MODELLING OF STOCK PRICES BY THE MARKOV CHAIN MONTE CARLO METHOD
|
|
|
- Hilary Glenn
- 9 years ago
- Views:
Transcription
1 ISSN 8-80 (prt) ISSN (ole) INTELEKTINĖ EKONOMIKA INTELLECTUAL ECONOMICS 0, Vol. 5, No. (0), p MODELLING OF STOCK PRICES BY THE MARKOV CHAIN MONTE CARLO METHOD Matas LANDAUSKAS Kauas Uversty of Techology, Faculty of Fudametal Sceces Studetų 50, LT Kauas, Lthuaa [email protected] Emuts VALAKEVIČIUS Kauas Uversty of Techology, Faculty of Fudametal Sceces Studetų 50, LT Kauas, Lthuaa [email protected] Abstract. Ths paper presets a uversal approach to modellg stock prces. The techque volves Markov Cha Mote Carlo (MCMC) samplg from pecewse-uform dstrbuto. Today s facal models are based o assumptos whch make them adequate may cases. Oe of the most mportat ssues s determg the dstrbuto of a stock prce, ts retur or other facal mea. The approach proposed ths paper removes almost all presumptos from a dstrbuto of a stock prce. The probablty desty must be evaluated usg some oparametrc estmates. The kerel desty estmate (KDE) suts well for that purpose. It gves a smooth ad presetable estmate. MCMC was chose due to ts versatlty ad s appled to KDE usg pecewse-lear dstrbuto as proposal desty. The proposal desty s costructed accordg to the KDE. Such lk betwee the pecewse-lear dstrbuto s smplcty ad relatve massveess of KDE balaces together. Ivolvg the kerel desty estmate ad the methodology to sample from t makes the techque uversal for modellg ay real stochastc system whle havg emprcal data oly ad barely ay assumptos about the dstrbuto of t. JEL classfcato: C0, C5, C46, C65. Keywords: Stock prces, Markov cha, Mote Carlo method, MCMC, kerel desty, pecewse-lear dstrbuto. Rekšma žodža: Akcjų kaos, Markovo gradė, Mote Karlo metodas, braduols taks, dalms tolyguss skrstys.
2 Modellg of Stock Prces by the Markov Cha Mote Carlo Method 45 Itroducto Classcal model of stock prces has some assumptos about facal data. It caot be appled to model the stock prce havg returs whch are ot log ormally dstrbuted. There are several approaches to model dffcult quattes, but they specalze dfferet areas. The purpose of ths paper s to preset a uversal techque for modellg stock prces. Ths techque cossts of specal umercal methods ad s sutable for ay emprcal data. The Markov cha Mote Carlo method s used to sample from emprcal probablty desty of a stock prce. The techque s flexble ad requres just the ablty to calculate probablty at ay gve pot. Furthermore, MCMC was successfully appled to oe-factor models for the terest rate (B. Eraker, 00). Ths also acts as the reasog for choosg t for ths approach of modellg stock prces. It s also eeded to approxmately evaluate emprcal probablty desty. Ths s performed usg kerel desty estmato. The lk betwee these two methods s cosdered ad ths leads to apply t o every facal data.. Mote Carlo Modellg of Stock Prces The process of a stock prce s treated as a Browa moto. Thus ts value satsfes the equato: (.) Cosder a facal mea wth log ormally dstrbuted returs. The radom walk of prce of such a facal mea s modeled accordg ths formula (P. Wlmott, 007): S ( t + Δt) = S() t e δ σ Δt+ σ ΔtZ. (.) Z follows stadard ormal dstrbuto, δ s aual rsk free retur ad σ s aual stadard devato of the logarthm of a stock prce. Here radom value ~ N( 0,). Markov cha Mote Carlo (MCMC) Suppose t s eeded to geerate x ~ π() x. Whe x ~ π() x s dffcult to sample from, MCMC samplg techque could be performed. I fact MCMC s a set of techques used for ths purpose. The ma dea of t s to costruct a Markov cha { X } =0, such that ( X = x) = π( x) lm P. (.)
3 46 Matas LANDAUSKAS, Emuts VALAKEVIČIUS A Markov cha s predefed by a tal state P ( X 0 = x0 ) = g( x0 ) ad the tra- P y x = P X + = y X x. Statoary dstrbuto π () x = lm f ( x ) sto kerel ( ) ( ) = s uque f the cha s ergodc. The: () y = π()( x P y x) x Ω π, y Ω. (.) Latter equalty could be rewrtte as a set of ( ) lear equatos: π... π ( x ) = π( x ) P( x x ) + π( x ) P( x x ) π( x ) P( x x ); ( x ) = π( x ) P( x x ) + π( x ) P( x x ) π( x ) P( x x ); (.3) ) equatos ad ( ) here := Ω. There are a total umber of ( trasto probabltes P ( x j x k ), k =,, j =,. Thus there exst a fte umber of trasto kerels P ( y x), such that the statoary dstrbuto of the Markov cha s π () x. Oe of the techques used for costructg such a trasto kerel s Metropols- Hastgs algorthm (J.S. Dagpuar, 007). The dea of t s to choose ay other tras- y x y x P y x. to kerel Q ( ). The there exsts a probablty that Q ( ) s equal to ( ) (.4) Cosderg the detaled balace codto of a tme-homogeeous Markov cha yelds: (.5) The geeral soluto for (.5) s. It s ecessary to have a hgher acceptace rato whe samplg radom umbers, therefore by adjustg r ( x, y) ad cosderg hgher acceptace rato whle samplg radom umbers (V. Prokaj, 009) t s show that: ()( y Q x y) ()( x Q y x) π α ( y x) = m,. (.6) π 3. Noparametrc probablty desty estmato Cosder a sample cosstg of radom depedet ad detcally dstrbuted values X. Kerel desty estmate s chose for evaluate the probablty desty of X. fˆ x () x = K h( x X ), K h () x = K, (3.) = h h K s the kerel fucto, h s ts wdth. here ()
