LOW-TEMPERATURE CATALYTIC DEPOLYMERIZATION. Power Generation from Plastic Waste, Tires and Waste Oils

Size: px
Start display at page:

Download "LOW-TEMPERATURE CATALYTIC DEPOLYMERIZATION. Power Generation from Plastic Waste, Tires and Waste Oils"

Transcription

1 LOW-TEMPERATURE CATALYTIC DEPOLYMERIZATION Power Generation from Plastic Waste, Tires and Waste Oils

2 Company Profile The company GB Consulting s. r. o. delivers unique technologies introducing the concept of new and high standard for the secondary raw material utilization in the field of renewable energy, using plastic waste, used tires and all types of waste polymers as the raw material input. The company GB Consulting supplies low-temperature depolymerization technologies developed by the company Plasma Energy (P) Ltd. The final product of the depolymerization technology, delivered by the company GB Pyrolysis Europe, is the production of the so-called green synthetic (fuel) oil Poly-fuel, carbon black Poly-carbon and synthetic gas Poly-gas. Moreover, tire treatment technology facilitates the recovery of steel. GB Consulting with the support of RCFG*, constituting the part of the company Plasma Energy (P) Ltd., delivers the technology for the synthetic oil processing, the outcome of which is patented fuel Polyfuel, i.e. a hydrocarbon liquid, composed of petrol, kerosene and diesel. Depolymerization technology is energetically self-sufficient and for its operation uses the outlet raw materials. On the other hand, the technology can generate electrical power and heat by the cogeneration (a combined generation of heat and electricity) and can exploit the waste polymers ecologically and in a way providing the benefit in the form of the power generation. Otherwise, the disposal of the waste polymers would be rather demanding, possibly harming and polluting the environment. In consequence of global warming and large-scale utilization of all types of plastics, rubbers and used oils the waste recycling and its conversion into another usable raw material is a very important step for the future of not only the Czech Republic, but the whole planet. Depolymerization technologies, delivered by GB Consulting, convert the polymer into fine raw material applying the process, which is highly effective and environmentally friendly (completely ecological process) GB Consulting introduces the unique technology, which can dramatically change the polymer waste management, currently prevailingly consisting of the pure and simple waste storage. However, the polymer waste storage is nothing else than postponing the problem with the disposal to future generations. GB Consulting launches the equipment onto the European market, which can tremendously help the environment. GB Consulting put together a team of experienced and qualified experts in recycling, power engineering, consultancy and marketing taking a considerable effort to produce the energy from the wastes. Our professionals and technology suppliers are globally recognized and operate in different countries all over the world. Moreover, we are also active in the field of technological and waste heat exploitation and its technological conversion into the electrical power or chill. We furnish ORC technologies, absorption cooling technologies, highly efficient gasifying units. We are involved in the energy management and we are engaged in the complex savings of the electrical and heat power as well. * RCFG Research Centre for Fuel Generation Pyrolysis Systeme We are pioneers and leaders in the manufacturing, deliveries and installations of depolymerization plants. We will provide complete turn-key solutions: machinery manufacturing, delivery, installation, commissioning, training. Who we are, what we offer and deliver, benefits of our technology: our technology offers the purest quality of the synthetic oil comparable to the industrial diesel, selling price comparable to the industrial diesel LDO (light diesel oil) depolymerization process output is a cheap and high quality fuel as the substitution of diesel and LDO in the industrial production through long-term research our research centre has developed own fuel Polyfuel, i.e. a hydrocarbon liquid with the mixture of petrol, diesel and kerosene own patented technology - low-temperature catalytic depolymerization- reduces the reduction temperature (275 C to max. 445 C, other technologies functioning from > C) and reaction time, the overall transformation process energy efficiency is improved and, consequently, the profitability and power self-sufficiency of the overall production process are enhanced time-tested technology guarantees very high efficiency of the depolymerization process plants and processes proved by the installations already since the year 2004, results and experience from more than 75 installed depolymerization plants all over the world and 25 years of the research experience we use patent protected catalyst, developed by our own research centre, improving the maximal efficiency of the entire depolymerization process and facilitating the operation of the technology already from 275 C to max. 445 C (compared to other technologies operating > 550 C) with higher technological efficiency of produced fuel for more than 10 %

3 we assist in removing the heavy ecological burden by the landscape pollution reduction, by considerable ecological disposal in the low temperature catalytic depolymerization plant we reduce degradation of the plastic waste, used tire waste, and we solve the problem of the oil managements with the old used oil disposal. we deliver maximally environmental friendly depoloymerization technologies and processes, we widely use the waste-free technologies: without any escape of carbon black, odor, harmful emissions, without any danger to the plant staff health we use three safety levels preventing the fire break out we comply with all emission requirements, specified by the EU as the Pollution Control Board the operation of the depolymerization plant is energetically self-sufficient: no other external energy is necessary to heat and operate the plant, which considerably influences the economy of the operation and provides more considerable economic return on investment compared to other similar technologies depolymerization technologies, delivered by our company, are designed for continuous production process with the emphasis on safety and profitability such as added value, without the risk of explosion fully automated process: no manual loading of carbon black or intermediate products, technology solution reduces manpower requirements daily input capacity of the continuous type of depolymerization plants from 1 to 25 tons of the polymer per day raw material flexibility: all types of polymers and oils can be used matter of fact is: PLC control, remote monitoring, sensor technology of the process monitoring complete turn-key solution: machinery production, delivery, installation, commissioning &1 week to 1 month training at the site (depending on the size of technology) Depolymerization Technology The company GB Consulting delivers revolutionary technology using the processing of the waste plastic, oils and tires. Development of depolymerization technology of the processing of the plastics, oils and tires includes: synthetic oil production - in the standard of the light diesel oil: completely transparent synthetic oil with the best quality development of more effective catalysts, shortening the reaction time and significantly reducing the reaction temperature compared to other technologies process transformation from the intermittent operation to the 3rd generation of the continuous type of the depolymerization plants advanced systems of the heat exchange, guaranteeing more profitable development of the electric generators, burning the synthetic oil Waste plastics and tires are long-chain polymers, containing more than 50,000 carbon atoms, directly linked by the cross-link or branched chains. Depolymerization decomposes the long-chain to shorter chains - see below. design Kateřina Válková, ELVEKO CZ s. r. o., Thermochemical decomposition of the plastic or tire polymer Long-chain structure polymer plastic waste used tires / rubber heat + catalyst Short-chain compounds hydrocarbon gas&carbon black (C1 to C5) synthetic oil (C5 to C23)

