Bring up the bpdat data set into the SPSS spreadsheet.

Similar documents
10. Comparing Means Using Repeated Measures ANOVA

8. Comparing Means Using One Way ANOVA

One-Way ANOVA using SPSS SPSS ANOVA procedures found in the Compare Means analyses. Specifically, we demonstrate

Chapter 5 Analysis of variance SPSS Analysis of variance

Mixed 2 x 3 ANOVA. Notes

This activity will show you how to draw graphs of algebraic functions in Excel.

Doing Multiple Regression with SPSS. In this case, we are interested in the Analyze options so we choose that menu. If gives us a number of choices:

SPSS Guide: Regression Analysis

Simple Linear Regression, Scatterplots, and Bivariate Correlation

Main Effects and Interactions

ITS Training Class Charts and PivotTables Using Excel 2007

Years after US Student to Teacher Ratio

ABSORBENCY OF PAPER TOWELS

Session 7 Bivariate Data and Analysis

The Dummy s Guide to Data Analysis Using SPSS

Directions for Frequency Tables, Histograms, and Frequency Bar Charts

Data analysis and regression in Stata

Univariate Regression

Simple Tricks for Using SPSS for Windows

There are six different windows that can be opened when using SPSS. The following will give a description of each of them.

SPSS Explore procedure

Scatter Plots with Error Bars

2. Select Point B and rotate it by 15 degrees. A new Point B' appears. 3. Drag each of the three points in turn.

Statistical Analysis Using SPSS for Windows Getting Started (Ver. 2014/11/6) The numbers of figures in the SPSS_screenshot.pptx are shown in red.

HYPOTHESIS TESTING: CONFIDENCE INTERVALS, T-TESTS, ANOVAS, AND REGRESSION

Chapter 13. Chi-Square. Crosstabs and Nonparametric Tests. Specifically, we demonstrate procedures for running two separate

How To Use Spss

Data Analysis Tools. Tools for Summarizing Data

Statgraphics Getting started

Describing, Exploring, and Comparing Data

In This Issue: Excel Sorting with Text and Numbers

3. Locate the different selections of Styles from the Home Tab, Styles Group

HOW TO ORGANIZE PICTURES

WEB APPENDIX. Calculating Beta Coefficients. b Beta Rise Run Y X

EXCEL Tutorial: How to use EXCEL for Graphs and Calculations.

Unit 31 A Hypothesis Test about Correlation and Slope in a Simple Linear Regression

5. Correlation. Open HeightWeight.sav. Take a moment to review the data file.

Assignment objectives:

What is Microsoft Excel?

Introduction to the TI-Nspire CX

INTERPRETING THE ONE-WAY ANALYSIS OF VARIANCE (ANOVA)

Polynomial and Rational Functions

Using Microsoft Project 2000

SPSS Resources. 1. See website (readings) for SPSS tutorial & Stats handout

This chapter will demonstrate how to perform multiple linear regression with IBM SPSS

Using Mail Merge in Microsoft Word 2003

Using Microsoft Word. Working With Objects

Summary of important mathematical operations and formulas (from first tutorial):

Microsoft Access Rollup Procedure for Microsoft Office Click on Blank Database and name it something appropriate.

Using Excel for Statistical Analysis

USING EXCEL ON THE COMPUTER TO FIND THE MEAN AND STANDARD DEVIATION AND TO DO LINEAR REGRESSION ANALYSIS AND GRAPHING TABLE OF CONTENTS

Microsoft Excel 2013 Tutorial

Creating an Excel XY (Scatter) Plot

Module 3: Correlation and Covariance

Chapter 2: Descriptive Statistics

Simple Regression Theory II 2010 Samuel L. Baker

Chapter Seven. Multiple regression An introduction to multiple regression Performing a multiple regression on SPSS

1.1. Simple Regression in Excel (Excel 2010).

Dealing with Data in Excel 2010

NCSS Statistical Software Principal Components Regression. In ordinary least squares, the regression coefficients are estimated using the formula ( )

SPSS Tests for Versions 9 to 13

Sample Table. Columns. Column 1 Column 2 Column 3 Row 1 Cell 1 Cell 2 Cell 3 Row 2 Cell 4 Cell 5 Cell 6 Row 3 Cell 7 Cell 8 Cell 9.

Multiple Regression in SPSS This example shows you how to perform multiple regression. The basic command is regression : linear.

