Numerical Solutions to Partial Differential Equations

Similar documents
Introduction to the Finite Element Method

Høgskolen i Narvik Sivilingeniørutdanningen STE6237 ELEMENTMETODER. Oppgaver

Reference: Introduction to Partial Differential Equations by G. Folland, 1995, Chap. 3.

FINITE DIFFERENCE METHODS

College of the Holy Cross, Spring 2009 Math 373, Partial Differential Equations Midterm 1 Practice Questions

Fourth-Order Compact Schemes of a Heat Conduction Problem with Neumann Boundary Conditions

An Additive Neumann-Neumann Method for Mortar Finite Element for 4th Order Problems

SIXTY STUDY QUESTIONS TO THE COURSE NUMERISK BEHANDLING AV DIFFERENTIALEKVATIONER I

On computer algebra-aided stability analysis of dierence schemes generated by means of Gr obner bases

5 Numerical Differentiation

Parabolic Equations. Chapter 5. Contents Well-Posed Initial-Boundary Value Problem Time Irreversibility of the Heat Equation

ME6130 An introduction to CFD 1-1

Advanced Computational Fluid Dynamics AA215A Lecture 5

Multigrid preconditioning for nonlinear (degenerate) parabolic equations with application to monument degradation

CONSERVATION LAWS. See Figures 2 and 1.

Finite Difference Approach to Option Pricing

MATH 425, PRACTICE FINAL EXAM SOLUTIONS.

Numerical Methods for Differential Equations

The Heat Equation. Lectures INF2320 p. 1/88

Class Meeting # 1: Introduction to PDEs

Chapter 9 Partial Differential Equations

A CODE VERIFICATION EXERCISE FOR THE UNSTRUCTURED FINITE-VOLUME CFD SOLVER ISIS-CFD

AN INTRODUCTION TO NUMERICAL METHODS AND ANALYSIS

1 Error in Euler s Method

General Framework for an Iterative Solution of Ax b. Jacobi s Method

BINOMIAL OPTIONS PRICING MODEL. Mark Ioffe. Abstract

Vector and Matrix Norms

3. Reaction Diffusion Equations Consider the following ODE model for population growth

Numerical Analysis Lecture Notes

Second Order Linear Partial Differential Equations. Part I

Walrasian Demand. u(x) where B(p, w) = {x R n + : p x w}.

Inner Product Spaces

POISSON AND LAPLACE EQUATIONS. Charles R. O Neill. School of Mechanical and Aerospace Engineering. Oklahoma State University. Stillwater, OK 74078

If Σ is an oriented surface bounded by a curve C, then the orientation of Σ induces an orientation for C, based on the Right-Hand-Rule.

Elasticity Theory Basics

3. INNER PRODUCT SPACES

8 Hyperbolic Systems of First-Order Equations

HIGH ORDER WENO SCHEMES ON UNSTRUCTURED TETRAHEDRAL MESHES

Metric Spaces. Chapter Metrics

UNIVERSITETET I OSLO

Scientic Computing 2013 Computer Classes: Worksheet 11: 1D FEM and boundary conditions

SOLVING LINEAR SYSTEMS

General Theory of Differential Equations Sections 2.8, , 4.1

Feature Commercial codes In-house codes

NOTES ON LINEAR TRANSFORMATIONS

Mean Value Coordinates

Lecture 3 Fluid Dynamics and Balance Equa6ons for Reac6ng Flows

The two dimensional heat equation

Abstract: We describe the beautiful LU factorization of a square matrix (or how to write Gaussian elimination in terms of matrix multiplication).

FIELDS-MITACS Conference. on the Mathematics of Medical Imaging. Photoacoustic and Thermoacoustic Tomography with a variable sound speed

THE CENTRAL LIMIT THEOREM TORONTO

1 if 1 x 0 1 if 0 x 1

How High a Degree is High Enough for High Order Finite Elements?