4 Modellg of Stock Prces by the Markov Cha Mote Carlo Method 47 (3.) Below are some kerel fuctos that are frequetly used. The tragular kerel fucto s useful f the data has sharp edged dstrbuto. Gaussa kerel makes the estmate s PDF plot very smooth. x, x, K () x = (tragular), (3.3) 0, x >. (Yapachkov), (3.4) K x () x = e π (Gauss). (3.5) Bascally, such probablty desty estmato s about assgg kerel desty to each X ad cludg weghted sum of all other assgatos. The cotrbuto of ay other X to the probablty value at X s smaller f X X s bgger. j j Fg.. Kerel desty estmato. Fgure shows the probablty desty estmato from 5 gve pots whle applyg Gaussa kerel. The estmate s absolutely smooth. The oly drawback of such
5 48 Matas LANDAUSKAS, Emuts VALAKEVIČIUS estmato s the ecessty of usg all the pots from the sample whle evaluatg the probablty at a partcular pot. 4. A New Approach to Modellg Stock Prces 4.. Evaluato of Dstrbuto Fucto Ths chapter presets the approach to model stock prces or ay other statstcal data (the method s uversal eough) wthout kowg aalytcal probablty desty fucto. Frst of all kerel desty estmato must be performed ad costruct a estmate to the retur of a stock prce. At ths pot there could be a dscusso f ths estmate s accurate, but t s assumed to be exact. Ad there s o eed to look for aalytcal fuctos whch best ft a partcular case. It s ot ecessary to thk about the shape at all, t forms tself accordg the data. The oly questo s the wdth of the kerel fucto. 4.. Specal techque for costructg a proposal desty The target probablty desty s ow costructed. I order to model t a specal techque s requred, because there are o verse cumulatve desty fucto or oe caot represet the estmate usg kow aalytcal PDF s. MCMC s a soluto but t could ot be appled drectly to the PDF estmate metoed before. Probably the bggest advatage of MCMC s the ablty to geerate requred desty usg the proposal desty, whch should be smlar shape to target desty. No other requremets to proposal desty. Thus the complexty of proposal desty s as smple as t s eeded. Cosder a hstogram, whch s relatvely fast ad smple o-parametrc estmate for target desty. It s possble to use t as proposal desty therefore. But the assumpto about target desty ot beg dscrete must be take md, there are o set of values to costruct a hstogram from. The dea of the techque preseted ths paper s to costruct a pecewse-uform dstrbuto accordg to the kerel desty estmate. A pecewse-uform dstrbuto s defed eq. (4..). Fg.. Proposal desty as a pecewse-lear probablty dstrbuto.
6 Modellg of Stock Prces by the Markov Cha Mote Carlo Method 49 (4..) The area below the probablty desty fucto must be equal to, thus: q = x x 0. (4..) Ths dstrbuto s treated as a proposal desty. Geeratg radom umbers from ths dstrbuto s fast ad smple. Fg. 3. Geeratg radom umbers usg verse CDF. Samplg from q () x requres applcato of a search procedure. Frstly a u ~ U( 0;) s draw. The t s requred to fd the terval ( x ], =,, to whch u belogs, x to. Sce the umber of tervals s gog to be small, ths step does ot requre may calculato steps. The u s mapped to x accordg to the CDF of q () x lke fgure 3. CDF of q () x s obtaed by calculatg the area below target desty each of the tervals. Usg q () x as the proposal desty ad kerel desty estmate as a target dstrbuto mples radom values x havg dstrbuto equal to fˆ () x. It must be oted that acceptace rato for x s ow ()() y q x ()() x q y ( ) fˆ α y x = m,. (4..3) fˆ
7 50 Matas LANDAUSKAS, Emuts VALAKEVIČIUS The samplg techque s called the depedece Metropols-Hastgs whe q ( x y) = q() x. The depedece sampler has oe sgfcat advatage compared to tradtoal Metropols-Hastgs: the sequece { x } has o memory effect. Each radom value accepted smulato process does ot deped o prevous value. Thus there s o mportace what was x 0 geerated. A bref descrpto of Metropols- Hastgs techques could be foud (M. Johaes, 006). 5. Calbrato of the model Every model should gve adequate results ad compare to other kow models or techques. Makg the model hold ths s called a calbrato. I ths case, the ew techque for modellg stock prces must gve smlar results as tradtoal Mote Carlo f stock returs are log ormally dstrbuted. Aga the hypotheses about the ormalty of the logarthms of the stock returs are gog to be tested. Fg. 4. Yahoo! Ic. hstorcal share prces. Yahoo! Ic. (YHOO) share prces from to were chose for performg the calbrato. Hstorcal share prces are depcted fgure 4. By performg the Kolmogorov-Smrov test o the logarthms of the prces returs p = ad D = were obtaed. D < p shows that the logarthms are ormally dstrbuted ad leads data to be sutable for classcal stock prce model.
8 Modellg of Stock Prces by the Markov Cha Mote Carlo Method 5 Fg. 5. Classcal Mote Carlo modellg versus MCMC approach. 00 trajectores (fgure 5) were modeled for each techque. Accordg the classcal Mote Carlo approach the mea value of a prce after 50 days wll be 8.08 $. The ewly proposed techque gave t 8.0 $ per share. Ths s actually expected, because the tred was cosdered. Fg. 6. Comparg Mote Carlo ad MCMC results. I fgure 6 the hstograms of classcal Mote Carlo ad MCMC are compared. They represet the dstrbuto of stock prces at the ed of the modellg process. The modellg process cotaed 000 paths of a stock prce ad smulated 00 days. Thus t requred radom stock returs to be performed.
