SAS Example 4: Instrumental variables

Similar documents
Random effects and nested models with SAS

Indices of Model Fit STRUCTURAL EQUATION MODELING 2013

Introduction to Structural Equation Modeling. Course Notes

SPSS and AMOS. Miss Brenda Lee 2:00p.m. 6:00p.m. 24 th July, 2015 The Open University of Hong Kong

Introduction to Path Analysis

Confirmatory factor analysis in MPlus

I n d i a n a U n i v e r s i t y U n i v e r s i t y I n f o r m a t i o n T e c h n o l o g y S e r v i c e s

Applications of Structural Equation Modeling in Social Sciences Research

Basic Statistical and Modeling Procedures Using SAS

Milk Data Analysis. 1. Objective Introduction to SAS PROC MIXED Analyzing protein milk data using STATA Refit protein milk data using PROC MIXED

Goodness of fit assessment of item response theory models

Outline. Topic 4 - Analysis of Variance Approach to Regression. Partitioning Sums of Squares. Total Sum of Squares. Partitioning sums of squares

SIMPLE LINEAR CORRELATION. r can range from -1 to 1, and is independent of units of measurement. Correlation can be done on two dependent variables.

Specification of Rasch-based Measures in Structural Equation Modelling (SEM) Thomas Salzberger

Evaluating Goodness-of-Fit Indexes for Testing Measurement Invariance

Multiple Optimization Using the JMP Statistical Software Kodak Research Conference May 9, 2005

MISSING DATA TECHNIQUES WITH SAS. IDRE Statistical Consulting Group

Factor Analysis Example: SAS program (in blue) and output (in black) interleaved with comments (in red)

Sample Size Calculation for Longitudinal Studies

USING MULTIPLE GROUP STRUCTURAL MODEL FOR TESTING DIFFERENCES IN ABSORPTIVE AND INNOVATIVE CAPABILITIES BETWEEN LARGE AND MEDIUM SIZED FIRMS

Evaluating the Fit of Structural Equation Models: Tests of Significance and Descriptive Goodness-of-Fit Measures

STATISTICA Formula Guide: Logistic Regression. Table of Contents

Presentation Outline. Structural Equation Modeling (SEM) for Dummies. What Is Structural Equation Modeling?

The Technology Acceptance Model with Online Learning for the Principals in Elementary Schools and Junior High Schools

Lab 5 Linear Regression with Within-subject Correlation. Goals: Data: Use the pig data which is in wide format:

Topic 5: Stochastic Growth and Real Business Cycles

Imputing Missing Data using SAS

Structural Equation Modelling (SEM)

Statistics, Data Analysis & Econometrics

Generalized Linear Models

lavaan: an R package for structural equation modeling

Gamma Distribution Fitting

Lecture 15. Endogeneity & Instrumental Variable Estimation

Multiple Regression in SPSS This example shows you how to perform multiple regression. The basic command is regression : linear.

xtmixed & denominator degrees of freedom: myth or magic

Module 5: Introduction to Multilevel Modelling SPSS Practicals Chris Charlton 1 Centre for Multilevel Modelling

Please follow the directions once you locate the Stata software in your computer. Room 114 (Business Lab) has computers with Stata software

Forecasting the US Dollar / Euro Exchange rate Using ARMA Models

Manufacturing Service Quality: An Internal Customer Perspective

Psychology 405: Psychometric Theory Homework on Factor analysis and structural equation modeling

Introduction to Structural Equation Modeling (SEM) Day 4: November 29, 2012

Graduate Macro Theory II: Notes on Using Dynare

problem arises when only a non-random sample is available differs from censored regression model in that x i is also unobserved

Family economics data: total family income, expenditures, debt status for 50 families in two cohorts (A and B), annual records from

The Latent Variable Growth Model In Practice. Individual Development Over Time

Overview of Violations of the Basic Assumptions in the Classical Normal Linear Regression Model

SAS Syntax and Output for Data Manipulation:

Overview Classes Logistic regression (5) 19-3 Building and applying logistic regression (6) 26-3 Generalizations of logistic regression (7)

INDIRECT INFERENCE (prepared for: The New Palgrave Dictionary of Economics, Second Edition)

ECLT5810 E-Commerce Data Mining Technique SAS Enterprise Miner -- Regression Model I. Regression Node

MULTIPLE REGRESSION EXAMPLE

1. What is the critical value for this 95% confidence interval? CV = z.025 = invnorm(0.025) = 1.96

Stephen du Toit Mathilda du Toit Gerhard Mels Yan Cheng. LISREL for Windows: SIMPLIS Syntax Files