Excel Basics By Tom Peters & Laura Spielman

Excel Charts & Graphs

Customizing forms and writing QuickBooks Letters

CHARTS AND GRAPHS INTRODUCTION USING SPSS TO DRAW GRAPHS SPSS GRAPH OPTIONS CAG08

Analyzing calorimetry data using pivot tables in Excel

How to Make the Most of Excel Spreadsheets

Using Excel for Data Manipulation and Statistical Analysis: How-to s and Cautions

Mail Merge (Microsoft Office 2010)

Absorbance Spectrophotometry: Analysis of FD&C Red Food Dye #40 Calibration Curve Procedure

Odds ratio, Odds ratio test for independence, chi-squared statistic.

Creating a table of contents quickly in Word

Microsoft Word 2011: Create a Table of Contents

SPSS INSTRUCTION CHAPTER 1

IBM SPSS Statistics 20 Part 4: Chi-Square and ANOVA

Scientific Graphing in Excel 2010

Calibration and Linear Regression Analysis: A Self-Guided Tutorial

A Quick Guide to Using Excel 2007 s Regression Analysis Tool

1.5 Oneway Analysis of Variance

Directions for using SPSS

Using SPSS, Chapter 2: Descriptive Statistics

How To Run Statistical Tests in Excel

PURPOSE OF GRAPHS YOU ARE ABOUT TO BUILD. To explore for a relationship between the categories of two discrete variables

Education Solutions Development, Inc. APECS Navigation: Business Systems Getting Started Reference Guide

Microsoft Excel v5.0 Database Functions

Merging Labels, Letters, and Envelopes Word 2013

Microsoft Excel Tutorial

Job Streaming User Guide

Data Analysis. Using Excel. Jeffrey L. Rummel. BBA Seminar. Data in Excel. Excel Calculations of Descriptive Statistics. Single Variable Graphs

TLMC WORKSHOP: THESIS FORMATTING IN WORD 2010

Factor Analysis Using SPSS

" Y. Notation and Equations for Regression Lecture 11/4. Notation:

Linear Programming. Solving LP Models Using MS Excel, 18

hp calculators HP 50g Trend Lines The STAT menu Trend Lines Practice predicting the future using trend lines

Intermediate PowerPoint

Simple Predictive Analytics Curtis Seare

Class 19: Two Way Tables, Conditional Distributions, Chi-Square (Text: Sections 2.5; 9.1)

SPSS Introduction. Yi Li

Transcription:

SPSS for Windows 11.0 Two-way ANOVA In this assignment you ll learn how to use SPSS to analyze data from studies where there are two non-repeated independent variables (i.e., each subject only provides data for one level of each independent variable). You will need to know how to test each of the following effects: 1. Interaction between A and B 2. Main effects for A and B 3. Main comparisons for A and B 4. Simple Effects for A and B 5. Simple comparisons for A and B The examples for this assignment will use the bpdat data set. Bring up the bpdat data set into the SPSS spreadsheet. The two independent variables in this study are exergrp (exercise group) and bpstat (blood pressure status). Exercise group has three levels (aerobic exercise = 1; strength training = 2; no-exercise = 3). Blood pressure status has two levels (normal blood pressure = 1; high blood pressure = 2). Let s say that the investigator has made the following predictions before collecting their data. 1. There will be a significant interaction between Exercise Group and Blood Pressure Group for the dependent variable systolic blood pressure at Time 2 (sysbp2). Main effects for both exercise group and blood pressure group are also predicted to be present. 2. The investigator predicts that there will be a significant simple effect of exercise group for subjects in the normal blood pressure group. 3. There will not be a significant simple effect of exercise group for subjects in the high blood pressure group. 4. Given the prediction of a simple effect of exercise group for normal blood pressure subjects, the investigator decides to conduct two planned simple comparisons. a. For subjects with normal blood pressure, subjects who engage in exercise will have significantly lower levels of systolic blood pressure at time 2 than subjects who do not exercise. b. For subjects with normal blood pressure, subjects who engage in aerobic exercise will have significantly lower levels of systolic blood pressure at time 2 than subjects who engaged in strength training. Now we need to take you through what needs to happen in order to test each of these predictions. Because none of the predictions is testable by a main comparison, we ll show you how to test a main comparison after we re done with this analysis.