9 5 Matas LANDAUSKAS, Emuts VALAKEVIČIUS Fg. 7. Dffereces betwee the Mote Carlo ad MCMC results. The bggest dfferece betwee the two hstograms exsts at about mea value. The tals match better. Classcal Mote Carlo coverges to stock prce dstrbuto whe the umber of paths s creasg; the method proposed ths paper should also. Checkg f the ew method matches Mote Carlo s equvalet to checkg f t coverges to the dstrbuto of a stock prce. Whle evaluatg the dfferece betwee two probablty destes ofte a tegral of a absolute value of ther dfferece s used. Now cosder a estmate: (5.) ad umber of bars ad s the hstograms of a stock prce at the ed of the modellg, m s X represets the ceter pot of the j -th bar. j Table. Dffereces betwee the hstograms of the stock prces modeled by Mote Carlo ad MCMC No. of bars g() x 3 No. of trajectores No. of radom values Table shows how chages f the umber of a stock prce paths N creases. The bgger N the more Mote Carlo ad MCMC results are alke. MCMC proved to be sutable for modellg stock prces. The umber of bars g () x s equal to a questo of peaks ad dstace betwee them target dstrbuto. Sce the returs of stock prces have a dstrbuto smlar
10 Modellg of Stock Prces by the Markov Cha Mote Carlo Method 53 shape to ormal dstrbuto, g () x should have a small odd umber of bars order to best match the target dstrbuto. Table. Dffereces betwee the hstograms of the stock prces modeled by Mote Carlo ad MCMC No. of bars g() x 5 No. of trajectores No. of radom values As the table shows choosg 5 bars proposal desty results more precse dstrbuto of stock prces. Accuracy creases but the calculato tme s hgher also. Ths s due to more calculato steps requred to fd the terval of g () x to whch a partcular radom umber belogs to. 6. Modellg stock prces Here s a example whe classcal Mote Carlo method caot be appled to model stock prces. Fg. 8. Dstrbuto of ormalzed logarthms of cotuous day returs. The hstogram of ormalzed logarthms of cotuous day returs R of Tesco Corporato (TESO) s depcted fgure 8. Although the hypothess of ormalty s accepted, there exst two peaks. If oe s cofdet about the shape of hstogram, the assumpto of ormalty should be rejected ad stadard Mote Carlo caot be appled.
11 54 Matas LANDAUSKAS, Emuts VALAKEVIČIUS Fg. 9. Forecastg the stock prces. S S Costructg kerel desty estmate for r = usg Gaussa kerel S fucto also gves PDF wth peaks (fgure 9). MCMC wth pecewse-lear dstrbuto as a proposal desty was appled to ths PDF. Fg. 0. Forecastg TSO stock prces. Average share prce after 50 days resulted $4.75. All the prces geerated are dstrbuted accordg kerel desty estmate. Samplg s based etrely o emprcal data ad has o assumptos about PDF. 7. Coclusos. Whle estmatg the probablty desty of a custom stock retur wth kerel desty, each retur the sample s cosdered.. Proposed techque for modellg stock prces leads for average path of the stock prce havg small dsperso. The same holds for the Mote Carlo method.
12 Modellg of Stock Prces by the Markov Cha Mote Carlo Method The hgher umber of tervals used for costructg pecewse-uform probablty desty leads to better accuracy of dstrbuto modeled, but requres more tme to perform the method. 4. Combg MCMC wth kerel desty estmate leads the techque for beg able to model ay real system. Thus emprcal probablty desty s costructed usg partcular statstcal formato. Ths could be value of a facal mea, product qualty measures ad so o. Thus the techque s uversal. Refereces. B. Eraker. MCMC Aalyss of dffuso models wth applcatos to face. Joural of Busess ad Ecoomc Statstcs, vol. 9, pp. 77-9, 00.. J. S. Dagpuar. Smulato ad Mote Carlo. Joh Wlley & Sos Ltd., Great Brta, Chppeham, Wlltshre, M. Johaes, N. Polso. MCMC Methods for Cotuous-Tme Facal Ecoometrcs, 006. < 4. P. Wlmott. ItroducesQuattatve Face, ed. JohWlley& Sos Ltd., V. Prokaj. Proposal selecto for mcmc smulato. Appled Stochastc Models ad Data Aalyss, pp. 6 65, 009. AKCIJŲ KAINŲ MODELIAVIMAS MARKOVO GRANDINĖS MONTEKARLO METODU Matas Ladauskas Emuts Valakevčus Satrauka. Strapsyje prstatoma uversal akcjų kaų modelavmo techka. Š techka paremta Markovo gradų Mote Karlo (MCMC) metodo takymu modeluojat dalms tolygųjį skrstį. Dabarta fasų rkų modela paremt preladoms, kuros daža juos verča eadekvačas. Vea ddžausų problemų yra akcjos kaos, jos grąžos ar bet kokos ktos fasės premoės passkrstymo dėso ustatymas. Šame strapsyje pasūlytas požūrs pašala praktška vsas preladas ape akcjos kaos passkrstymą. Toku atveju passkrstymo dėss tur būt įverttas eparametru būdu. Braduols tkmybo tako įvertmas šam tkslu puka tka. Js sudaro glotų r reprezetatyvų tako įvertį. MCMC buvo pasrktas dėl ddelo prtakomumo r yra takomas braduolam tako įverču su dalms tolyguoju skrstu kap alteratyvu (aproksmuojaču) taku. Alteratyvus taks kostruojamas pagal braduolį įvertį. Toks dalms tolygojo skrsto paprastumo r satyka aukšto braduolo tako įverčo sudėtgumo skačavmo prasme apjugmas sukura balasą tarp šų metodų. Naudojat braduolį akcjos kaos passkrstymo įvertmą r šame strapsyje sūlomą jo modelavmą padaro patektą techką uversalą. J tampa tkama bet koka reala stochaste sstema turt tk jos emprus duomes r bevek jokų preladų ape jų passkrstymą.