Corporate Defaults and Large Macroeconomic Shocks

HURDLE AND SELECTION MODELS Jeff Wooldridge Michigan State University BGSE/IZA Course in Microeconometrics July 2009

Chapter 6: Multivariate Cointegration Analysis

Testing for Granger causality between stock prices and economic growth

Multicollinearity Richard Williams, University of Notre Dame, Last revised January 13, 2015

Factor Analysis. Factor Analysis

Didacticiel - Études de cas

I L L I N O I S UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

ln(p/(1-p)) = α +β*age35plus, where p is the probability or odds of drinking

Two Correlated Proportions (McNemar Test)

SAS Software to Fit the Generalized Linear Model

SEM Analysis of the Impact of Knowledge Management, Total Quality Management and Innovation on Organizational Performance

Time Series Analysis

SAS Code to Select the Best Multiple Linear Regression Model for Multivariate Data Using Information Criteria

Basic Statistics and Data Analysis for Health Researchers from Foreign Countries

CHAPTER 3 EXAMPLES: REGRESSION AND PATH ANALYSIS

Part 2: Analysis of Relationship Between Two Variables

Exploratory Factor Analysis and Principal Components. Pekka Malo & Anton Frantsev 30E00500 Quantitative Empirical Research Spring 2016

Least Squares Estimation

ADVANCED FORECASTING MODELS USING SAS SOFTWARE

University of Maryland Fraternity & Sorority Life Spring 2015 Academic Report

ECON 142 SKETCH OF SOLUTIONS FOR APPLIED EXERCISE #2

August 2012 EXAMINATIONS Solution Part I

Marginal Effects for Continuous Variables Richard Williams, University of Notre Dame, Last revised February 21, 2015

DETERMINANTS OF CAPITAL ADEQUACY RATIO IN SELECTED BOSNIAN BANKS

2. Linear regression with multiple regressors

Data Analysis Tools. Tools for Summarizing Data

Rens van de Schoot a b, Peter Lugtig a & Joop Hox a a Department of Methods and Statistics, Utrecht

Lesson 1: Comparison of Population Means Part c: Comparison of Two- Means

Examples. David Ruppert. April 25, Cornell University. Statistics for Financial Engineering: Some R. Examples. David Ruppert.

Government Debt Management: the Long and the Short of it

Errata and updates for ASM Exam C/Exam 4 Manual (Sixteenth Edition) sorted by page

MEAN SEPARATION TESTS (LSD AND Tukey s Procedure) is rejected, we need a method to determine which means are significantly different from the others.

Exploratory Factor Analysis

From the help desk: Swamy s random-coefficients model

Web-based Supplementary Materials for Bayesian Effect Estimation. Accounting for Adjustment Uncertainty by Chi Wang, Giovanni

Course 4 Examination Questions And Illustrative Solutions. November 2000

Chapter 13 Introduction to Linear Regression and Correlation Analysis

A Comparison of Nonlinear. Regression Codes

This chapter will demonstrate how to perform multiple linear regression with IBM SPSS

Longitudinal Data Analyses Using Linear Mixed Models in SPSS: Concepts, Procedures and Illustrations

Ordinal Regression. Chapter

Transcription:

SAS Example 4: Instrumental variables /* card1.sas */ options linesize=79 pagesize=500 noovp formdlim='_' ; title 'Instrumental variables on credit card data (Card1)'; data math; infile 'card1.data' firstobs=2; input id income ccdebt auto house; label income = 'Annual income in thousands' ccdebt = 'Credit card debtin thousands' auto = 'Book value of car in thousands' house = 'Assessed value of home in thousands'; house2 = house/10; /* Exclude some output you really don't want to see. */ ods exclude Calis.ModelSpec.LINEQSEqInit (persist) Calis.ModelSpec.LINEQSVarExogInit (persist) Calis.ModelSpec.LINEQSCovExogInit (persist) Calis.ML.SqMultCorr (persist) Calis.StandardizedResults.LINEQSEqStd (persist) Calis.StandardizedResults.LINEQSVarExogStd (persist) Calis.StandardizedResults.LINEQSCovExogStd (persist) ; proc calis cov ; /* Analyze the covariance matrix (Default is corr) */ title2 ''; var income ccdebt auto house; /* Declare observed vars */ lineqs /* Simultaneous equations, separated by commas */ income = Fincome + e1, ccdebt = beta1 Fincome + epsilon1, auto = beta2 Fincome + epsilon2, house = beta3 Fincome + epsilon3; std /* Variances (not standard deviations) */ Fincome = phi, e1 = omega, epsilon1 = psi1, epsilon2 = psi2, epsilon3 = psi3; bounds 0.0 < phi, 0.0 < omega, 0.0 < psi1, 0.0 < psi2, 0.0 < psi3; proc calis cov ; /* Analyze the covariance matrix (Default is corr) */ title2 ''; var income ccdebt auto house2; /* Declare observed vars */ lineqs /* Simultaneous equations, separated by commas */ income = Fincome + e1, ccdebt = beta1 Fincome + epsilon1, auto = beta2 Fincome + epsilon2, house2 = beta3 Fincome + epsilon3; std /* Variances (not standard deviations) */ Fincome = phi, e1 = omega, epsilon1 = psi1, epsilon2 = psi2, epsilon3 = psi3; bounds 0.0 < phi, 0.0 < omega, 0.0 < psi1, 0.0 < psi2, 0.0 < psi3; Page 1 of 9

