traded the market.

Morga Staley Hgh-Techology 35 dex (MSH) ADP AMAT AMZN AOL BRCM CA CPQ CSCO DELL EDS EMC ERTS FDC HWP BM NTC NTU JDSU JNPR LU MOT MSFT MU NT ORCL PALM PMTC PSFT SLR STM SUNW TLAB TXN XLNX YHOO 35 Uderlyg Stocks Equal-dollar weghted dex, adusted aually Each stock has tycally O(30) otos over a yr horzo

Test roblem: 35 tech stocks Prce otos o basket of 35 stocks uderlyg the MSH dex Number of costrats: 876 Number of aths: 0,000 to 30,000 aths Otmzato techque: Quas-Newto method (exlct gradet)

OtoNameStockT ckerexdate Strke Tye trsc Bd Ask Volume Oeterest StockPrceQuoteDate ZQN AC-E AMZN /0/0 5 Call 0 4.5 4.375 3 3058 6.6875 /0/00 ZQN AT-E AMZN /0/0 6.75 Call 0 3.5 3.375 0 3 6.6875 /0/00 ZQN AO-E AMZN /0/0 7.5 Call 0.875 3.5 0 0 6.6875 /0/00 ZQN AU-E AMZN /0/0 8.375 Call 0.65.875 0 338 6.6875 /0/00 ZQN AD-E AMZN /0/0 0 Call 0.9375.5 3 5568 6.6875 /0/00 ZQN BC-E AMZN /7/0 5 Call 0 5.5 5.65 30 0 6.6875 /0/00 ZQN BO-E AMZN /7/0 7.5 Call 0 4 4.375 0 0 6.6875 /0/00 ZQN BD-E AMZN /7/0 0 Call 0 3.5 3.5 0 50 6.6875 /0/00 ZQN DC-E AMZN 4//0 5 Call 0 5.875 6.375 0 639 6.6875 /0/00 ZQN DO-E AMZN 4//0 7.5 Call 0 5 5.375 0 68 6.6875 /0/00 ZQN DD-E AMZN 4//0 0 Call 0 3.875 4.5 5 877 6.6875 /0/00 ZQN DS-E AMZN 4//0.5 Call 0 3.5 3.375 0 34 6.6875 /0/00 ZQN GC-E AMZN 7//0 5 Call 0 6.875 7.375 0 34 6.6875 /0/00 ZQN GO-E AMZN 7//0 7.5 Call 0 5.65 6.5 0 63 6.6875 /0/00 ZQN GD-E AMZN 7//0 0 Call 0 4.875 5.5 5 5 6.6875 /0/00 ZQN GS-E AMZN 7//0.5 Call 0 4.5 4.5 0 80 6.6875 /0/00 ZQN GE-E AMZN 7//0 5 Call 0 3.5 3.875 65 79 6.6875 /0/00 AOE AZ-E AOL /0/0 3.5 Call 0 6.6 7 0 97 37.5 /0/00 AOE AO-E AOL /0/0 33.75 Call 0 5.6 6 0 596 37.5 /0/00 AOE AG-E AOL /0/0 35 Call 0 4.7 5. 53 5733 37.5 /0/00 AOE AU-E AOL /0/0 37.5 Call 0 3.4 3.7 3 386 37.5 /0/00 AOE AH-E AOL /0/0 40 Call 0.5.7 9 995 37.5 /0/00 AOE AR-E AOL /0/0 4.5 Call 0.3 6 7 37.5 /0/00 AOE AV-E AOL /0/0 4.5 Call 0.65.85 9 443 37.5 /0/00 AOE AS-E AOL /0/0 43.75 Call 0.3.5 44 369 37.5 /0/00 AOE A-E AOL /0/0 45 Call 0..5 87 3 37.5 /0/00 AOE BZ-E AOL /7/0 3.5 Call 0 7 7.4 0 0 37.5 /0/00 AOE BG-E AOL /7/0 35 Call 0 5.4 5.8 3 4 37.5 /0/00 AOE BU-E AOL /7/0 37.5 Call 0 4. 4.5 0 0 37.5 /0/00 Fragmet of data for AOE BH-E AOL /7/0 40 Call 0 3. 3.4 99 48 37.5 /0/00 AOE BV-E AOL /7/0 4.5 Call 0.5 calbrato.45 wth 9 876 66costrats 37.5 /0/00 AOE B-E AOL /7/0 45 Call 0.55.75 35 385 37.5 /0/00 AOE DZ-E AOL 4//0 3.5 Call 0 8.4 8.8 6 0 37.5 /0/00 AOE DG-E AOL 4//0 35 Call 0 6.9 7.3 3 79 37.5 /0/00 AOE DU-E AOL 4//0 37.5 Call 0 5.5 5.9 36 00 37.5 /0/00 AOE DH-E AOL 4//0 40 Call 0 4.5 4.9 64 64 37.5 /0/00 AOE DV-E AOL 4//0 4.5 Call 0 3.6 3.9 09 63 37.5 /0/00 AOE D-E AOL 4//0 45 Call 0.9 3. 45 3384 37.5 /0/00 AOE DW-E AOL 4//0 47.5 Call 0.5.45 37 74 37.5 /0/00 AOO DJ-E AOL 4//0 50 Call 0.75.95 4 7856 37.5 /0/00 AOE GZ-E AOL 7//0 3.5 Call 0 9.4 9.8 0 0 37.5 /0/00