13 56 Matas LANDAUSKAS, Emuts VALAKEVIČIUS Matas Ladauskas s a postgraduate studet appled mathematcs at Faculty of Fudametal Sceces, Kauas Uversty of Techology. Master s degree research area: modellg of stochastc systems by MCMC method. Matas Ladauskas - Kauo techologjos uversteto Fudametalųjų mokslų fakulteto takomosos matematkos magstratas. Magstro darbo tyrmų tematka: stochastų sstemų modelavmas takat MCMC metodą. Emuts Valakevčus Doctor, Assocated professor. Faculty of Fudametal Sceces, Kauas Uversty of Techology. Dploma Appled mathematcs, VU (978), PhD (989), Assocated Professor (99), Head of Departmet of Mathematcal Research Systems (997-00). Author of more tha 70 publcatos (moograph, textbooks, research results, study gudes ad projects). Research terests: modelg of stochastc systems, umercal modelg of facal markets. Emuts Valakevčus Kauo techologjos uversteto Fudametalųjų mokslų fakulteto Matematės sstemotyros katedros docetas, daktaras. 978 m. bagė VU takomosos matematkos specalybę, 989 m. įgjo daktaro lapsį, m. vadovavo matematės sstemotyros katedra. Paskelbė vrš 75 publkacjų. Mokslų teresų srts stochastų sstemų be fasų rkų modelavmas.
IDENTIFICATION OF THE DYNAMICS OF THE GOOGLE S RANKING ALGORITHM. A. Khaki Sedigh, Mehdi Roudaki
IDENIFICAION OF HE DYNAMICS OF HE GOOGLE S RANKING ALGORIHM A. Khak Sedgh, Mehd Roudak Cotrol Dvso, Departmet of Electrcal Egeerg, K.N.oos Uversty of echology P. O. Box: 16315-1355, ehra, Ira [email protected],
SHAPIRO-WILK TEST FOR NORMALITY WITH KNOWN MEAN
SHAPIRO-WILK TEST FOR NORMALITY WITH KNOWN MEAN Wojcech Zelńsk Departmet of Ecoometrcs ad Statstcs Warsaw Uversty of Lfe Sceces Nowoursyowska 66, -787 Warszawa e-mal: wojtekzelsk@statystykafo Zofa Hausz,
STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS. x, where. = y - ˆ " 1
STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS Recall Assumpto E(Y x) η 0 + η x (lear codtoal mea fucto) Data (x, y ), (x 2, y 2 ),, (x, y ) Least squares estmator ˆ E (Y x) ˆ " 0 + ˆ " x, where ˆ
1. The Time Value of Money
Corporate Face [00-0345]. The Tme Value of Moey. Compoudg ad Dscoutg Captalzato (compoudg, fdg future values) s a process of movg a value forward tme. It yelds the future value gve the relevat compoudg
The Gompertz-Makeham distribution. Fredrik Norström. Supervisor: Yuri Belyaev
The Gompertz-Makeham dstrbuto by Fredrk Norström Master s thess Mathematcal Statstcs, Umeå Uversty, 997 Supervsor: Yur Belyaev Abstract Ths work s about the Gompertz-Makeham dstrbuto. The dstrbuto has
APPENDIX III THE ENVELOPE PROPERTY
Apped III APPENDIX III THE ENVELOPE PROPERTY Optmzato mposes a very strog structure o the problem cosdered Ths s the reaso why eoclasscal ecoomcs whch assumes optmzg behavour has bee the most successful
Average Price Ratios
Average Prce Ratos Morgstar Methodology Paper August 3, 2005 2005 Morgstar, Ic. All rghts reserved. The formato ths documet s the property of Morgstar, Ic. Reproducto or trascrpto by ay meas, whole or
ANOVA Notes Page 1. Analysis of Variance for a One-Way Classification of Data
ANOVA Notes Page Aalss of Varace for a Oe-Wa Classfcato of Data Cosder a sgle factor or treatmet doe at levels (e, there are,, 3, dfferet varatos o the prescrbed treatmet) Wth a gve treatmet level there
Abraham Zaks. Technion I.I.T. Haifa ISRAEL. and. University of Haifa, Haifa ISRAEL. Abstract
Preset Value of Autes Uder Radom Rates of Iterest By Abraham Zas Techo I.I.T. Hafa ISRAEL ad Uversty of Hafa, Hafa ISRAEL Abstract Some attempts were made to evaluate the future value (FV) of the expected
Settlement Prediction by Spatial-temporal Random Process
Safety, Relablty ad Rs of Structures, Ifrastructures ad Egeerg Systems Furuta, Fragopol & Shozua (eds Taylor & Fracs Group, Lodo, ISBN 978---77- Settlemet Predcto by Spatal-temporal Radom Process P. Rugbaapha
6.7 Network analysis. 6.7.1 Introduction. References - Network analysis. Topological analysis
6.7 Network aalyss Le data that explctly store topologcal formato are called etwork data. Besdes spatal operatos, several methods of spatal aalyss are applcable to etwork data. Fgure: Network data Refereces
ADAPTATION OF SHAPIRO-WILK TEST TO THE CASE OF KNOWN MEAN
Colloquum Bometrcum 4 ADAPTATION OF SHAPIRO-WILK TEST TO THE CASE OF KNOWN MEAN Zofa Hausz, Joaa Tarasńska Departmet of Appled Mathematcs ad Computer Scece Uversty of Lfe Sceces Lubl Akademcka 3, -95 Lubl
Statistical Pattern Recognition (CE-725) Department of Computer Engineering Sharif University of Technology