4 The co-operation between the company GB Consulting and the technology producer Plasma Energy (P) Ltd. resulted in the development of commercially viable technology of the depolymerization of waste plastic, oils and tires, offering the following benefits: decreased reaction temperature from 275 C to max. 445 C (depending on the raw material type) with more than 10% yield of the synthetic oil compared to other technologies) zero emission process: no harm to the environment reduced reaction time and substantial energy saving optimal conversion of the polymer waste to the hydrocarbon liquid with negligible wax content the latest scrubbing systems guaranteeing the sulphur content in the synthetic oil less than 75 ppm patented - highly efficient process catalyst with very low costs for the production process continuous production process with less manpower and attendance staff requirements final product - synthetic oil - is very cheap and quality fuel perfect solution of the polymer waste management plant is energetically self-sufficient dimension and capacity of delivered lines from 1 ton to 25 tons of processed waste per day Based on the research, carried-out for more than 25 years, the company Plasma Energy (P) Ltd. has successfully developed unique process and production facility for the industrial low-temperature catalytic depolymerization of the polymer waste. Since 2004 we have been developing depolymerization plants in India, we have achieved phenomenal successes in the field of waste plastic, waste oil and tire depolymerization. Process of Low-Temperature Catalytic Depolymerization Depolymerization is the process of the molecular decomposition, larger molecules are pyrolyzed to smaller molecules. Depolymerization plant is an industrial facility for the waste plastic and tire processing. As regards the plastics/tires, the long-chain polymer is decomposed into shorter chains of the synthetic gas and synthetic oil. Heat and catalyst are necessary for the subsequent reaction. USED TIRES OR PLASTIC SYNTHETIC OIL SYNTHETIC GAS CARBON BLACK USED OILS SYNTHETIC OIL The technology does not burn the polymer waste; instead, the waste is decomposed into the usable final products such as synthetic oil, synthetic gas and carbon black. Low-temperature catalytic depolymerization of plastics, oils and tires offers the following benefits: generates quality fuel with low emissions facilitates to solve the issue of the soil pollution with plastic, oils and tires recovers energy from the waste helps to recycle the carbon with its subsequent utilization

5 Depolymerization is the best available alternative for the waste oil and polymer management compared to the incineration or dumping in the refuse storage area. The incineration means a direct waste oxidation, leading to the loss of valuable energy from the polymer waste. The polymer waste dumping in the refuse storage area results in the soil pollution. Low-temperature catalytic depolymerization of the polymer waste helps us to recover a valuable energy from the waste in the form of the synthetic oil, synthetic gas and carbon black. Process Flow Chart: Conversion of Waste Plastic (Tire) into Industrial Fuel Process Equipment Name Material Balance per 24 hrs* Collection of waste Plastic Transportation of waste Plastic to factory 10MT of waste plastic Shredding of Plastic Agglomerator 10MT of shredded plastic Material Loading Loading Conveyor 10MT of shredded plastic loaded in reactor Plastic Melting Reactor Number:1 10MT of plastic in molten form Plastic pyrolysis Reactor Number: 2 & 3 10MT mixture of: Poly-fuel in vapor form + Poly-gas + Poly-carbon Saperation of vapor phase Vapor Column 8.5MT mixture of: Poly-fuel in vapor form + Poly-gas Condensation of condensable fraction Condensors 8.5MT mixture of: Poly-fuel in Liquid form + Poly-gas Liquid and gas saperation Receivers 7MT of Poly-fuel Liquid at bottom and 1.5MT of hydrocarbon gas at top Filtration and purification of synthetic oil Filtration and purification system 7MT of Filtered and purified Poly-fuel Storage of synthetic oil outside building Syntetic oil underground storage 7MT of Poly-fuel (Industrial Disel) Storage Of hydrocarbon Gas Hydrocarbon Gas Storage Facility 1.5MT of Poly-gas Firing of hydrocarbon gas to heat reactors, scrubbing of flue gas and exhaust Hot air generator, Suction blowers, Scrubbing system, Chimney 10,000Kcal/hr of energy to run the plant + Clean flue gases that follows Prevention & Control of Pollution Act Separation of solid phase Carbon Black removal and collection System 1.5MT of Poly-carbon that is used as filler in plastic, rubber and tyre recycling * Variable depending on quality of Raw material and catalyst

6 Depolymerization of Plastics, Tires and Waste Oils Depolymerization of plastics or tires is the process of the plastic waste and tire conversion into the synthetic oil, carbon black and synthetic gas. Depolymerization plant converts the polymers into the fine fuel-plastics under controlled conditions and with the presence of the catalyst. Depolymerization of Plastic, Oils & Tires: Input-Output Ratios Input Material Input Quantity Output Quantity* liters Poly-fuel Mixed plastic wastes 1,000 kg kg Poly-gas kg Poly-carbon liters Poly-fuel Nylon tire waste Poly-gas 1,000 kg kg Poly-carbon liters Poly-fuel Radial tire waste kg Poly-gas 1,000 kg kg Poly-carbon kg steel wire fine fragments Motor oil and industrial oil waste 1,000 kg liters Poly-fuel * technology yield entirely depends on the type of the input waste and its composition Various polymer waste materials are suitable as the raw materials. Below see the list of the plastic raw materials applicable to the depolymerization: waste plastic waste tires electronic waste rubber mixed plastics (HDPE, LDPE, PE, PP, nylon, Teflon, PS, ABS, FRP etc.) plastic or rubber parts of the vehicles mixed waste from the waste paper recycling waste engine oils, industrial oils, food industry and other oils etc. multi layered plastic Resin Identification Codes polyethylene terephthalate high-density polyethylene polyvinyl chloride low-density polyethylene polypropylene polystyrene other plastics, including acrylic, polycarbonate, polyactic fibers, nylon, fiberglass soft drink bottles, mineral water, fruit juice containers and cooking oil milk jugs, cleaning agents, laundry detergents, bleaching agents, shampoo bottles, washing and shower soaps trays for sweets, fruit, plastic packing (bubble foil) and food foils to wrap the foodstuff crushed bottles, shopping bags, highly-resistant sacks and most of the wrappings furniture, consumers, luggage, toys as well as bumpers, lining and external borders of the cars toys, hard packing, refrigerator trays, cosmetic bags, costume jewellery, audio cassettes, CD cases, vending cups an example of one type is a polycarbonate used for CD production and baby feeding bottles

