[Rao*, 4.(8): August, 2015] ISSN: (I2OR), Publication Impact Factor: 3.785

Similar documents
Case Study 3. Cynar Plastics to Diesel

CRG CONSERVE RESOURCES GROUP ECO ENVIRONMENTAL ENGINEERING TECHNOLOGIES. NEW State of the Art. Advanced OIL REFINERY TECHNOLOGY & PROCESSES

ASimple Guide to Oil Refining

WASTE PLASTIC FUEL USED IN PETROL ENGINE

Module 5: Combustion Technology. Lecture 33: Combustion air calculation

Nu G Medical Waste System Technology (Pyrolysis / Thermal Decomposition)

Resource and Environmental Profile Analysis of Polyethylene Milk Bottles and Polyethylene-coated Paperboard Milk Cartons

Introduction to Waste Treatment Technologies. Contents. Household waste

LOW-TEMPERATURE CATALYTIC DEPOLYMERIZATION. Power Generation from Plastic Waste, Tires and Waste Oils

Sustainable Plastics with Reduced Carbon Footprint & Reduced Waste

AN OFFER TECHNOLOGY FOR THE DISPOSAL OF M6 PROPELLANT WASTE. Wrocław, POLAND,

Process Technology. Advanced bioethanol production and renewable energy generation from ligno-cellulosic materials, biomass waste and residues

Waste a source of energy. Regional Solid Waste Management Plan Review: Engaging solutions for tomorrow. Incineration. Incineration

Natural Gas Information Contents

Biomass Renewable Energy from Plants and Animals

1.3 Properties of Coal

THE PRACTICAL, PROVEN PATH TO GREEN ENERGY. RTP rapid thermal processing from Envergent Technologies

This fact sheet provides an overview of options for managing solid

Gas Detection for Refining. HA University

Coal-To-Gas & Coal-To-Liquids

Assignment 8: Comparison of gasification, pyrolysis and combustion

Refining of Crude Oil - Process

Ecological Aspects of Oil Shale Processing

This method has been adopted in many communities in the United States and Europe

SIX REASONS TO DRY BIOGAS To A LOW DEWPOINT BEFORE COMBUSTION IN A CHP ENGINE STEVEN SCOTT MARKET DEVELOPMENT MANAGER ALTERNATIVE ENERGIES

Dr. István ZÁDOR PhD: Rita MARKOVITS-SOMOGYI: Dr. Ádám TÖRÖK PhD: PhD, MSc in Transportation Engineering, KOGÁT Ltd.

What is Energy? Session 1

Degradation of polyolefine wastes into liquid fuels

Study Plan. MASTER IN (Energy Management) (Thesis Track)

COMBUSTION. In order to operate a heat engine we need a hot source together with a cold sink

Natural Gas: A Cleaner Energy Solution or Just Another Fossil Fuel?

Specimen Paper. Chemistry 1F. Time allowed! 60 minutes

Carbon Dioxide Membrane Separation for Carbon Capture using Direct FuelCell Systems

Conventional Energy Sources

Communicating Your Commitment: Your Guide to Clean Energy Messaging

5. State the function of pulveriser. The pulverisers are the equipments which are used to powdered coal.

********** An short and simple explanation of how oil is converted into gasoline and then brought to you, the consumer.

Biogas as transportation fuel

Coke Manufacturing. Industry Description and Practices. Waste Characteristics

UNIVERSITA DEGLI STUDI DI ROMA LA SAPIENZA DIPARTIMENTO INGEGNERIA CHIMICA MATERIALI AMBIENTE

EXECUTIVE SUMMARY INTRODUCTION

SEATTLE STEAM COMPANY FREQUENTLY ASKED QUESTIONS

Appendices. Average Electricity Costs Newfoundland and Labrador

Fact Sheet Technology. Bergius-Pier Process (1)

10 Nuclear Power Reactors Figure 10.1

Biorefineries. International status quo and future directions. Ed de Jong / Rene van Ree

PARAMETRIC OPTIMISATION OF GENERATED WASTE PLASTIC FUEL PARAMETERS WITH THE HELP OF TAGUCHI METHOD

Biomass Syngas Production Technology by Gasification for Liquid Fuel and Other Chemicals

Development of Chemical Recycling Process for Post- Consumer PET Bottles by Methanolysis in Supercritical Methanol