I The Name of God, The Compassoate, The ercful Name: Problems' eys Studet ID#:. Statstcal Patter Recogto (CE-725) Departmet of Computer Egeerg Sharf Uversty of Techology Fal Exam Soluto - Sprg 202 (50
Numerical Methods with MS Excel
TMME, vol4, o.1, p.84 Numercal Methods wth MS Excel M. El-Gebely & B. Yushau 1 Departmet of Mathematcal Sceces Kg Fahd Uversty of Petroleum & Merals. Dhahra, Saud Araba. Abstract: I ths ote we show how
CHAPTER 2. Time Value of Money 6-1
CHAPTER 2 Tme Value of Moey 6- Tme Value of Moey (TVM) Tme Les Future value & Preset value Rates of retur Autes & Perpetutes Ueve cash Flow Streams Amortzato 6-2 Tme les 0 2 3 % CF 0 CF CF 2 CF 3 Show
Chapter 3. AMORTIZATION OF LOAN. SINKING FUNDS R =
Chapter 3. AMORTIZATION OF LOAN. SINKING FUNDS Objectves of the Topc: Beg able to formalse ad solve practcal ad mathematcal problems, whch the subjects of loa amortsato ad maagemet of cumulatve fuds are
Credibility Premium Calculation in Motor Third-Party Liability Insurance
Advaces Mathematcal ad Computatoal Methods Credblty remum Calculato Motor Thrd-arty Lablty Isurace BOHA LIA, JAA KUBAOVÁ epartmet of Mathematcs ad Quattatve Methods Uversty of ardubce Studetská 95, 53
T = 1/freq, T = 2/freq, T = i/freq, T = n (number of cash flows = freq n) are :
Bullets bods Let s descrbe frst a fxed rate bod wthout amortzg a more geeral way : Let s ote : C the aual fxed rate t s a percetage N the otoal freq ( 2 4 ) the umber of coupo per year R the redempto of
ECONOMIC CHOICE OF OPTIMUM FEEDER CABLE CONSIDERING RISK ANALYSIS. University of Brasilia (UnB) and The Brazilian Regulatory Agency (ANEEL), Brazil
ECONOMIC CHOICE OF OPTIMUM FEEDER CABE CONSIDERING RISK ANAYSIS I Camargo, F Fgueredo, M De Olvera Uversty of Brasla (UB) ad The Brazla Regulatory Agecy (ANEE), Brazl The choce of the approprate cable
A New Bayesian Network Method for Computing Bottom Event's Structural Importance Degree using Jointree
, pp.277-288 http://dx.do.org/10.14257/juesst.2015.8.1.25 A New Bayesa Network Method for Computg Bottom Evet's Structural Importace Degree usg Jotree Wag Yao ad Su Q School of Aeroautcs, Northwester Polytechcal
Chapter Eight. f : R R
Chapter Eght f : R R 8. Itroducto We shall ow tur our atteto to the very mportat specal case of fuctos that are real, or scalar, valued. These are sometmes called scalar felds. I the very, but mportat,
Classic Problems at a Glance using the TVM Solver
C H A P T E R 2 Classc Problems at a Glace usg the TVM Solver The table below llustrates the most commo types of classc face problems. The formulas are gve for each calculato. A bref troducto to usg the
RUSSIAN ROULETTE AND PARTICLE SPLITTING
RUSSAN ROULETTE AND PARTCLE SPLTTNG M. Ragheb 3/7/203 NTRODUCTON To stuatos are ecoutered partcle trasport smulatos:. a multplyg medum, a partcle such as a eutro a cosmc ray partcle or a photo may geerate
ROULETTE-TOURNAMENT SELECTION FOR SHRIMP DIET FORMULATION PROBLEM
28-30 August, 2013 Sarawak, Malaysa. Uverst Utara Malaysa (http://www.uum.edu.my ) ROULETTE-TOURNAMENT SELECTION FOR SHRIMP DIET FORMULATION PROBLEM Rosshary Abd. Rahma 1 ad Razam Raml 2 1,2 Uverst Utara
An Approach to Evaluating the Computer Network Security with Hesitant Fuzzy Information
A Approach to Evaluatg the Computer Network Securty wth Hestat Fuzzy Iformato Jafeg Dog A Approach to Evaluatg the Computer Network Securty wth Hestat Fuzzy Iformato Jafeg Dog, Frst ad Correspodg Author
Maintenance Scheduling of Distribution System with Optimal Economy and Reliability
Egeerg, 203, 5, 4-8 http://dx.do.org/0.4236/eg.203.59b003 Publshed Ole September 203 (http://www.scrp.org/joural/eg) Mateace Schedulg of Dstrbuto System wth Optmal Ecoomy ad Relablty Syua Hog, Hafeg L,
Measuring the Quality of Credit Scoring Models
Measur the Qualty of Credt cor Models Mart Řezáč Dept. of Matheatcs ad tatstcs, Faculty of cece, Masaryk Uversty CCC XI, Edurh Auust 009 Cotet. Itroducto 3. Good/ad clet defto 4 3. Measur the qualty 6
Report 52 Fixed Maturity EUR Industrial Bond Funds
Rep52, Computed & Prted: 17/06/2015 11:53 Report 52 Fxed Maturty EUR Idustral Bod Fuds From Dec 2008 to Dec 2014 31/12/2008 31 December 1999 31/12/2014 Bechmark Noe Defto of the frm ad geeral formato:
Relaxation Methods for Iterative Solution to Linear Systems of Equations
Relaxato Methods for Iteratve Soluto to Lear Systems of Equatos Gerald Recktewald Portlad State Uversty Mechacal Egeerg Departmet [email protected] Prmary Topcs Basc Cocepts Statoary Methods a.k.a. Relaxato
Proceedings of the 2010 Winter Simulation Conference B. Johansson, S. Jain, J. Montoya-Torres, J. Hugan, and E. Yücesan, eds.