Testing the interaction between two independent variables and the main effects for these two independent variables. The dependent variable in this study is sysbp2 -- systolic blood pressure at the second time of testing (after the exercise intervention has had time to have an effect). From the spreadsheet, click Analyze. Click General Linear Model Click Univariate. This should bring up the Univariate window. Select the dependent variable for the analysis. Click sysbp2 from the variable list at the left side of the window. Click the right arrow key beside the Dependent box. The variable name sysbp2 should now appear in that box. Select the two independent variables for the analysis. It doesn t matter what order you select the variables in. Let s say you click on the variable name exergrp in the variable list. Now click the right arrow key beside the Fixed Factor(s) box. Now let s select the second independent variable, bpstat. Click the variable name bpstat in the variable list. Click the right arrow key beside the Fixed Factor(s) box. You ll see the variable name bpstat in the box. Click the Options button. Click the open square beside the Descriptive Statistics option to get descriptive statistics for the various groups. Under Factor(s) and Factor Interactions, click the interaction term exergrp*bpstat. Then click the right arrow beside Display Means For. This will give you a table containing all of the group means. Click Continue. Back at the Univariate window, click the Plot button to bring up the Profile Plots window. Put exergrp in the Horizontal Axis box. Put bpstat in the Separate Lines box. Click Add. This will give you a graph of the interaction. Click OK after returning to the Univariate window. In the output window You first get a table which just tells you how many subject s data were used in the analysis. Next you get a Descriptive Statistics table that gives you the mean and the number of subjects for each group.

Next, you get the ANOVA table. There are rows for the two main effects and the interaction between the two independent variables. The interaction gives us an F- ratio of 4.808 and a significance level of.012, which reaches significance at the.05 level. Both main effects are significant also. The not-accounted-for or within-subjects row is labeled Error by SPSS. Notice that the sum of squares within-groups is 7339.4, this source of variability has 54 degrees of freedom, and the Mean Square for the error term is 135.915. This mean square is the appropriate error term to test every effect from now on. So write that number down. Really, I m serious. Write it down on a piece of paper. You re going to need it. MS within-groups = 135.915. There are two rows included in the table that we don t need to worry about. These are the intercept row (SPSS is really running a multiple regression with the data) and the Corrected Total row. Testing simple effects using the GLM routine of SPSS for Windows The presence of the significant interaction means that whatever effect of Exercise Group there is, that effect is not the same for people with high blood pressure as it is for people with normal blood pressure. As you know, a simple effect is the effect of one independent variable at one level of a second independent variable. This, of course, is essentially a one-way ANOVA, but only using the subjects from one level of another independent variable. The investigator has predicted that the simple effect of exercise group for subjects with normal blood pressure will be significant, but that the simple effect of exercise group for subjects with high blood pressure will not be significant. Each of these predictions is tested through a one-way ANOVA. So, we want a one-way ANOVA that tells us if there is an effect of changing the exercise conditions on systolic blood pressure at the second time of testing. But, let s say that we only want to include subjects who have normal blood pressure. The one-way ANOVA is easy. We already know how to get SPSS to do that. How do we limit the subjects included to only those with normal blood pressure? That s easy too. And we already know how to do it! Minimize the output window so that you re looking at the SPSS spreadsheet. We now need to limit the number of cases that SPSS will use. Click the data pull-down menu. Click Select Cases. Click the If condition is satisfied option. Click the If button. Type bpstat = 1 in the open box. Click Continue

Click Ok. When you look in the spreadsheet, there will now be a slash through the case number of the cases that do not fit the selection conditions. In other words, at this point the only subjects eligible for inclusion in analyses are those in the first level of blood pressure status those with high blood pressure. Now, let s perform our One-Way ANOVA. Click Analyze Click Compare Means Click One-Way ANOVA Select sysbp2 as the dependent variable and exergrp as the independent variable (Factor). Under Options click the descriptives statistics option. Click Continue to return to the One-Way ANOVA window. Click OK In the output window You can see from the ANOVA table that the effect is significant. But this analysis is does NOT give you the correct observed value for F or test the effect using the correct number of degrees of freedom for the error term. What do you mean? I m looking right at it! I know. SPSS does not provide direct tests in the icon-based option for simple effects or simple comparisons. It gives you what you need to do this yourself, but it doesn t do this directly. Think from class how many degrees of freedom the error term (within-groups) deserves to have. It s the number of groups (6) multiplied by the number of subjects in each group minus one (10 1 = 9). Six multiplied by nine gives you 54 degrees of freedom. The error term for the One-way ANOVA only has 27 degrees of freedom. This means that if you go with the result from the one-way ANOVA you re going to be using the incorrect critical value for F a critical value that is higher than it really deserves to be. The appropriate error term is the Mean Square Residual from the Overall Effects, which when you wrote it down was equal to 135.915 and has 54 degrees of freedom associated with it. To test the simple effect take the mean square for the effect from the One-way ANOVA output (1501.433) and divide it by the appropriate error term (135.915). This will give you an observed value for F equal to 11.04. This is compared to the critical value for F at 2 df for the numerator and 54 degrees of freedom for the denominator. From the table in the back of the book, this critical value is 3.15. Because the observed value for F is greater than the critical value for F, the effect can be said to be significant at the.05 level. To test the simple effect of exercise group both subjects with high blood pressure, you need to go back to the Select Cases window and change the selection criteria to bpstat = 2 and then re-run the ANOVA. You get the MS for the effect of exercise group and, again, divide this number by the error term of 135.915 to get the observed value for F.