CBE 6333, R. Levicky 1 Differential Balance Equations

Module 5: Solution of Navier-Stokes Equations for Incompressible Flow Using SIMPLE and MAC Algorithms Lecture 27:

Dimensionless form of equations

A characterization of trace zero symmetric nonnegative 5x5 matrices

Differential Relations for Fluid Flow. Acceleration field of a fluid. The differential equation of mass conservation

Iterative Solvers for Linear Systems

Stress Recovery 28 1

1 Completeness of a Set of Eigenfunctions. Lecturer: Naoki Saito Scribe: Alexander Sheynis/Allen Xue. May 3, The Neumann Boundary Condition

Lecture Notes to Accompany. Scientific Computing An Introductory Survey. by Michael T. Heath. Chapter 10

EXIT TIME PROBLEMS AND ESCAPE FROM A POTENTIAL WELL

Express Introductory Training in ANSYS Fluent Lecture 1 Introduction to the CFD Methodology

Extremal equilibria for reaction diffusion equations in bounded domains and applications.

AB2.5: Surfaces and Surface Integrals. Divergence Theorem of Gauss

CITY UNIVERSITY LONDON. BEng Degree in Computer Systems Engineering Part II BSc Degree in Computer Systems Engineering Part III PART 2 EXAMINATION

Mean value theorem, Taylors Theorem, Maxima and Minima.

Computational Geometry Lab: FEM BASIS FUNCTIONS FOR A TETRAHEDRON

POLYNOMIAL HISTOPOLATION, SUPERCONVERGENT DEGREES OF FREEDOM, AND PSEUDOSPECTRAL DISCRETE HODGE OPERATORS

An Introduction to Partial Differential Equations

Pacific Journal of Mathematics

A PRIORI ESTIMATES FOR SEMISTABLE SOLUTIONS OF SEMILINEAR ELLIPTIC EQUATIONS. In memory of Rou-Huai Wang

Serendipity Basis Functions for Any Degree in Any Dimension

The Navier Stokes Equations

Does Black-Scholes framework for Option Pricing use Constant Volatilities and Interest Rates? New Solution for a New Problem

Linköping University Electronic Press

Nonlinear Algebraic Equations. Lectures INF2320 p. 1/88

Numerical Methods For Image Restoration

Reaction diffusion systems and pattern formation

Modern Optimization Methods for Big Data Problems MATH11146 The University of Edinburgh

4. Complex integration: Cauchy integral theorem and Cauchy integral formulas. Definite integral of a complex-valued function of a real variable

440 Geophysics: Heat flow with finite differences

7 Gaussian Elimination and LU Factorization

Finite cloud method: a true meshless technique based on a xed reproducing kernel approximation

Numerical Methods for Differential Equations

Part II: Finite Difference/Volume Discretisation for CFD

SOLUTIONS TO EXERCISES FOR. MATHEMATICS 205A Part 3. Spaces with special properties

DIFFERENTIABILITY OF COMPLEX FUNCTIONS. Contents

2.3 Convex Constrained Optimization Problems

Numerical Methods for Option Pricing

1 Finite difference example: 1D implicit heat equation

Transcription:

Numerical Solutions to Partial Differential Equations Zhiping Li LMAM and School of Mathematical Sciences Peking University

Numerical Methods for Partial Differential Equations Finite Difference Methods for Elliptic Equations Finite Difference Methods for Parabolic Equations Finite Difference Methods for Hyperbolic Equations Finite Element Methods for Elliptic Equations

1 Introduction 2 A Finite Difference Method for a Model Problem 3 General Finite Difference Approximations 4 Stability and Error Analysis of Finite Difference Methods

Introduction The definitions of the elliptic equations The definitions of the elliptic equations 2nd order A general second order linear elliptic partial differential equation with n independent variables has the following form: n ±L(u) ± 2 n a ij + b i + c u = f, (1) x i x j x i i,j=1 with (the key point in the definition) n n a ij (x)ξ i ξ j α(x) ξi 2, α(x)>0, ξ R n \{0}, x Ω. (2) i,j=1 i=1 Note that (2) says the matrix A = (a ij (x)) is positive definite. i=1 4 / 39

Introduction The definitions of the elliptic equations The definitions of the elliptic equations 2nd order L the 2nd order linear elliptic partial differential operator; a ij, b i, c coefficients, functions of x = (x 1,..., x n ); f right hand side term, or source term, a function of x; The operator L and the equation (1) are said to be uniformly elliptic, if inf α(x) = α > 0. (3) x Ω n n a ij (x)ξ i ξ j α ξi 2, α > 0, ξ R n \ {0}, x Ω. i,j=1 i=1 5 / 39