Proceedgs of the 21 Wter Smulato Coferece B. Johasso, S. Ja, J. Motoya-Torres, J. Huga, ad E. Yücesa, eds. EMPIRICAL METHODS OR TWO-ECHELON INVENTORY MANAGEMENT WITH SERVICE LEVEL CONSTRAINTS BASED ON
of the relationship between time and the value of money.
TIME AND THE VALUE OF MONEY Most agrbusess maagers are famlar wth the terms compoudg, dscoutg, auty, ad captalzato. That s, most agrbusess maagers have a tutve uderstadg that each term mples some relatoshp
Reinsurance and the distribution of term insurance claims
Resurace ad the dstrbuto of term surace clams By Rchard Bruyel FIAA, FNZSA Preseted to the NZ Socety of Actuares Coferece Queestow - November 006 1 1 Itroducto Ths paper vestgates the effect of resurace
On Error Detection with Block Codes
BULGARIAN ACADEMY OF SCIENCES CYBERNETICS AND INFORMATION TECHNOLOGIES Volume 9, No 3 Sofa 2009 O Error Detecto wth Block Codes Rostza Doduekova Chalmers Uversty of Techology ad the Uversty of Gotheburg,
STOCHASTIC approximation algorithms have several
IEEE TRANSACTIONS ON INFORMATION THEORY, VOL 60, NO 10, OCTOBER 2014 6609 Trackg a Markov-Modulated Statoary Degree Dstrbuto of a Dyamc Radom Graph Mazyar Hamd, Vkram Krshamurthy, Fellow, IEEE, ad George
Bayesian Network Representation
Readgs: K&F 3., 3.2, 3.3, 3.4. Bayesa Network Represetato Lecture 2 Mar 30, 20 CSE 55, Statstcal Methods, Sprg 20 Istructor: Su-I Lee Uversty of Washgto, Seattle Last tme & today Last tme Probablty theory
The analysis of annuities relies on the formula for geometric sums: r k = rn+1 1 r 1. (2.1) k=0
Chapter 2 Autes ad loas A auty s a sequece of paymets wth fxed frequecy. The term auty orgally referred to aual paymets (hece the ame), but t s ow also used for paymets wth ay frequecy. Autes appear may
An IG-RS-SVM classifier for analyzing reviews of E-commerce product
Iteratoal Coferece o Iformato Techology ad Maagemet Iovato (ICITMI 205) A IG-RS-SVM classfer for aalyzg revews of E-commerce product Jaju Ye a, Hua Re b ad Hagxa Zhou c * College of Iformato Egeerg, Cha
Simple Linear Regression
Smple Lear Regresso Regresso equato a equato that descrbes the average relatoshp betwee a respose (depedet) ad a eplaator (depedet) varable. 6 8 Slope-tercept equato for a le m b (,6) slope. (,) 6 6 8
Security Analysis of RAPP: An RFID Authentication Protocol based on Permutation
Securty Aalyss of RAPP: A RFID Authetcato Protocol based o Permutato Wag Shao-hu,,, Ha Zhje,, Lu Sujua,, Che Da-we, {College of Computer, Najg Uversty of Posts ad Telecommucatos, Najg 004, Cha Jagsu Hgh
Loss Distribution Generation in Credit Portfolio Modeling
Loss Dstrbuto Geerato Credt Portfolo Modelg Igor Jouravlev, MMF, Walde Uversty, USA Ruth A. Maurer, Ph.D., Professor Emertus of Mathematcal ad Computer Sceces, Colorado School of Mes, USA Key words: Loss
Applications of Support Vector Machine Based on Boolean Kernel to Spam Filtering
Moder Appled Scece October, 2009 Applcatos of Support Vector Mache Based o Boolea Kerel to Spam Flterg Shugag Lu & Keb Cu School of Computer scece ad techology, North Cha Electrc Power Uversty Hebe 071003,
Speeding up k-means Clustering by Bootstrap Averaging
Speedg up -meas Clusterg by Bootstrap Averagg Ia Davdso ad Ashw Satyaarayaa Computer Scece Dept, SUNY Albay, NY, USA,. {davdso, ashw}@cs.albay.edu Abstract K-meas clusterg s oe of the most popular clusterg
Forecasting Trend and Stock Price with Adaptive Extended Kalman Filter Data Fusion
2011 Iteratoal Coferece o Ecoomcs ad Face Research IPEDR vol.4 (2011 (2011 IACSIT Press, Sgapore Forecastg Tred ad Stoc Prce wth Adaptve Exteded alma Flter Data Fuso Betollah Abar Moghaddam Faculty of
Near Neighbor Distribution in Sets of Fractal Nature
Iteratoal Joural of Computer Iformato Systems ad Idustral Maagemet Applcatos. ISS 250-7988 Volume 5 (202) 3 pp. 59-66 MIR Labs, www.mrlabs.et/jcsm/dex.html ear eghbor Dstrbuto Sets of Fractal ature Marcel
Automated Event Registration System in Corporation
teratoal Joural of Advaces Computer Scece ad Techology JACST), Vol., No., Pages : 0-0 0) Specal ssue of CACST 0 - Held durg 09-0 May, 0 Malaysa Automated Evet Regstrato System Corporato Zafer Al-Makhadmee
The paper presents Constant Rebalanced Portfolio first introduced by Thomas
Itroducto The paper presets Costat Rebalaced Portfolo frst troduced by Thomas Cover. There are several weakesses of ths approach. Oe s that t s extremely hard to fd the optmal weghts ad the secod weakess
Curve Fitting and Solution of Equation
UNIT V Curve Fttg ad Soluto of Equato 5. CURVE FITTING I ma braches of appled mathematcs ad egeerg sceces we come across epermets ad problems, whch volve two varables. For eample, t s kow that the speed
Performance Attribution. Methodology Overview
erformace Attrbuto Methodology Overvew Faba SUAREZ March 2004 erformace Attrbuto Methodology 1.1 Itroducto erformace Attrbuto s a set of techques that performace aalysts use to expla why a portfolo's performace
ANNEX 77 FINANCE MANAGEMENT. (Working material) Chief Actuary Prof. Gaida Pettere BTA INSURANCE COMPANY SE
ANNEX 77 FINANCE MANAGEMENT (Workg materal) Chef Actuary Prof. Gada Pettere BTA INSURANCE COMPANY SE 1 FUNDAMENTALS of INVESTMENT I THEORY OF INTEREST RATES 1.1 ACCUMULATION Iterest may be regarded as
AP Statistics 2006 Free-Response Questions Form B
AP Statstcs 006 Free-Respose Questos Form B The College Board: Coectg Studets to College Success The College Board s a ot-for-proft membershp assocato whose msso s to coect studets to college success ad
n. We know that the sum of squares of p independent standard normal variables has a chi square distribution with p degrees of freedom.