Near-moth otos (Prcg Date: Dec 000) MSH Basket oto: model vs. market Frot Moth mled vol 80 78 76 74 7 70 68 66 64 6 60 600 60 60 630 640 650 660 670 680 690 700 strke model mdmarket bd offer

Secod-moth otos Basket oto: model vs. market mled vol 70 68 66 64 6 60 58 56 54 5 50 600 60 640 660 680 700 strke model mdmarket bd offer

Thrd-moth otos Basket oto: model vs. market 70 65 mled vol 60 55 model mdmarket bd offer 50 45 600 640 680 70 760 strke

Sx-moth otos Basket oto: model vs. market 60 55 mled vol 50 45 model mdmarket bd offer 40 35 600 640 680 70 760 840 strke

Broad Market dex Otos (OEX) Prcg Date: Oct 9, 00 ---- Bd Prce ---- Ask Prce ---- Model Far Value Skew Grah 40.00 35.00 30.00 Volatlty 5.00 0.00 5.00 0.00 5.00 0.00 500 50 50 530 540 550 555 560 565 570 580 Strke Prce

Hedgg Coverg the ``wgs every ame mles a excess Vega rsk. trsc Value Hedge mles log Volatlty Use the WMC sestvty method (regressos) to determe the best sgle co-termal oto to use for each comoet. mlemet a Theta-Neutral hedge usg the most mortat ames wth the corresodg Betas.

Smulato for OEX Grou: $0MM/ Targetg % daly stdev SGNALSTRENGTH > threshold 080 trades OEX 00 00 003 00-003 turover tme 60 days aualzed retur $4,39,794 $3,09,05 $,339,77 $,966,986 ercetage 4.40 30.9 3.40 9.67 Share Rato.83.0 0.89.98 Costat-VaR ortfolo (% stdev er day) Catal s allocated evely amog sgals Trasacto costs otos/ stock tradg cluded

avr-04 set-03 00 90 80 70 60 50 40 30 0 0 0 Dserso OEX (retur o $00) févr-0 août-0 mars-03 Results of Back-testg sgal realzed ul-0 déc-00 $-retur

Smulato for QQQ grou $0MM wth % target daly stdev sgal >threshold trades 96 QQQ 00 00 003 00-003 turover tme 76 aualzed retur -$,369,46 $,078,54 $5,339,45 $,533,4 ercetage -3.69 0.79 53.39 5.33 Share Rato -0.9 0.7 3.56.0

QQQ, retur o $00 0 00 80 $ -re tu r 60 40 sgal realzed 0 0 set-0 déc-0 avr-0 ul-0 oct-0 av-03 ma-03 août-03 ov-03 mars-04-0

0 8 6 4 0 8 6 4 0 QQQ; umber of sgals QQQ août-03 oct-03 u-03 avr-03 févr-03 a v-0 févr-03 avr-0 u-0 août-0 oct-0 déc-0 ov-0 set-0 ul-0 ma-0 sgals er day

Smulato for QQQ+OEX $0MM wth % daly stdev QQQ + OEX 00 00 003 00-003 turover tme 65 aualzed retur $3 054 673 $ 878 56 $ 64 803 $ 67 645 ercetage 30.5 8.8.6 6.7 Share Rato.9.8.4.7

OEX + QQQ, retur o $00 0.00 00.00 80.00 $-retur 60.00 40.00 0.00 sgal realzed 0.00 févr-0 set-0 avr-0 oct-0 ma-03 ov-03 u-04 cludes T.C., otos ad stock tradg

Dserso Caacty Estmate USD 0 MM ~ 00 OEX cotracts er day f we assume 000 cotracts to be a lqudty lmt, caacty s 00 MM ust for OEX Caacty s robably aroud 00 MM f we use sectors ad Euroe Dserso has hgher Share Rato: t s a arb strategy based o watg for roft oortutes