Introduction The definitions of the elliptic equations The definitions of the elliptic equations 2nd order For example, = n i=1 2 is a linear second order uniformly xi 2 elliptic partial differential operator, since we have here and the Poisson equation a ii = 1, i, a ij = 0, i j, u(x) = f (x) is a linear second order uniformly elliptic partial differential equation. 6 / 39

Introduction The definitions of the elliptic equations The definitions of the elliptic equations 2m-th order A general linear elliptic partial differential equations of order 2m with n independent variables has the following form: 2m n ±L(u) ± k a i1,...,i k + a 0 u = f, (4) x i1... x ik k=1 i 1,...,i k =1 with (the key point in the definition) n a i1,...,i 2m (x)ξ i1 ξ i2m α(x) i 1,...,i 2m =1 n i=1 ξ 2m i, α(x) > 0, ξ R n \ {0}, x Ω. (5) Note that (5) says the 2m order tensor A = (a i1,...,i 2m ) is positive definite. 7 / 39

Introduction The definitions of the elliptic equations The definitions of the elliptic equations 2m-th order L the 2m-th order linear elliptic partial differential operator; a i1,...,i k, a 0 coefficients, functions of x = (x 1,..., x n ); f right hand side term, or source term, a function of x; The operator L and the equation (4) are said to be uniformly elliptic, if inf α(x) = α > 0. (6) x Ω n n a i1,...,i 2m (x)ξ i1 ξ i2m α ξi 2m, i 1,...,i 2m =1 i=1 α > 0, ξ R n \ {0}, x Ω. 8 / 39

Introduction The definitions of the elliptic equations The definitions of the elliptic equations As a typical example, the 2m-th order harmonic equation ( ) m u = f is a linear 2m-th order uniformly elliptic partial differential equation, and m is a linear 2m-th order uniformly elliptic partial differential operator, since we have here a i1,...,i 2m (x) = 1, if the indexes appear in pairs; a i1,...,i 2m (x) = 0, otherwise. In particular, the biharmonic equation 2 u = f is a linear 4th order uniformly elliptic partial differential equation, and 2 is a linear 4-th order uniformly elliptic partial differential operator. 9 / 39

Introduction Steady state convection-diffusion problem a model problem for elliptic partial differential equations Steady state convection-diffusion equation 1 x Ω R n ; 2 v(x): the velocity of the fluid at x; 3 u(x): the density of certain substance in the fluid at x; 4 a(x) > 0: the diffusive coefficient; 5 f (x): the density of the source or sink of the substance. 6 J: diffusion flux (measured by amount of substance per unit area per unit time) 7 Fick s law: J = a(x) u(x). 10 / 39

Introduction Steady state convection-diffusion problem a model problem for elliptic partial differential equations Steady state convection-diffusion equation For an arbitrary open subset ω Ω with piecewise smooth boundary ω, Fick s law says the substance brought into ω by diffusion per unit time is given by J ( ν(x)) ds = a(x) u(x) ν(x) ds, ω while the substance brought into ω by the flow per unit time is u(x)v(x) ( ν(x)) ds ω and the substance produced in ω by the source per unit time is f (x) dx. ω ω 11 / 39

Introduction Steady state convection-diffusion problem a model problem for elliptic partial differential equations Steady state convection-diffusion equation Therefore, the net change of the substance in ω per unit time is d u(x) dx = a(x) u(x) ν(x) ds dt ω ω u(x)v(x) ν(x) ds + f (x) dx. ω ω d By the steady state assumption, dt ω u(x) dx = 0, for arbitrary ω, and by the divergence theorem (or Green s formula or Stokes formula), this leads to the steady state convection-diffusion equation in the integral form { (a u u v) + f } dx = 0, ω ω 12 / 39

Introduction Steady state convection-diffusion problem a model problem for elliptic partial differential equations Steady state convection-diffusion equation The term [a(x) u(x) u(x)v(x)] is named as the substance flux, since it represents the speed that the substance flows. Assume that (a u u v) + f is smooth, then, we obtain the steady state convection-diffusion equation in the differential form (a(x) u(x) u v) = f (x), x Ω. In particular, if v = 0 and a = 1, we have the steady state diffusion equation u = f. 13 / 39