UMEÅ UNIVERSITET Matematsk-statstska sttutoe Multvarat dataaalys för tekologer MSTB0 PA TENTAMEN 004-0-9 LÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK Multvarat dataaalys för tekologer B, 5 poäg.
Compressive Sensing over Strongly Connected Digraph and Its Application in Traffic Monitoring
Compressve Sesg over Strogly Coected Dgraph ad Its Applcato Traffc Motorg Xao Q, Yogca Wag, Yuexua Wag, Lwe Xu Isttute for Iterdscplary Iformato Sceces, Tsghua Uversty, Bejg, Cha {qxao3, kyo.c}@gmal.com,
The simple linear Regression Model
The smple lear Regresso Model Correlato coeffcet s o-parametrc ad just dcates that two varables are assocated wth oe aother, but t does ot gve a deas of the kd of relatoshp. Regresso models help vestgatg
The Time Value of Money
The Tme Value of Moey 1 Iversemet Optos Year: 1624 Property Traded: Mahatta Islad Prce : $24.00, FV of $24 @ 6%: FV = $24 (1+0.06) 388 = $158.08 bllo Opto 1 0 1 2 3 4 5 t ($519.37) 0 0 0 0 $1,000 Opto
Optimal multi-degree reduction of Bézier curves with constraints of endpoints continuity
Computer Aded Geometrc Desg 19 (2002 365 377 wwwelsevercom/locate/comad Optmal mult-degree reducto of Bézer curves wth costrats of edpots cotuty Guo-Dog Che, Guo-J Wag State Key Laboratory of CAD&CG, Isttute
DECISION MAKING WITH THE OWA OPERATOR IN SPORT MANAGEMENT
ESTYLF08, Cuecas Meras (Meres - Lagreo), 7-9 de Septembre de 2008 DECISION MAKING WITH THE OWA OPERATOR IN SPORT MANAGEMENT José M. Mergó Aa M. Gl-Lafuete Departmet of Busess Admstrato, Uversty of Barceloa
Fractal-Structured Karatsuba`s Algorithm for Binary Field Multiplication: FK
Fractal-Structured Karatsuba`s Algorthm for Bary Feld Multplcato: FK *The authors are worg at the Isttute of Mathematcs The Academy of Sceces of DPR Korea. **Address : U Jog dstrct Kwahadog Number Pyogyag
Web Service Composition Optimization Based on Improved Artificial Bee Colony Algorithm
JOURNAL OF NETWORKS, VOL. 8, NO. 9, SEPTEMBER 2013 2143 Web Servce Composto Optmzato Based o Improved Artfcal Bee Coloy Algorthm Ju He The key laboratory, The Academy of Equpmet, Beg, Cha Emal: [email protected]
IP Network Topology Link Prediction Based on Improved Local Information Similarity Algorithm
Iteratoal Joural of Grd Dstrbuto Computg, pp.141-150 http://dx.do.org/10.14257/jgdc.2015.8.6.14 IP Network Topology Lk Predcto Based o Improved Local Iformato mlarty Algorthm Che Yu* 1, 2 ad Dua Zhem 1
The Digital Signature Scheme MQQ-SIG
The Dgtal Sgature Scheme MQQ-SIG Itellectual Property Statemet ad Techcal Descrpto Frst publshed: 10 October 2010, Last update: 20 December 2010 Dalo Glgorosk 1 ad Rue Stesmo Ødegård 2 ad Rue Erled Jese
Three Dimensional Interpolation of Video Signals
Three Dmesoal Iterpolato of Vdeo Sgals Elham Shahfard March 0 th 006 Outle A Bref reve of prevous tals Dgtal Iterpolato Bascs Upsamplg D Flter Desg Issues Ifte Impulse Respose Fte Impulse Respose Desged
On formula to compute primes and the n th prime
Joural's Ttle, Vol., 00, o., - O formula to compute prmes ad the th prme Issam Kaddoura Lebaese Iteratoal Uversty Faculty of Arts ad ceces, Lebao Emal: [email protected] amh Abdul-Nab Lebaese Iteratoal
A particle Swarm Optimization-based Framework for Agile Software Effort Estimation
The Iteratoal Joural Of Egeerg Ad Scece (IJES) olume 3 Issue 6 Pages 30-36 204 ISSN (e): 239 83 ISSN (p): 239 805 A partcle Swarm Optmzato-based Framework for Agle Software Effort Estmato Maga I, & 2 Blamah
Preprocess a planar map S. Given a query point p, report the face of S containing p. Goal: O(n)-size data structure that enables O(log n) query time.