7 Synthetic Oil Poly-fuel Our customers can produce the purest quality synthetic oil using the technology, which we manufacture and supply. Produced oil has the identical specifications as the light diesel oil (LDO). (*chemical analysis per request) Typical industrial applications for the exploitation of Pyro-fuel as the fuel: boilers burning LTO (central district heating plants, industrial boilers) diesel generators (cogeneration units) hot-water and steam generators hot-air generators thermic fluid heaters electric generators (mixed with 50% diesel) diesel pumps (mixed with 50% diesel) Polyfuel Synthetic Oil Usage: Electric power and heat generation (cogeneration), industrial processes, heating, vapour production Refining production of diesel, petrol and kerosene Electric Power Generation: Combusting synthetic oil in cogeneration units - CHP Conversion to electric energy with high efficiency of approx ,5 %, heat efficiency 45-49%, Green Machine ORC modules for the utilization of heat Performance range from 80 kw to kw (Cogeneration unit suppliers: Caterpillar, Cummins, Perkins, Volvo) Industrial Processes: Thermo-oil boilers Central heating, hot water production, vapour generation Refining in Refineries: Production - diesel, petroleum and kerosene - sale and distribution Depolymerization Plant Depolymerization plant is the technology converting the waste plastics, tires and waste oil into the synthetic oil, carbon black and pure synthetic gas. The benefits of the depolymerization plants delivered by our company: the highest quality of the synthetic oil as the end product with guaranteed parameters use of green technology to guarantee environmentally friendly processes fully ecological process without any demands to the safety provisions plastics, tires as well as waste oils can be used as the raw materials continuous type of the low temperature depolymerization process breakthrough technology used to improve the safety, profitability and facilitation of the operation more than 90% of the mechanical components are stationary, i.e. lower routine maintenance demands

8

Case Study 3. Cynar Plastics to Diesel

Case Study 3. Cynar Plastics to Diesel Case Study 3 Cynar Plastics to Diesel Report for ZWSA Ricardo-AEA/R/ED58135 Issue Number 1 Date 02/07/2013 Disclaimer: This case study has been prepared by Ricardo-AEA Ltd for the exclusive use of Zero

More information

ASimple Guide to Oil Refining

ASimple Guide to Oil Refining ASimple Guide to Oil Refining We all know that motor oil and gasoline come from crude oil. What many people do not realize is that crude oil is also the starting point for many diverse products such as

More information

Nu G Medical Waste System Technology (Pyrolysis / Thermal Decomposition)

Nu G Medical Waste System Technology (Pyrolysis / Thermal Decomposition) Product Description: Nu G Medical Waste System Technology (Pyrolysis / Thermal Decomposition) The NU G System uses pyrolysis thermal decomposition to treat infectious wastes typically generated in hospitals.

More information

CONTENTS. ZVU Engineering a.s., Member of ZVU Group, WASTE HEAT BOILERS Page 2

CONTENTS. ZVU Engineering a.s., Member of ZVU Group, WASTE HEAT BOILERS Page 2 WASTE HEAT BOILERS CONTENTS 1 INTRODUCTION... 3 2 CONCEPTION OF WASTE HEAT BOILERS... 4 2.1 Complex Solution...4 2.2 Kind of Heat Exchange...5 2.3 Heat Recovery Units and Their Usage...5 2.4 Materials

More information

EXECUTIVE SUMMARY INTRODUCTION

EXECUTIVE SUMMARY INTRODUCTION EXECUTIVE SUMMARY INTRODUCTION Bottled water offers consumers a clean, portable supply of drinking water for consumption at home or away from home. Some disposable water bottles are recyclable, and lightweighting

More information

UNIVERSITA DEGLI STUDI DI ROMA LA SAPIENZA DIPARTIMENTO INGEGNERIA CHIMICA MATERIALI AMBIENTE

UNIVERSITA DEGLI STUDI DI ROMA LA SAPIENZA DIPARTIMENTO INGEGNERIA CHIMICA MATERIALI AMBIENTE UNIVERSITA DEGLI STUDI DI ROMA LA SAPIENZA DIPARTIMENTO INGEGNERIA CHIMICA MATERIALI AMBIENTE REPORT ON A TEST EXECUTED ON A KDV DEPOLYMERIZATION PLANT ON JAN 19TH 2012 IN THE ORION ECOSOLUTIONS DEMONSTRATION

More information

Tutkimuksen merkitys menestyvässä liiketoiminnassa- Innovaatiosta tuotteeksi

Tutkimuksen merkitys menestyvässä liiketoiminnassa- Innovaatiosta tuotteeksi Tutkimuksen merkitys menestyvässä liiketoiminnassa- Innovaatiosta tuotteeksi Matti Rautanen Manager, External Networks, Power-wide R&D Tutkimuksella tulevaisuuteen- seminaari Kaukolämpöpäivät, Kuopio 29.8.2013

More information

Natural Gas Information Contents

Natural Gas Information Contents Natural Gas Information Contents What is natural gas Natural Gas Components Physical Properties of Natural Gas Different Forms of Natural Gas The Use of Natural Gas Co-generation System Natural Gas and

More information

Developments and trends shaping the future for Waste-to- Energy technology suppliers

Developments and trends shaping the future for Waste-to- Energy technology suppliers Developments and trends shaping the future for Waste-to- Energy technology suppliers 21 st October 2015 Copenhagen, Denmark Edmund Fleck ESWET President 2 Contents 1. About ESWET 2. Introduction 3. Modern

More information

SORTING PLASTICS FOR RECYCLING INTRODUCTION

SORTING PLASTICS FOR RECYCLING INTRODUCTION SORTING PLASTICS FOR RECYCLING INTRODUCTION Description Students use the difference in densities of polymers and flame tests as a basis for the development of a scheme to separate plastics. Goals for This

More information

Assignment 8: Comparison of gasification, pyrolysis and combustion

Assignment 8: Comparison of gasification, pyrolysis and combustion AALTO UNIVERSITY SCHOOL OF CHEMICAL TECHNOLOGY KE-40.4120 Introduction to biorefineries and biofuels Assignment 8: Comparison of gasification, pyrolysis and combustion Aino Siirala 309141 Assignment submitted

More information

The solution for your business

The solution for your business gasnetworks.ie Choosing natural gas makes sense The solution for your business Natural gas is: A colourless and odourless gas in its pure form (although an odour is added for detection and identification

More information

SIX REASONS TO DRY BIOGAS To A LOW DEWPOINT BEFORE COMBUSTION IN A CHP ENGINE STEVEN SCOTT MARKET DEVELOPMENT MANAGER ALTERNATIVE ENERGIES

SIX REASONS TO DRY BIOGAS To A LOW DEWPOINT BEFORE COMBUSTION IN A CHP ENGINE STEVEN SCOTT MARKET DEVELOPMENT MANAGER ALTERNATIVE ENERGIES SIX REASONS TO DRY BIOGAS To A LOW DEWPOINT BEFORE COMBUSTION IN A CHP ENGINE STEVEN SCOTT MARKET DEVELOPMENT MANAGER ALTERNATIVE ENERGIES Filippo Turra Product Manager Cooling Technology INTRODUCTION