Optimizing DRI production using natural gas

Technical Note: Conversion of fuel data to MWh

Tutkimuksen merkitys menestyvässä liiketoiminnassa- Innovaatiosta tuotteeksi

Clean Abundant and Economical Natural Gas

SORTING PLASTICS FOR RECYCLING INTRODUCTION

Chapter 2 Chemical and Physical Properties of Sulphur Dioxide and Sulphur Trioxide

ENGS-171 INDUSTRIAL ECOLOGY- DARTMOUTH COLLEGE. SOME USEFUL NUMBERS Compiled by Benoit Cushman-Roisin

THE PRODUCTION OF ELECTRICITY FROM WOOD AND OTHER SOLID BIOMASS

Biomethane in Vehicles. October 2008

Iron and Steel Manufacturing

Balancing chemical reaction equations (stoichiometry)

Legrand's environmental commitments

APPLICATION FOR EXEMPTION Assessing Authority

Thermal & Biogas Production In Egypt. By Prof. Dr. Ahmed Abd El-Ati Ahmed Egypt - GBEP Focal Point

Environmental Performance Data Calculation Standards

Development of large-scale H 2 storage and transportation technology with Liquid Organic Hydrogen Carrier (LOHC)

MCQ - ENERGY and CLIMATE

Enhanced power and heat generation from biomass and municipal waste. Torsten Strand. Siemens Power Generation Industrial Applications

COKE PRODUCTION FOR BLAST FURNACE IRONMAKING

of 11,000 households Steam temperature, boiler 400 C Steam pressure, boiler Incineration temperature 1,100 C

Carbon Footprint of CMC Hospital for 2013

Making Biodiesel from Virgin Vegetable Oil: Teacher Manual

Life Cycle Inventory Packaging Options for Shipping Soft Goods in E-Commerce and Catalog Sales

Maximising recycling rates tackling residuals

Avoiding co-product allocation in a simplified hypothetical refinery 1

A Guide to Hazardous Substance Storage Capacity

ADVANTAGES AND DISADVANTAGES OF ENERGY SOURCES. Prepared by Sandra Vasa-Sideris, PhD, Southern Polytechnic State University, for use by students

Use of Substitute Fuels in Large Combustion Plants (LCPs)

Solid Waste Management Holistic Decision Modeling

Burning Issues in Waste Disposal

Swallow Street recycling facts and figures in partnership with Bywaters

Petrochemical Industry Ethylene Plant

Managing Floor Drains and Flammable Traps

Fischer-Tropsch Diesel from Solid Biomass

Reduce Reduce Reduce. Reuse. Reuse. Recycle. Recycle. Lesson: Plastic Polymers. Background: Procedures:

Lesson: Alternative Fuels

Chemical versus Physical Changes

Biomass and waste pyrolysis. Evolution to high-quality marketable fuels

Data and Trends. Environmental protection and Safety

From solid fuels to substitute natural gas (SNG) using TREMP

IWR Integrated Waste Recycling. Integrated System for treatment and recycling of Municipal Solid Waste

Lecture 35: Atmosphere in Furnaces

[]n. Craving energy. Oil and gas formation. Oil and gas formation. Resources: Fossil Fuels. Supplying our energy needs: Source of energy in the US

Morris Argyle Assistant Professor Department of Chemical and Petroleum Engineering. School of Energy Resources Symposium Casper, WY February 28, 2007

Poultry Litter as Renewable Energy Resource Using SOFC Technology

COAL, OIL SHALE, NATURAL BITUMEN, HEAVY OIL AND PEAT Vol. II -Extraction of Oil Shale: Surface and In Situ Retorting - Victor Yefimov and Shuyuan Li

Power Generation through Surface Coal Gasification

LCA EXPERIENCE IN THE FIELD OF RECYCLING OF PLASTICS FROM ELECTRONIC WASTE

Arecibo Resource Recovery Project

Coal Gasification & Fischer-Tropsch

AN EFFECTIVE THERMAL TECHNOLOGY FOR THE DETOXIFICATION OF THE MSW FLY ASH

Transcription:

[Rao*, 4.(8): August, 21] ISSN: 2277-96 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY CONVERSION OF WASTE PLASTICS INTO ALTERNATIVE FUEL Dr.L.Nageswara Rao*, J L Jayanthi, D.Kamalakar * Caledonian College of Engineering, Sultanate of Oman. Assistant Professor, Department of Chemical Engineering, R.V.R. & J.C. College of Engineering (A), Chowdavaram, Guntur, Andhra Pradesh-22 19. Assistant Professor, Department of Chemical Engineering, R.V.R. & J.C. College of Engineering (A), Chowdavaram, Guntur, Andhra Pradesh-22 19. ABSTRACT Plastic waste is regarded as potentially economy source of chemicals and energy. Lots of us have come across a variety of products that use plastic materials today. As a result of the increasing level of private consumption of these plastic materials huge amounts of wastes are discharged to the environment. Catalytic cracking is a process that converts waste plastics into valuable liquid hydrocarbon products that can be utilized as an energy source for numerous purposes such as diesel engines, generators, vehicles, etc. The gaseous by- product obtained in the process can be used for domestic use by refilling it in the cylinders and also to run gas turbines. Thus cracking process can be considered as another non-conventional energy source. Crude oil is the ultimate source of plastics and most of the chemicals. Out of total 1 million tons plastics produced every year all over the world, 2 million tons is dumped. By throwing away such heavy amount of waste plastics, wasting lots of energy in the form of crude oil that is used to make plastics. The wasted energy can be recovered back using Pyrolysis process. This process save our conventional energy source i.e. crude oil. In this scenario our paper aims to solve the twin problem of environment pollution due to plastic and need for an alternative fuel source. KEYWORDS: Plastics, waste energy, fuel oil, environmental pollution. INTRODUCTION Waste plastic disposal and excessive use of fossil fuels have caused environment concerns in the world. Both plastics and petroleum derived fuels are hydrocarbons that contain the elements of carbon and hydrogen. The difference between them is that plastic molecules have longer carbon chains than those in LPG, petrol, and diesel fuels. Therefore, it is possible to convert waste plastic into fuels. Plastic wastes such as, polypropylene, low density polyethylene, high density polyethylene, polystyrene are the most frequently used in everyday activities and disposed of to the environment after service. Plastic are those substances which can take long periods of time to decompose if disposed off simply to the environment. Therefore, waste plastic should be changed into usable resources. The different waste plastics were thermally cracked at different temperatures and then it was tried to measure the oil produced, the residue left after the reaction is completed, and the gas produced. Then it is compared that which types of plastics can yield higher amount of oil. There are a number of methods by which plastic wastes can be managed such as incineration, recycling, land filling, and thermal cracking. But this work focuses on thermal cracking of waste plastic to change them into usable resources, because in this method the emission of hazardous gases to the environment insignificant. The waste can be changed into useful resources. MATERIALS AND CHEMICALS The following materials and chemicals are used for the thesis work for producing fuel oil from waste plastics. Various types of waste plastics are main raw materials which includes Polyethylene Terephthalate (PET), Low Density Poly Ethylene (LDPE), High Density Poly Ethylene (HDPE), Polypropylene (PP) Polystyrene (PS) Aluminium silicate - used as a catalyst [19]

[Rao*, 4.(8): August, 21] ISSN: 2277-96 EXPERIMENTAL STEP UP AND DESCRIPTION PLASTIC REACTOR CONDENSO GAS+VAP CYCLSEP LIGHTEND NONCOND SCRUBBER CONDVAP STORAGE CARBON WAX Figure 1: Experimental Setup with flow diagram Waste plastics are first collected, after the waste plastics were collected, it was washed to remove the impurities and then was dried to remove any water droplets. Then the washed plastic was sorted according to their categories. Finally, it was shredded and cut into pieces for ease of feeding the raw materials and for good heat transfer. 1 ton was weighed and feed to the reactor and the reactor was properly sealed to protect the gas from leaking. Adequate precautions were put in place to make sure there is no leakage before start of experiment. EXPERIMENTAL PROCEDURE Preparation of raw material: 1 ton of waste plastics are taken and washed several times with water to remove dust and soil particles present on it. Later it is cut into long pieces. They are dried at room temperature for about 3 minutes to further reduce the water content. Process Description: The waste plastic is placed into the reactor for drying.aluminum silicate is used as a catalyst is fed into the reactor as Feed-1 kg + catalyst 2. % The reactor is placed in a heating furnace and maintained the temperature 33-4 o C Gases form the reactor is sent to a cyclone separator. The heavy ends from the separator are collected in a tank at the bottom as Wax and the light ends are sent to a condenser. From the condenser, two products condensable vapors and non-condensable gases are obtained Non-condensable gases are removed by using a gas scrubber. These gases are rich in methane, ethane, ethylene and can be used for power generationhe condensable vapors are collected as oil in a tank. The entire time required for the process is 12 hours. The products obtained are Oil (6% to 7%), Gas (1% to 2%) and Black Carbon (2% to 3%). [196]