This second simple effect is not significant, so there is no need for any simple comparisons. Testing a set of simple comparisons In the same way that a simple effect is a one-way ANOVA at a single level of the second independent variable, a set of simple comparisons is a set of comparisons among these same means. Getting the Mean Squares for simple comparisons is exactly the same as the methods you used for the one-way ANOVA assignment. There were two simple comparisons planned by the investigator in this study. 1. For subjects with normal blood pressure, the mean systolic blood pressure is predicted to be lower than for subjects who exercise than the mean systolic blood pressure for subjects who do not exercise (levels 1 and 2 versus level 3). 2. For subjects with normal blood pressure, the mean systolic blood pressure for subjects who engage in aerobic exercise will be significantly lower than for subjects who engage in strength training (level 1 versus level 2). Minimize the output window to return to the spreadsheet. Go back to the select cases option and specify If: bpstat = 1. Because now we only want to work with the data for the people with normal blood pressure. Click the Dialog Recall icon (it s just to the right of the printer icon) and select One- Way ANOVA. Click the Contrasts button and enter coefficients for the two planned comparisons outlined above (.5,.5, -1 for comparison one, 1, -1, 0 for comparison two). Run the One-Way ANOVA again with both contrasts (comparisons) included. The observed value for t for comparison 1 (levels 1 and 2 versus level 3) is 3.704. The observed value for t for the second comparison (level 1 versus level 2) is 2.837. Again these effects have the same problem as the One-way output for the simple effects. THEY RE BASED ON THE WRONG ERROR TERMS. So you have to work with the output by hand so that you use the correct error term. To get the observed values for F for each comparison, you need to take Mean Squares for each effect and divide them by the appropriate error term (135.915). What s the MS for the first comparison? All you have at this point is the observed value for t. But you know that F = t 2. So for the first comparison, F = (-3.704) 2 = 13.72. In the One-Way ANOVA table, the MS within-groups is 137.963. The MS for the effect will be (F)(MS Within-groups) = 13.72(137.963) = 1892.85. This MS for the effect is then divided by the appropriate error term of 135.915 to yield an observed value for F for the comparison of 13.92. This observed value is compared to the critical value at 1 df for the numerator and 54 df for the denominator which is 4.00. The observed value is greater than the critical value so the simple comparison is significant.

For the second comparison, the observed value for t = -2.837. The observed value for F from the One-way ANOVA analysis is (-2.837) 2 which is 8.05 (again, this is not the most appropriate number to use because it wasn t calculated using the appropriate error term). If F = 8.05 from that ANOVA table the MS for the effect must be equal to (8.05)( 137.963) = 1110.60. If the MS for the second comparison is 1110.60 and the appropriate MS to use as the error term to use is 135.915. Then the observed value for F for the second comparison should be 1110.60/135.915, which equals 8.17. Compared to the critical value of 4.00, this second comparison reaches significance at the.05 level. PSYC 610 Assignment Please take the results from the previous analyses and (a) provide an ANOVA table (including critical values for F) that contains all of the results, and (b) write a paragraph that summarizes the conclusions that the investigator is entitled to draw on the basis of these analyses. Please hand in a printout of your output window. Please make sure that the Notes section is visible for each section of output. Please hand in your responses to parts a and b above on a separate piece of paper. The assignment is due on Tuesday of the last week of classes. Main comparisons To test a main comparison, all you have to do is to run the One-Way ANOVA procedure using the Contrasts option to get the MS for the comparisons you want. Remember, you will need to make sure that ALL of the subjects in the study are included in this analysis, so make sure that any selection criteria are turned off. Take the MS for the comparison from the One-WAY ANOVA output and divide it by the MS residual (within-groups) for the overall error term (in this example that number was 135.915). Compare this resulting F-ratio against the critical value for F at the appropriate number of degrees of freedom (1 for the numerator and 54 for the denominator in this example).