More information

Degradation of polyolefine wastes into liquid fuels

Degradation of polyolefine wastes into liquid fuels NUKLEONIKA 2006;51(Supplement 1):S89S94 PROCEEDINGS Degradation of polyolefine wastes into liquid fuels Bogdan Tymiński, Krzysztof Zwoliński, Renata Jurczyk Abstract In Poland, the consumption of polymers

More information

IDENTIFICATION OF POLYMERS 1998 by David A. Katz. All rights reserved

IDENTIFICATION OF POLYMERS 1998 by David A. Katz. All rights reserved IDENTIFICATION OF POLYMERS 1998 by David A. Katz. All rights reserved David A. Katz Chemist, Educator, Science Communicator, and Consultant 133 N. Desert Stream Dr., Tucson, AZ 85745 Voice/Fax: 520-624-2207

More information

Enhanced power and heat generation from biomass and municipal waste. Torsten Strand. Siemens Power Generation Industrial Applications

Enhanced power and heat generation from biomass and municipal waste. Torsten Strand. Siemens Power Generation Industrial Applications Enhanced power and heat generation from biomass and municipal waste Torsten Strand Siemens Power Generation Industrial Applications Enhanced power and heat generation from biomass and municipal waste Torsten

More information

Introduction to Waste Treatment Technologies. Contents. Household waste

Introduction to Waste Treatment Technologies. Contents. Household waste Contents Introduction to waste treatment technologies 3 Section 1: The treatment of recyclable waste 4 Bulking facilities 5 Materials Reclamation Facility (MRF) 6 Reuse and recycling centres 8 Composting

More information

Product sustainability in the water based polymers industry

Product sustainability in the water based polymers industry Product sustainability in the water based polymers industry The VINAVIL case Marco Cerra Vinavil S.p.A. R&S ITALIAN SITUATION : IMAGE OF CHEMISTRY Chemistry is not perceived today as sustainable for three

More information

Ligentoplant - The biomass cogeneration. Ligento green power GmbH

Ligentoplant - The biomass cogeneration. Ligento green power GmbH Ligento greenpower GmbH Ligentoplant - The biomass cogeneration Ligento - With a pioneering spirit for sustainable energy supply! Ligentoplant is producing electricity and in a combined and power process.

More information

Sustainable Plastics with Reduced Carbon Footprint & Reduced Waste

Sustainable Plastics with Reduced Carbon Footprint & Reduced Waste Sustainable Plastics with Reduced Carbon Footprint & Reduced Waste Joseph P. Greene California State University, Chico Chico, CA 95929-0789 Abstract Plastic products can be made more sustainable by reducing

More information

Basics of Kraft Pulping & Recovery Process. Art J. Ragauskas Institute of Paper Science and Technology Georgia Institute of Technology

Basics of Kraft Pulping & Recovery Process. Art J. Ragauskas Institute of Paper Science and Technology Georgia Institute of Technology Basics of Kraft Pulping & Recovery Process Art J. Ragauskas Institute of Paper Science and Technology Georgia Institute of Technology Outline History Goals Process Overview Kraft Pulping Process Kraft

More information

Top Technology for Industry, Agriculture, Business and Communities

Top Technology for Industry, Agriculture, Business and Communities Top Technology for Industry, Agriculture, Business and Communities CHP The Technology with a Potential for Saving Energy Combined Heat and Power (CHP) is a highly efficient technology for the conversion

More information

Resource and Environmental Profile Analysis of Polyethylene Milk Bottles and Polyethylene-coated Paperboard Milk Cartons

Resource and Environmental Profile Analysis of Polyethylene Milk Bottles and Polyethylene-coated Paperboard Milk Cartons Resource and Environmental Profile Analysis of Polyethylene Milk Bottles and Polyethylene-coated Paperboard Milk Cartons Background Recently, much attention has been directed at packaging by a variety

More information

Reduce Reduce Reduce. Reuse. Reuse. Recycle. Recycle. Lesson: Plastic Polymers. Background: Procedures:

Reduce Reduce Reduce. Reuse. Reuse. Recycle. Recycle. Lesson: Plastic Polymers. Background: Procedures: Lesson: Plastic Polymers Grade: 4-5 Subject: Science Objectives: Students will: conduct a series of tests to determine the properties of different types of plastics audit the plastic waste generated in

More information

Process Technology. Advanced bioethanol production and renewable energy generation from ligno-cellulosic materials, biomass waste and residues

Process Technology. Advanced bioethanol production and renewable energy generation from ligno-cellulosic materials, biomass waste and residues Process Technology Advanced bioethanol production and renewable energy generation from ligno-cellulosic materials, biomass waste and residues The INEOS Bio process technology produces carbon-neutral bioethanol

More information

POLYCITY. Technical measures and experiences at a 6 MW cogeneration plant with wood chip furnace POLYCITY

POLYCITY. Technical measures and experiences at a 6 MW cogeneration plant with wood chip furnace POLYCITY Technical measures and experiences at a 6 MW cogeneration plant with wood chip furnace Content 1. Technical overview cogeneration plant and heating network 2. Investment of the facility 3. Experiences

More information

WASTE PLASTIC FUEL USED IN PETROL ENGINE

WASTE PLASTIC FUEL USED IN PETROL ENGINE International Journal of Mechanical Engineering and Technology (IJMET) Volume 7, Issue 1, Jan-Feb 2016, pp. 01-04, Article ID: IJMET_07_01_001 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=7&itype=1

More information

Sustainable Purchasing Guide Promotional Items

Sustainable Purchasing Guide Promotional Items Promotional Items Promotional Items Introduction This section provides information on currently available promotional item options that can help to move the University of Saskatchewan toward its sustainability

More information

Gas Detection for Refining. HA University

Gas Detection for Refining. HA University Gas Detection for Refining HA University Refinery Process and Detection Needs Refining i Crude Oil Final Products Coke Asphalt Waxes, Lubricating Oils and Greases Kerosene, Jet Fuel, Diesel Fuel, Home

More information

Data and Trends. Environmental protection and Safety

Data and Trends. Environmental protection and Safety Data and Trends Environmental protection and Safety 2006 EMS-GRIVORY Performance Polymers EMS-GRIVORY Extrusion Polymers EMS-GRILTECH EMS-PRIMID EMS-PATVAG EMS-SERVICES Data and Trends 2006 Protection

More information

Refinery Equipment of Texas. Mini - Refinery Feasibility Overview

Refinery Equipment of Texas. Mini - Refinery Feasibility Overview Mini - Refinery Feasibility Overview Introduction This paper is intended to provide information, answer questions, and assist the owner or project developer in making informed buying decisions. A mini-refinery