[Rao*, 4.(8): August, 21] ISSN: 2277-96 Figure 2: Plastic Oil Distillation of Plastic Oil The obtained oil is distilled by differential distillation The Temperatures are maintained:- below 18 C and between 21-34 C Products obtained at different temperatures are shown in figures. Figure 3: Product 1 Below 18 C (extracted - 2%) Figure 4: Product 2 Between 21-34 C (extracted - 34%) [197]

[Rao*, 4.(8): August, 21] ISSN: 2277-96 Figure : Product 3 Residue (Tar 46%) RESULTS & DISCUSSION The performance curves for fuel consumption Vs Brake power for 4% Oil +6% Petrol as shown below..8 Fuel consumption in Kg/sec.6.4.2 pure 4%blend 2 4 6 8 Brake power in Kw Figure 6: Fuel Consumption Vs Brake Power As the Brake power increases the fuel consumption will gradually increases which indicates the engine performance. 2 1 1 2 4 6 Brake Power in kw pure petrol 4%blend Figure 7: Vs Brake Power As the brake power increases the thermal will be increases which indicate the of engine will depends on thermal characteristics of fuel. For 1% Plastic Oil+ 9% Diesel: [198]

[Rao*, 4.(8): August, 21] ISSN: 2277-96 Fuel Consumption in Kg/sec.3.2.2.1.1. 1 2 3 Brake Power in Kwh Figure 8: Fuel consumption Vs Brake power 1% oil and 9 % diesel 2 1 1 1%oil+9% Diesel. 1 1. Brake power in kwh 2 2. Figure 9: Vs Brake For 3% Oil + 7% Diesel: Fuel consumption in Kg/sec.3.2.1 1 2 3 Brake power in kw 3%Blend Figure 1: Fuel consumption Vs Brake power 2 1 1 1 2 3 Brake power in kw Figure 1: Vs Brake power Pure diesel 3% blend [199]

[Rao*, 4.(8): August, 21] ISSN: 2277-96 For % Oil + % Diesel: 2 1 1 %blend 1 2 3 Brake Power in Kw Figure 11: Vs Brake power.3.2 Fuel.2 consumption.1 in Kg/sec.1. 1 2 3 Brake Power in Kw Figure 12: Fuel consumption Vs Brake power %Blend The above stated figures will indicate the thermal, fuel consumption with brake power. It will indicate the characteristics curves for different ratios of oil and diesel. The characteristics curves will increase with increase of brake power. CONCLUSIONS Plastic waste from landfills, utilizing the embodied energy content of plastics and producing a highly usable commodity that, due to its cleaner burning characteristics, is in itself more environmentally friendly than conventional distillate. As the confirmation tests of the products obtained are satisfied when compared to diesel and petrol, thus the products obtained through this process can be used as fuel. The characteristic curves will indicate the brake power versus fuel consumption for different ratios of oil and diesel respectively. The present rate of economic growth is unimaginable without saving of fossil fuel energy like crude oil, natural gas or coal. Thermo fuel is a truly sustainable waste solution, producing a highly useful commodity. REFERENCES [1] Dr.R.Chandra,Mr.A.Adab, Rubber and Plastic waste CBS publishers and distributors, chapter 2&3 pp.2-78 [2] Pyrolysis of waste plastics using synthesized catalysts from fly ash, Soo Hyun Chung, Jong Jin park, Sang Goo Jeon, Korea institute of Energy Research. [3] NIIR board of consultant and engineers, Medical, municipal and plastic waste manangement handbook, National Institute of Industrial Research [4] Jeno Kovacs, what is biomaa pyrolysis? Consumer energy Informantion.Energy effieciency and renewable energy network.u.s.a. [2]

[Rao*, 4.(8): August, 21] ISSN: 2277-96 [] Dr.K.Subbarayudu, Pyrolysis of Carbonaceous solid waste as a means of disposal and generation of value added fuel and chemical, Pondicherry. [6] Parivesh,plastic waste management, Central Pollution Control Board. [7] Jimell Erwin, Assay of diesel fuel components properties and performance, South West Research Institute. [21]