Computatoal Geometry Chapter 6 Pot Locato 1 Problem Defto Preprocess a plaar map S. Gve a query pot p, report the face of S cotag p. S Goal: O()-sze data structure that eables O(log ) query tme. C p E
Optimal Packetization Interval for VoIP Applications Over IEEE 802.16 Networks
Optmal Packetzato Iterval for VoIP Applcatos Over IEEE 802.16 Networks Sheha Perera Harsha Srsea Krzysztof Pawlkowsk Departmet of Electrcal & Computer Egeerg Uversty of Caterbury New Zealad [email protected]
How To Make A Supply Chain System Work
Iteratoal Joural of Iformato Techology ad Kowledge Maagemet July-December 200, Volume 2, No. 2, pp. 3-35 LATERAL TRANSHIPMENT-A TECHNIQUE FOR INVENTORY CONTROL IN MULTI RETAILER SUPPLY CHAIN SYSTEM Dharamvr
A DISTRIBUTED REPUTATION BROKER FRAMEWORK FOR WEB SERVICE APPLICATIONS
L et al.: A Dstrbuted Reputato Broker Framework for Web Servce Applcatos A DISTRIBUTED REPUTATION BROKER FRAMEWORK FOR WEB SERVICE APPLICATIONS Kwe-Jay L Departmet of Electrcal Egeerg ad Computer Scece
Banking (Early Repayment of Housing Loans) Order, 5762 2002 1
akg (Early Repaymet of Housg Loas) Order, 5762 2002 y vrtue of the power vested me uder Secto 3 of the akg Ordace 94 (hereafter, the Ordace ), followg cosultato wth the Commttee, ad wth the approval of
10.5 Future Value and Present Value of a General Annuity Due
Chapter 10 Autes 371 5. Thomas leases a car worth $4,000 at.99% compouded mothly. He agrees to make 36 lease paymets of $330 each at the begg of every moth. What s the buyout prce (resdual value of the
Statistical Intrusion Detector with Instance-Based Learning
Iformatca 5 (00) xxx yyy Statstcal Itruso Detector wth Istace-Based Learg Iva Verdo, Boja Nova Faulteta za eletroteho raualštvo Uverza v Marboru Smetaova 7, 000 Marbor, Sloveja [email protected] eywords:
Using Phase Swapping to Solve Load Phase Balancing by ADSCHNN in LV Distribution Network
Iteratoal Joural of Cotrol ad Automato Vol.7, No.7 (204), pp.-4 http://dx.do.org/0.4257/jca.204.7.7.0 Usg Phase Swappg to Solve Load Phase Balacg by ADSCHNN LV Dstrbuto Network Chu-guo Fe ad Ru Wag College
CHAPTER 13. Simple Linear Regression LEARNING OBJECTIVES. USING STATISTICS @ Sunflowers Apparel
CHAPTER 3 Smple Lear Regresso USING STATISTICS @ Suflowers Apparel 3 TYPES OF REGRESSION MODELS 3 DETERMINING THE SIMPLE LINEAR REGRESSION EQUATION The Least-Squares Method Vsual Exploratos: Explorg Smple
Dynamic Two-phase Truncated Rayleigh Model for Release Date Prediction of Software
J. Software Egeerg & Applcatos 3 63-69 do:.436/jsea..367 Publshed Ole Jue (http://www.scrp.org/joural/jsea) Dyamc Two-phase Trucated Raylegh Model for Release Date Predcto of Software Lafe Qa Qgchua Yao
Chapter 3 0.06 = 3000 ( 1.015 ( 1 ) Present Value of an Annuity. Section 4 Present Value of an Annuity; Amortization
Chapter 3 Mathematcs of Face Secto 4 Preset Value of a Auty; Amortzato Preset Value of a Auty I ths secto, we wll address the problem of determg the amout that should be deposted to a accout ow at a gve
Impact of Interference on the GPRS Multislot Link Level Performance
Impact of Iterferece o the GPRS Multslot Lk Level Performace Javer Gozalvez ad Joh Dulop Uversty of Strathclyde - Departmet of Electroc ad Electrcal Egeerg - George St - Glasgow G-XW- Scotlad Ph.: + 8
MDM 4U PRACTICE EXAMINATION
MDM 4U RCTICE EXMINTION Ths s a ractce eam. It does ot cover all the materal ths course ad should ot be the oly revew that you do rearato for your fal eam. Your eam may cota questos that do ot aear o ths
Beta. A Statistical Analysis of a Stock s Volatility. Courtney Wahlstrom. Iowa State University, Master of School Mathematics. Creative Component
Beta A Statstcal Aalyss of a Stock s Volatlty Courtey Wahlstrom Iowa State Uversty, Master of School Mathematcs Creatve Compoet Fall 008 Amy Froelch, Major Professor Heather Bolles, Commttee Member Travs
Constrained Cubic Spline Interpolation for Chemical Engineering Applications
Costraed Cubc Sple Iterpolato or Chemcal Egeerg Applcatos b CJC Kruger Summar Cubc sple terpolato s a useul techque to terpolate betwee kow data pots due to ts stable ad smooth characterstcs. Uortuatel
Common p-belief: The General Case
GAMES AND ECONOMIC BEHAVIOR 8, 738 997 ARTICLE NO. GA97053 Commo p-belef: The Geeral Case Atsush Kaj* ad Stephe Morrs Departmet of Ecoomcs, Uersty of Pesylaa Receved February, 995 We develop belef operators
Projection model for Computer Network Security Evaluation with interval-valued intuitionistic fuzzy information. Qingxiang Li
Iteratoal Joural of Scece Vol No7 05 ISSN: 83-4890 Proecto model for Computer Network Securty Evaluato wth terval-valued tutostc fuzzy formato Qgxag L School of Software Egeerg Chogqg Uversty of rts ad
A Study of Unrelated Parallel-Machine Scheduling with Deteriorating Maintenance Activities to Minimize the Total Completion Time
Joural of Na Ka, Vol. 0, No., pp.5-9 (20) 5 A Study of Urelated Parallel-Mache Schedulg wth Deteroratg Mateace Actvtes to Mze the Total Copleto Te Suh-Jeq Yag, Ja-Yuar Guo, Hs-Tao Lee Departet of Idustral