More information

Continuous flow direct water heating for potable hot water

Continuous flow direct water heating for potable hot water Continuous flow direct water heating for potable hot water An independently produced White Paper for Rinnai UK 2013 www.rinnaiuk.com In the 35 years since direct hot water systems entered the UK commercial

More information

4.1 Dry Cleaning. 4.1.1 General 1,2

4.1 Dry Cleaning. 4.1.1 General 1,2 4.1 Dry Cleaning 4.1.1 General 1,2 Dry cleaning involves the cleaning of fabrics with nonaqueous organic solvents. The dry cleaning process requires 3 steps: (1) washing the fabric in solvent, (2) spinning

More information

SULFUR RECOVERY UNIT. Thermal Oxidizer

SULFUR RECOVERY UNIT. Thermal Oxidizer SULFUR RECOVERY UNIT Thermal Oxidizer BURNERS FLARES INCINERATORS PARTS & SERVICE SULFUR RECOVERY UNIT Thermal Oxidizer Tail Gas Thermal Oxidizer designed and built to GOST-R requirements. Zeeco can meet

More information

Waste to Energy in Düsseldorf. for a clean city.

Waste to Energy in Düsseldorf. for a clean city. Waste to Energy in Düsseldorf for a clean city. Waste Management in Düsseldorf. Düsseldorf s public utilities company known as Stadtwerke Düsseldorf operates a waste to energy plant (WtE) that has been

More information

IMMERSION MANAGEMENT SERVICE KG

IMMERSION MANAGEMENT SERVICE KG IMMERSION MANAGEMENT SERVICE KG German Based Engineering and Consulting Group developing and implementing High Efficiency HVAC Solutions for Green Buildings Innovative Water Saving Technologies IMMERSION

More information

of 11,000 households Steam temperature, boiler 400 C Steam pressure, boiler Incineration temperature 1,100 C

of 11,000 households Steam temperature, boiler 400 C Steam pressure, boiler Incineration temperature 1,100 C refuse collection energy incineration waste REFA Waste-to-Energy Plant from waste to energy REFA Waste-to-Energy Plant - a Facility for waste incineration and energy generation REFA Waste-to-Energy Plant

More information

Selective Catalytic Reduction (SCR) and Diesel Exhaust Fluid (DEF) Training Module

Selective Catalytic Reduction (SCR) and Diesel Exhaust Fluid (DEF) Training Module Selective Catalytic Reduction (SCR) and Diesel Exhaust Fluid (DEF) Training Module DEF SCR Training Module Welcome to the Cummins Filtration DEF SCR training module. DEF & SCR systems are key to Cummins

More information

Carbon Dioxide Membrane Separation for Carbon Capture using Direct FuelCell Systems

Carbon Dioxide Membrane Separation for Carbon Capture using Direct FuelCell Systems Carbon Dioxide Membrane Separation for Carbon Capture using Direct FuelCell Systems DFC Technology Used as Electrochemical Membrane for CO 2 Purification and Capture during Power Generation FCE s Direct

More information

12 November 2008 *** I:\CIRC\MEPC\01\642.DOC INTERNATIONAL MARITIME ORGANIZATION 4 ALBERT EMBANKMENT LONDON SE1 7SR

12 November 2008 *** I:\CIRC\MEPC\01\642.DOC INTERNATIONAL MARITIME ORGANIZATION 4 ALBERT EMBANKMENT LONDON SE1 7SR INTERNATIONAL MARITIME ORGANIZATION 4 ALBERT EMBANKMENT LONDON SE1 7SR Telephone: 020 7735 7611 Fax: 020 7587 3210 IMO E Ref. T5/1.01 MEPC.1/Circ.642 12 November 2008 2008 REVISED GUIDELINES FOR SYSTEMS

More information

Eco- and water efficiency development prospects in Pulp-Board integrate.

Eco- and water efficiency development prospects in Pulp-Board integrate. Eco- and water efficiency development prospects in Jari Räsänen, StoraEnso Oyj March 22, 2013 1 Some remarks as considering water: Water covers 70.9% of the Earth's surface, and is vital for all known

More information

Development of Chemical Recycling Process for Post- Consumer PET Bottles by Methanolysis in Supercritical Methanol

Development of Chemical Recycling Process for Post- Consumer PET Bottles by Methanolysis in Supercritical Methanol Development of Chemical Recycling Process for Post- Consumer PET Bottles by Methanolysis in Supercritical Methanol Minoru Genta, Ryosuke Uehara, Fumitoshi Yano, Yuichi Kondo* Mitsubishi Heavy Industries,

More information

Introduction to our Business in Valmet. Marita Niemelä VP, Strategy Pulp & Energy 20 August 2014

Introduction to our Business in Valmet. Marita Niemelä VP, Strategy Pulp & Energy 20 August 2014 Introduction to our Business in Valmet Marita Niemelä VP, Strategy Pulp & Energy 20 August 2014 Valmet in brief Metso Demerger Two independent stock listed companies Metso is a global supplier of technology

More information

General Recycling Information

General Recycling Information General Recycling Information HOUSEHOLD RECYCLING The four main materials collected in a mixed bin collection system, usually either a blue or green bin are- PAPER FOOD AND DRINK CANS CARDBOARD PLASTIC

More information

Half the cost Half the carbon

Half the cost Half the carbon Half the cost Half the carbon the world s most efficient micro-chp What is BlueGEN? The most efficient small-scale electricity generator BlueGEN uses natural gas from the grid to generate electricity within

More information

Bio-CNG plant. Spectrum Renewable Energy Limited, Kodoli, Kolhapur

Bio-CNG plant. Spectrum Renewable Energy Limited, Kodoli, Kolhapur Bio-CNG plant Spectrum Renewable Energy Limited, Kodoli, Kolhapur Spectrum Renewable Energy Private Limited (SREL) developed a large scale biogas generation and bottling project at Kodoli near Kolhapur

More information

JASE-world Waste to Energy Sub WG Masanori Tsukahara Hitachi Zosen Corporation 2012.11.14

JASE-world Waste to Energy Sub WG Masanori Tsukahara Hitachi Zosen Corporation 2012.11.14 Presentation of Japanese technology of waste to energy JASE-world Waste to Energy Sub WG Masanori Tsukahara Hitachi Zosen Corporation 2012.11.14 1 JASE-W established in Oct 2008 Introduction of JASE-world

More information

LANDFILL GAS TO ENERGY- COMBINED ENGINE AND ORC-PROCESS

LANDFILL GAS TO ENERGY- COMBINED ENGINE AND ORC-PROCESS LANDFILL GAS TO ENERGY- COMBINED ENGINE AND ORC-PROCESS Dr Petri Kouvo Helsinki Region Environmental Services Authority THIRD INTERNATIONAL SYMPOSIUM ON ENERGY FROM BIOMASS AND WASTE Venice, Italy 8-11