Instrumental variables on credit card data (Card1) 1 Covariance Structure Analysis: Model and Initial Values Modeling Information Data Set WORK.MATH N Records Read 250 N Records Used 250 N Obs 250 Model Type LINEQS Analysis Covariances Variables in the Model Endogenous Manifest auto ccdebt house income Latent Exogenous Manifest Latent Fincome Error epsilon2 epsilon1 epsilon3 e1 Number of Endogenous Variables = 4 Number of Exogenous Variables = 5 Instrumental variables on credit card data (Card1) 2 Covariance Structure Analysis: Descriptive Statistics Simple Statistics Variable Mean Std Dev income Annual income in thousands 39.69936 37.86792 ccdebt Credit card debtin thousands 22.25002 22.35506 auto Book value of car in thousands 9.72028 9.69018 house Assessed value of home in thousands 195.36020 192.84725 Instrumental variables on credit card data (Card1) 3 Covariance Structure Analysis: Optimization Initial Estimation Methods 1 Instrumental Variables Method 2 McDonald Method Page 2 of 9

Optimization Start Parameter Estimates N Parameter Estimate Gradient Lower Bound Upper Bound 1 beta1-0.33283 0.01262.. 2 beta2 0.11425-0.05556.. 3 beta3 4.95652 0.0009388.. 4 phi 1150-8.3528E-7 0. 5 omega 284.11786-2.9972E-7 0. 6 psi1 372.37439 0.0000122 0. 7 psi2 78.89085 0.0000828 0. 8 psi3 8941-1.8106E-7 0. Value of Objective Function = 0.0072682132 Instrumental variables on credit card data (Card1) 4 Covariance Structure Analysis: Optimization Levenberg-Marquardt Optimization Scaling Update of More (1978) Parameter Estimates 8 Functions (Observations) 10 Lower Bounds 5 Upper Bounds 0 Optimization Start Active Constraints 0 Objective Function 0.0072682132 Max Abs Gradient Element 0.0555611064 Radius 1 Actual Max Abs Over Rest Func Act Objective Obj Fun Gradient Pred Iter arts Calls Con Function Change Element Lambda Change 1 0 4 0 0.00714 0.000129 0.000645 0 0.991 2 0 6 0 0.00714 1.687E-7 0.000056 0 1.025 3 0 8 0 0.00714 7.56E-10 1.109E-6 0 1.076 Optimization Results Iterations 3 Function Calls 11 Jacobian Calls 5 Active Constraints 0 Objective Function 0.0071385725 Max Abs Gradient Element 1.1092758E-6 Lambda 0 Actual Over Pred Change 1.075612413 Radius 0.0001835928 Convergence criterion (ABSGCONV=0.00001) satisfied. Page 3 of 9