More information

CRG CONSERVE RESOURCES GROUP ECO ENVIRONMENTAL ENGINEERING TECHNOLOGIES. NEW State of the Art. Advanced OIL REFINERY TECHNOLOGY & PROCESSES

CRG CONSERVE RESOURCES GROUP ECO ENVIRONMENTAL ENGINEERING TECHNOLOGIES. NEW State of the Art. Advanced OIL REFINERY TECHNOLOGY & PROCESSES NEW State of the Art Advanced OIL REFINERY TECHNOLOGY & PROCESSES TABLE OF CONTENTS Introduction ( Part 1 ) Comparison Advantages Information Appendix Result of Fraction Refinery Economic indicator + Supporting

More information

This method has been adopted in many communities in the United States and Europe

This method has been adopted in many communities in the United States and Europe Burning trash Most garbage-to-energy plants in the United States use direct burning of garbage to reduce the volume, meanwhile attempting to intercept valuable resources before or after burning. This method

More information

Consider How can you collect solar energy for use in your school? What are other alternatives?

Consider How can you collect solar energy for use in your school? What are other alternatives? 5 a 5 Energy Sources a - Energy from the sun Purpose To explore sourcing our energy from the sun Key concepts Solar energy is a natural and renewable resource Heat energy from the sun can be used to heat

More information

97 MW of Cat coal seam methane power in New South Wales, Australia

97 MW of Cat coal seam methane power in New South Wales, Australia CAT GAS SOLUTIONS 97 MW of Cat coal seam methane power in New South Wales, Australia SMARTER ENERGY SOLUTIONS From natural gas combined heat and power (CHP) for facilities to alternative biogas electric

More information

THE PRACTICAL, PROVEN PATH TO GREEN ENERGY. RTP rapid thermal processing from Envergent Technologies

THE PRACTICAL, PROVEN PATH TO GREEN ENERGY. RTP rapid thermal processing from Envergent Technologies THE PRACTICAL, PROVEN PATH TO GREEN ENERGY. RTP rapid thermal processing from Envergent Technologies RTP CONVERTS BIOMASS TO PYROLYSIS OIL FAST. Less than two seconds. That s all the time it takes to convert

More information

How To Power A Power Plant With Waste Heat

How To Power A Power Plant With Waste Heat Power Generation Siemens Organic Rankine Cycle Waste Heat Recovery with ORC Answers for energy. Table of Contents Requirements of the Future Power Supply without extra Fuel Siemens ORC-Module Typical Applications

More information

AN OFFER TECHNOLOGY FOR THE DISPOSAL OF M6 PROPELLANT WASTE. Wrocław, POLAND, 02-2015.

AN OFFER TECHNOLOGY FOR THE DISPOSAL OF M6 PROPELLANT WASTE. Wrocław, POLAND, 02-2015. AN OFFER TECHNOLOGY FOR THE DISPOSAL OF M6 PROPELLANT WASTE Wrocław, POLAND, 02-2015. 002664 AN OFFER The ATON-HT SA co has developed technology to neutralize, and utilize hazardous wastes. This also includes

More information

Last update: January 2009 Doc.: 08A05203_e

Last update: January 2009 Doc.: 08A05203_e Last update: January 2009 Doc.: 08A05203_e Organic Rankine Cycle (ORC) modules ORC is a commercial technology for distributed production of combined heat and power from various energy sources. TURBODEN

More information

We make rational and conscientious use of our

We make rational and conscientious use of our 28 Fraser and Neave, Limited & Subsidiary Companies Sustainability Report 2015 Environment Focus on Conservation Environmental conservation remains a key focus area for the Group. As one of the region

More information

Waste Incineration Plants

Waste Incineration Plants Waste Incineration Plants Modern Technology for a better Environmental Welcome at Hafner! We Manufacture Systems for Energy Recovery from Wastes and Biomass as well as for Treatment of Hazardous Wastes.

More information

www.klmtechgroup.com TABLE OF CONTENT

www.klmtechgroup.com TABLE OF CONTENT Page : 1 of 23 Rev: 01 Project Engineering Standard www.klmtechgroup.com KLM Technology #03-12 Block Aronia, Jalan Sri Perkasa 2 Taman Tampoi Utama 81200 Johor Bahru Malaysia TABLE OF CONTENT SCOPE 2 DEFINITIONS

More information

Plastics Converting in Europe

Plastics Converting in Europe Understanding the plastics industry Plastics Converting in Europe The European Plastics Converters (EuPC) is the leading EU-level Trade Association, based in Brussels, representing European Plastics Converters.

More information

Cooking at the Speed of light!

Cooking at the Speed of light! Cooking at the Infrared Cooking & Colouring Infrabaker is a modular infrared continuous cooking system developed by Infrabaker International. The machine is designed to cook and/or put colour on a wide

More information

Haldor Topsøe Catalysing Your Business

Haldor Topsøe Catalysing Your Business Haldor Topsøe Catalysing Your Business Haldor Topsøe A/S Established: 1940 Ownership: Haldor Topsøe Holding A/S (100%) Annual turnover: ~ 700 MM EUR Number of employees: ~ 2,050 Offices worldwide Copenhagen

More information

FlyMe Environmental impact assessment MHI/ 24-1-2007 Page 1(6) 2 Description and assessment of the Production process

FlyMe Environmental impact assessment MHI/ 24-1-2007 Page 1(6) 2 Description and assessment of the Production process Page 1(6) Fly Me CHAIR 1 Description and assessment of the Materials used in the Product 2 Description and assessment of the Production process 3 Description and assessment of the Surface Treatment Methods

More information

IWR Integrated Waste Recycling. Integrated System for treatment and recycling of Municipal Solid Waste

IWR Integrated Waste Recycling. Integrated System for treatment and recycling of Municipal Solid Waste IWR Integrated Waste Recycling Integrated System for treatment and recycling of Municipal Solid Waste 1 1. Introduction IWR is an integrated system, realised by different Italian companies, manufacturers

More information

01 2015 CIMAC Guideline

01 2015 CIMAC Guideline 01 2015 CIMAC Guideline Cold flow properties of marine fuel oils By CIMAC WG7 Fuels This publication is for guidance and gives an overview regarding the assessment of risks associated with operating on

More information

WORLD PLASTICS MARKET REVIEW. By Bill Kuhlke and Dr. Tom Walsh

WORLD PLASTICS MARKET REVIEW. By Bill Kuhlke and Dr. Tom Walsh WORLD PLASTICS MARKET REVIEW By Bill Kuhlke and Dr. Tom Walsh OUTLINE OVERVIEW OF THE PLASTICS INDUSTRY MAJOR THERMOPLASTICS TO BE REVIEWED POLYETHYLENE POLYPROPYLENE POLYSTYRENE CONCLUSIONS THE PLASTICS

More information

SEATTLE STEAM COMPANY FREQUENTLY ASKED QUESTIONS

SEATTLE STEAM COMPANY FREQUENTLY ASKED QUESTIONS SEATTLE STEAM COMPANY FREQUENTLY ASKED QUESTIONS What products/services does Seattle Steam provide? The company provides thermal energy (heat) produced at two central heating plants in downtown Seattle.

More information

Module 5: Combustion Technology. Lecture 34: Calculation of calorific value of fuels

Module 5: Combustion Technology. Lecture 34: Calculation of calorific value of fuels 1 P age Module 5: Combustion Technology Lecture 34: Calculation of calorific value of fuels 2 P age Keywords : Gross calorific value, Net calorific value, enthalpy change, bomb calorimeter 5.3 Calculation

More information

Energy Consumption. U.S. Energy Consumption by Sector, 2013. Energy Use. Who Uses Energy? Residential and Commercial Sectors

Energy Consumption. U.S. Energy Consumption by Sector, 2013. Energy Use. Who Uses Energy? Residential and Commercial Sectors Energy Use Think about how you use energy every day. You wake up to an alarm clock. You take a shower with water warmed by a hot water heater. You listen to music on the radio as you dress. You catch the

More information

ENGS-171 INDUSTRIAL ECOLOGY- DARTMOUTH COLLEGE. SOME USEFUL NUMBERS Compiled by Benoit Cushman-Roisin

ENGS-171 INDUSTRIAL ECOLOGY- DARTMOUTH COLLEGE. SOME USEFUL NUMBERS Compiled by Benoit Cushman-Roisin ENGS-171 INDUSTRIAL ECOLOGY- DARTMOUTH COLLEGE SOME USEFUL NUMBERS Compiled by Benoit Cushman-Roisin ENERGY PRODUCTION 1 barrel of oil weighs 106 kg. 1 barrel of oil holds 42 US gallons = 0.159 m 3 = 5.8

More information

Energy Consumption. Energy Use. U.S. Energy Consumption by Sector, 2009. Who Uses Energy? Residential and Commercial Sectors

Energy Consumption. Energy Use. U.S. Energy Consumption by Sector, 2009. Who Uses Energy? Residential and Commercial Sectors Energy Use Think about how you use energy every day. You wake up to an alarm clock. You take a shower with water warmed by a hot water heater. You listen to music on the radio as you dress. You catch the

More information

THE PRODUCTION OF ELECTRICITY FROM WOOD AND OTHER SOLID BIOMASS

THE PRODUCTION OF ELECTRICITY FROM WOOD AND OTHER SOLID BIOMASS THE PRODUCTION OF ELECTRICITY FROM WOOD AND OTHER SOLID BIOMASS RTP TM /ADVANCED CYCLE VS. COMBUSTION STEAM CYCLES OR WHY NOT SIMPLY COMBUST? For decades, the only commercial option available for the production

More information

Chemical versus Physical Changes

Chemical versus Physical Changes Chemical versus Physical Changes Permission to Copy - This document may be reproduced for non-commercial educational purposes Copyright 2009 General Electric Company What are physical and chemical changes?

More information

Chapter 3: Separating Mixtures (pg. 54 81)

Chapter 3: Separating Mixtures (pg. 54 81) Chapter 3: Separating Mixtures (pg. 54 81) 3.2: Separating Mechanical Mixtures (PB Pg. 40 5 & TB Pg. 58 61): Name: Date: Check Your Understanding & Learning (PB pg. 40 & TB pg. 61): 1. What are four methods

More information

AUTOMOTIVE GAS OIL. Robert Shisoka Hydrocarbon Management Consultancy

AUTOMOTIVE GAS OIL. Robert Shisoka Hydrocarbon Management Consultancy AUTOMOTIVE GAS OIL Robert Shisoka Hydrocarbon Management Consultancy AUTOMOTIVE GAS OIL AUTOMOTIVE GAS OIL COMMON TERMS Fossil Fuels From Organic Matter Over Millions of Years (Natural Gas, Crude Oil,

More information

Module 5: Combustion Technology. Lecture 33: Combustion air calculation

Module 5: Combustion Technology. Lecture 33: Combustion air calculation 1 P age Module 5: Combustion Technology Lecture 33: Combustion air calculation 2 P age Keywords: Heat of combustion, stoichiometric air, excess air, natural gas combustion Combustion air calculation The

More information

RECOVERING RESOURCES FOR ALL. Integra North Energy Recovery Facility

RECOVERING RESOURCES FOR ALL. Integra North Energy Recovery Facility RECOVERING RESOURCES FOR ALL Integra North Energy Recovery Facility Integra North Energy Recovery Facility (ERF) was the first of its kind to be built in Hampshire and one of the leading examples of best

More information

Recycling Plastic: Complications & Limitations

Recycling Plastic: Complications & Limitations Updated April, 2009 Recycling Plastic: Complications & Limitations Plastic is light, easy to store and transport, comes in an endless variety of textures and shapes, and can hold almost anything. These

More information

Ecological Aspects of Oil Shale Processing

Ecological Aspects of Oil Shale Processing Abstract Ecological Aspects of Oil Shale Processing Y. Zhirjakov, Institute of Oil Shale Research Tallinn Technical University Tallinn, Estonia 26 th Oil Shale Symposium Oil shale belongs to lean and environmentally

More information

PHARMACEUTICAL AND CHEMICAL WASTE MANAGEMENT

PHARMACEUTICAL AND CHEMICAL WASTE MANAGEMENT Medicines and Medical Devices Agency of Serbia PHARMACEUTICAL AND CHEMICAL WASTE MANAGEMENT Ivana Bozic, MSc Health, Safety and Environment ISWA Beacon Conference, Novi Sad, 08 10 December 2010 458, Vojvode

More information

AMMONIA AND UREA PRODUCTION

AMMONIA AND UREA PRODUCTION AMMONIA AND UREA PRODUCTION Urea (NH 2 CONH 2 ) is of great importance to the agriculture industry as a nitrogen-rich fertiliser. In Kapuni, Petrochem manufacture ammonia and then convert the majority

More information

Specimen Paper. Chemistry 1F. Time allowed! 60 minutes

Specimen Paper. Chemistry 1F. Time allowed! 60 minutes Centre Number Surname Candidate Number Specimen Paper For Examiner s Use Other Names Candidate Signature Examiner s Initials General Certificate of Secondary Education Foundation Tier Question 1 Mark Science