NOTE: The Moore-Penrose inverse is used in computing the covariance matrix for parameter estimates. WARNING: Standard errors and t values might not be accurate with the use of the Moore-Penrose inverse. NOTE: Covariance matrix for the estimates is not full rank. NOTE: The variance of some parameter estimates is zero or some parameter estimates are linearly related to other parameter estimates as shown in the following equations: psi3 = 5090966120-899.687347 * beta1 + 311.873127 * beta2 + 27104 * beta3-5833633 * phi + 5833633 * omega - 39554 * psi1-4580.388613 * psi2 Instrumental variables on credit card data (Card1) 5 Covariance Structure Analysis: Maximum Likelihood Estimation Fit Summary Modeling Info N Observations 250 N Variables 4 N Moments 10 N Parameters 8 N Active Constraints 0 Baseline Model Function Value 1.3604 Baseline Model Chi-Square 338.7482 Baseline Model Chi-Square DF 6 Pr > Baseline Model Chi-Square <.0001 Absolute Index Fit Function 0.0071 Chi-Square 1.7775 Chi-Square DF 2 Pr > Chi-Square 0.4112 Z-Test of Wilson & Hilferty 0.2177 Hoelter Critical N 840 Root Mean Square Residual (RMSR) 9.6633 Standardized RMSR (SRMSR) 0.0203 Goodness of Fit Index (GFI) 0.9965 Parsimony Index Adjusted GFI (AGFI) 0.9824 Parsimonious GFI 0.3322 RMSEA Estimate 0.0000 RMSEA Lower 90% Confidence Limit 0.0000 RMSEA Upper 90% Confidence Limit 0.1212 Probability of Close Fit 0.6028 ECVI Estimate 0.0727 ECVI Lower 90% Confidence Limit 0.0738 ECVI Upper 90% Confidence Limit 0.1034 Akaike Information Criterion 17.7775 Bozdogan CAIC 53.9492 Schwarz Bayesian Criterion 45.9492 Page 4 of 9

McDonald Centrality 1.0004 Incremental Index Bentler Comparative Fit Index 1.0000 Bentler-Bonett NFI 0.9948 Bentler-Bonett Non-normed Index 1.0020 Bollen Normed Index Rho1 0.9843 Bollen Non-normed Index Delta2 1.0007 James et al. Parsimonious NFI 0.3316 Instrumental variables on credit card data (Card1) 6 Covariance Structure Analysis: Maximum Likelihood Estimation Linear Equations income = 1.0000 Fincome + 1.0000 e1 ccdebt = -0.3351*Fincome + 1.0000 epsilon1 Std Err 0.0409 beta1 t Value -8.2017 auto = 0.1164*Fincome + 1.0000 epsilon2 Std Err 0.0183 beta2 t Value 6.3770 house = 4.9428*Fincome + 1.0000 epsilon3 Std Err 0.2779 beta3 t Value 17.7889 Estimates for Variances of Exogenous Variables Variable Standard Type Variable Parameter Estimate Error t Value Latent Fincome phi 1152 134.43701 8.56952 Error e1 omega 281.91910 53.48372 5.27112 epsilon1 psi1 370.36712 34.80880 10.64004 epsilon2 psi2 78.28021 7.20424 10.86586 epsilon3 psi3 9044 4.73269 1911 Page 5 of 9

Instrumental variables on credit card data (Card1) 7 Covariance Structure Analysis: Model and Initial Values Modeling Information Data Set WORK.MATH N Records Read 250 N Records Used 250 N Obs 250 Model Type LINEQS Analysis Covariances Variables in the Model Endogenous Manifest auto ccdebt house2 income Latent Exogenous Manifest Latent Fincome Error epsilon2 epsilon1 epsilon3 e1 Number of Endogenous Variables = 4 Number of Exogenous Variables = 5 Instrumental variables on credit card data (Card1) 8 Covariance Structure Analysis: Descriptive Statistics Simple Statistics Variable Mean Std Dev income Annual income in thousands 39.69936 37.86792 ccdebt Credit card debtin thousands 22.25002 22.35506 auto Book value of car in thousands 9.72028 9.69018 house2 19.53602 19.28472 Instrumental variables on credit card data (Card1) 9 Covariance Structure Analysis: Optimization Initial Estimation Methods 1 Instrumental Variables Method 2 McDonald Method Page 6 of 9

Optimization Start Parameter Estimates N Parameter Estimate Gradient Lower Bound Upper Bound 1 beta1-0.33283 0.00943.. 2 beta2 0.11425-0.05053.. 3 beta3 0.49565 0.01423.. 4 phi 1155 7.25142E-7 0. 5 omega 279.42311-0.0000250 0. 6 psi1 371.85434 7.66355E-6 0. 7 psi2 78.82957 0.0000712 0. 8 psi3 88.25978-0.0001104 0. Value of Objective Function = 0.0073905528 Instrumental variables on credit card data (Card1) 10 Covariance Structure Analysis: Optimization Levenberg-Marquardt Optimization Scaling Update of More (1978) Parameter Estimates 8 Functions (Observations) 10 Lower Bounds 5 Upper Bounds 0 Optimization Start Active Constraints 0 Objective Function 0.0073905528 Max Abs Gradient Element 0.0505279998 Radius 1 Actual Max Abs Over Rest Func Act Objective Obj Fun Gradient Pred Iter arts Calls Con Function Change Element Lambda Change 1 0 4 0 0.00714 0.000252 0.000989 0 0.971 2 0 6 0 0.00714 2.659E-7 0.000071 0 1.002 3 0 8 0 0.00714 8.31E-10 9.603E-7 0 1.060 Optimization Results Iterations 3 Function Calls 11 Jacobian Calls 5 Active Constraints 0 Objective Function 0.0071385725 Max Abs Gradient Element 9.6028445E-7 Lambda 0 Actual Over Pred Change 1.0602958128 Radius 0.0001803962 Convergence criterion (ABSGCONV=0.00001) satisfied. Page 7 of 9

Instrumental variables on credit card data (Card1) 11 Covariance Structure Analysis: Maximum Likelihood Estimation Fit Summary Modeling Info N Observations 250 N Variables 4 N Moments 10 N Parameters 8 N Active Constraints 0 Baseline Model Function Value 1.3604 Baseline Model Chi-Square 338.7482 Baseline Model Chi-Square DF 6 Pr > Baseline Model Chi-Square <.0001 Absolute Index Fit Function 0.0071 Chi-Square 1.7775 Chi-Square DF 2 Pr > Chi-Square 0.4112 Z-Test of Wilson & Hilferty 0.2177 Hoelter Critical N 840 Root Mean Square Residual (RMSR) 4.5296 Standardized RMSR (SRMSR) 0.0203 Goodness of Fit Index (GFI) 0.9965 Parsimony Index Adjusted GFI (AGFI) 0.9824 Parsimonious GFI 0.3322 RMSEA Estimate 0.0000 RMSEA Lower 90% Confidence Limit 0.0000 RMSEA Upper 90% Confidence Limit 0.1212 Probability of Close Fit 0.6028 ECVI Estimate 0.0727 ECVI Lower 90% Confidence Limit 0.0738 ECVI Upper 90% Confidence Limit 0.1034 Akaike Information Criterion 17.7775 Bozdogan CAIC 53.9492 Schwarz Bayesian Criterion 45.9492 McDonald Centrality 1.0004 Incremental Index Bentler Comparative Fit Index 1.0000 Bentler-Bonett NFI 0.9948 Bentler-Bonett Non-normed Index 1.0020 Bollen Normed Index Rho1 0.9843 Bollen Non-normed Index Delta2 1.0007 James et al. Parsimonious NFI 0.3316 Page 8 of 9

Instrumental variables on credit card data (Card1) 12 Covariance Structure Analysis: Maximum Likelihood Estimation Linear Equations income = 1.0000 Fincome + 1.0000 e1 ccdebt = -0.3351*Fincome + 1.0000 epsilon1 Std Err 0.0419 beta1 t Value -7.9944 auto = 0.1164*Fincome + 1.0000 epsilon2 Std Err 0.0185 beta2 t Value 6.2785 house2 = 0.4943*Fincome + 1.0000 epsilon3 Std Err 0.0396 beta3 t Value 12.4903 Estimates for Variances of Exogenous Variables Variable Standard Type Variable Parameter Estimate Error t Value Latent Fincome phi 1152 147.57348 7.80669 Error e1 omega 281.91909 80.85949 3.48653 epsilon1 psi1 370.36709 34.81126 10.63929 epsilon2 psi2 78.28020 7.20440 10.86562 epsilon3 psi3 90.44139 20.46328 4.41969 For comparison, before re-scaling Linear Equations income = 1.0000 Fincome + 1.0000 e1 ccdebt = -0.3351*Fincome + 1.0000 epsilon1 Std Err 0.0409 beta1 t Value -8.2017 auto = 0.1164*Fincome + 1.0000 epsilon2 Std Err 0.0183 beta2 t Value 6.3770 house = 4.9428*Fincome + 1.0000 epsilon3 Std Err 0.2779 beta3 t Value 17.7889 Estimates for Variances of Exogenous Variables Variable Standard Type Variable Parameter Estimate Error t Value Latent Fincome phi 1152 134.43701 8.56952 Error e1 omega 281.91910 53.48372 5.27112 epsilon1 psi1 370.36712 34.80880 10.64004 epsilon2 psi2 78.28021 7.20424 10.86586 epsilon3 psi3 9044 4.73269 1911 Page 9 of 9