More information

5. State the function of pulveriser. The pulverisers are the equipments which are used to powdered coal.

5. State the function of pulveriser. The pulverisers are the equipments which are used to powdered coal. 413 POWER PLANT ENGINEERING PART-A 1. Define Power. Power is the rate at which energy is used (or) Energy/time. 2. What are the types of fuels? Solid fuel Liquid fuel Gaseous fuel (Any one among the above

More information

Swallow Street recycling facts and figures in partnership with Bywaters

Swallow Street recycling facts and figures in partnership with Bywaters Regent Street Direct Swallow Street recycling facts and figures in partnership with Bywaters 2013 Swallow Street produced 76 tonnes of cardboard Mission Recycling Ltd: Paper and Cardboard Paper of all

More information

Condensing Economizers Workshop Enbridge Gas, Toronto. MENEX Boiler Plant Heat Recovery Technologies. Prepared by: Jozo Martinovic, M A Sc, P Eng

Condensing Economizers Workshop Enbridge Gas, Toronto. MENEX Boiler Plant Heat Recovery Technologies. Prepared by: Jozo Martinovic, M A Sc, P Eng Condensing Economizers Workshop Enbridge Gas, Toronto MENEX Boiler Plant Heat Recovery Technologies Prepared by: Jozo Martinovic, M A Sc, P Eng MENEX Innovative Solutions May 15, 2008 MENEX INC. 683 Louis

More information

Avoiding co-product allocation in a simplified hypothetical refinery 1

Avoiding co-product allocation in a simplified hypothetical refinery 1 Avoiding co-product allocation in a simplified hypothetical refinery 1 by Bo Weidema, 2.-0 LCA consultants, http://www.lca-net.com The refinery and its product flows are illustrated in figure A.1 Process

More information

Layman Report. Stirling Power Station. Mini CHP with longlife Stirling engine. Mayer & Cie. GmbH & Co. P.O. Box 20 15 80 D 72438 Albstadt

Layman Report. Stirling Power Station. Mini CHP with longlife Stirling engine. Mayer & Cie. GmbH & Co. P.O. Box 20 15 80 D 72438 Albstadt Stirling Power Station Mini CHP with longlife Stirling engine Project LIFE99 ENV/D/000.452. GmbH & Co. P.O. Box 20 15 80 D 72438 Albstadt 1. Contents 2. Key words 3. Summary 1. Contents 2 2. Key words

More information

How To Understand The Purpose Of Life Cycle Assessment

How To Understand The Purpose Of Life Cycle Assessment Life-Cycle Assessment Lesson 1 Overview This is the first lesson on life cycle assessment in this module. In this lesson, the framework for conducting life-cycle assessments is described and examples of

More information

Energise your waste! EU legislation pushes for a reliable alternative to landfilling for residual waste. 13 th September 2011, Birmingham

Energise your waste! EU legislation pushes for a reliable alternative to landfilling for residual waste. 13 th September 2011, Birmingham Energise your waste! EU legislation pushes for a reliable alternative to landfilling for residual waste 13 th September 2011, Birmingham Recycling & Waste Management (RWM) Exhibition Dr.ir. Johan De Greef

More information

Dehydration. Dehydration UNIT. operations. bioprocess plants

Dehydration. Dehydration UNIT. operations. bioprocess plants Dehydration Dehydration UNIT operations bioprocess plants VOGELBUSCH MOLECULAR SIEVE DEHYDRATION PRESSURE SWING ADSORPTION PROCESS By merging specialized process know-how with existing technology Vogelbusch

More information

Form 0.5 chair, 2805 and 2806

Form 0.5 chair, 2805 and 2806 Page 1(8) Form 0.5 chair, 2805 and 2806 1 Description and assessment of the Materials used in the Product 2 Description and assessment of the Production process 3 Description and assessment of the Surface

More information

Waste Air Cleaning System. Effective reduction of: Pollutants Odours Solvent emissions

Waste Air Cleaning System. Effective reduction of: Pollutants Odours Solvent emissions Waste Air Cleaning System Effective reduction of: Pollutants Odours Solvent emissions The Problem Waste-Air Pollution n The cleaning of polluted waste air is an up-to-the-minute topic for many companies.

More information

Outlook on Integrated Gasification Combined Cycle (IGCC) Technology

Outlook on Integrated Gasification Combined Cycle (IGCC) Technology The IGCC Process: From Coal To Clean Electric Power Outlook on Integrated Gasification Combined Cycle (IGCC) Technology Testimony of Edward Lowe Gas Turbine-Combined Cycle Product Line Manager General

More information

COMBUSTION. In order to operate a heat engine we need a hot source together with a cold sink

COMBUSTION. In order to operate a heat engine we need a hot source together with a cold sink COMBUSTION In order to operate a heat engine we need a hot source together with a cold sink Occasionally these occur together in nature eg:- geothermal sites or solar powered engines, but usually the heat

More information

Energy From Waste or Waste-to-Energy. Pyromex. The Solution to Multiple Energy & Environmental Issues James Pfeiffer, CEM

Energy From Waste or Waste-to-Energy. Pyromex. The Solution to Multiple Energy & Environmental Issues James Pfeiffer, CEM Energy From Waste or Waste-to-Energy Pyromex The Solution to Multiple Energy & Environmental Issues James Pfeiffer, CEM 1 Agenda Who is PowerHouse Energy What is Pyromex How Does Pyromex Work History of

More information

Fiber Recycling in the United States

Fiber Recycling in the United States Fiber Recycling in the United States Youjiang Wang School of Materials Science & Engineering, Georgia Institute of Technology Atlanta, Georgia 30332-0295 USA Abstract Due to the growth in world population

More information

Material Safety Data Sheet

Material Safety Data Sheet Revision -1 on 10-02-07 Nylon-66 Thermoplastic Resin Material Safety Data Sheet CHEMICAL PRODUCT/ COMPANY NAME Product Identifier: Polyamide 66 commonly known as Nylon 66 or PA66 Product Description: Nylon

More information

Landfill Gas In Ireland - The Facts

Landfill Gas In Ireland - The Facts Landfill Gas In Ireland - The Facts Almost two million tonnes of municipal solid waste (MSW) were generated in Ireland in 1998, over 90% of which was consigned to landfill. At landfill, bacteria cause

More information

ANDRITZ MeWa GmbH State-of-the-art recycling technology

ANDRITZ MeWa GmbH State-of-the-art recycling technology GmbH State-of-the-art recycling technology The ANDRITZ GROUP Overview Company ANDRITZ AG, Graz, Austria (Group headquarters) More than 220 production and service sites worldwide Employees: approx. 23,900

More information