Introduction Boundary conditions Boundary conditions for the elliptic equations For a complete steady state convection-diffusion problem, or problems of elliptic equations in general, we also need to impose proper boundary conditions. Three types of most commonly used boundary conditions: First type u = u D, x Ω; Second type u ν = g, x Ω; Third type u + αu = g, ν x Ω; where α 0, and α > 0 at least on some part of the boundary (physical meaning: higher density produces bigger outward diffusion flux). 14 / 39

Introduction Boundary conditions Boundary conditions for the steady state convection-diffusion equation 1st type boundary condition Dirichlet boundary condition; 2nd type boundary condition Neumann boundary condition; 3rd type boundary condition Robin boundary condition; Mixed-type boundary conditions different types of boundary conditions imposed on different parts of the boundary. 15 / 39

Introduction General framework of Finite Difference Methods General framework of Finite Difference Methods 1 Discretize the domain Ω by introducing a grid; 2 Discretize the function space by introducing grid functions; 3 Discretize the differential operators by properly defined difference operators; 4 Solve the discretized problem to get a finite difference solution; 5 Analyze the approximate properties of the finite difference solution. 16 / 39

A Finite Difference Method for a Model Problem A Model Problem Dirichlet boundary value problem of the Poisson equation { u(x) = f (x), x Ω, u(x) = u D (x), x Ω, where Ω = (0, 1) (0, 1) is a rectangular region. 17 / 39

A Finite Difference Method for a Model Problem Finite Difference Discretization of the Model Problem Discretize Ω by introducing a grid 1 Space (spatial) step sizes: x = y = h = 1/N; 2 Index set of the grid nodes: J = {(i, j) : (x i, y j ) Ω}; 3 Index set of grid nodes on the Dirichlet boundary: J D = {(i, j) : (x i, y j ) Ω}; 4 Index set of interior nodes: J Ω = J \ J D. For simplicity, both (i, j) and (x i, y j ) are called grid nodes. 18 / 39

A Finite Difference Method for a Model Problem Finite Difference Discretization of the Model Problem Discretize the function space by introducing grid functions u i,j = u(x i, y j ), exact solution restricted on the grid; f i,j = f (x i, y j ), source term restricted on the grid; U i,j, numerical solution on the grid; V i,j, a grid function. 19 / 39

A Finite Difference Method for a Model Problem Finite Difference Discretization of the Model Problem Discretize differential operators by difference operators u i 1,j 2u i,j + u i+1,j x 2 2 x u; u i,j 1 2u i,j + u i,j+1 y 2 2 y u; The poisson equation u(x) = f (x) is discretized to the 5 point difference scheme L h U i,j 4U i,j U i 1,j U i,j 1 U i+1,j U i,j+1 h 2 = f i,j, (i, j) J Ω. The Dirichlet boundary condition is discretized to U i,j = u D (x i, y j ), (i, j) J D. 20 / 39

A Finite Difference Method for a Model Problem Finite Difference Discretization of the Model Problem Solution of the discretized problem The discrete system L h U i,j 4U i,j U i 1,j U i,j 1 U i+1,j U i,j+1 h 2 = f i,j, (i, j) J Ω, U i,j = u D (x i, y j ), (i, j) J D, is a system of linear algebraic equations, whose matrix is symmetric positive definite. Consequently, there is a unique solution. 21 / 39

A Finite Difference Method for a Model Problem Analysis of the Finite Difference Solutions of the Model Problem Analyze the Approximate Property of the Discrete Solution 1 Approximation error: e i,j = U i,j u i,j ; 2 The error equation: L h e i,j 4e i,j e i 1,j e i,j 1 e i+1,j e i,j+1 h 2 = T i,j, (i, j) J Ω ; 3 The local truncation error T i,j := [(L h L)u] i,j = L h u i,j (Lu) i,j = L h u i,j +f i,j, (i, j) J Ω. 4 e h = ( L h ) 1 T h ( L h ) 1 T h. 22 / 39

A Finite Difference Method for a Model Problem Analysis of the Finite Difference Solutions of the Model Problem Truncation Error of the 5 Point Difference Scheme Suppose that the function u is sufficiently smooth, then, by Taylor series expansion of u on the grid node (x i, y j ), we have u i±1,j = [u ± h x u + h2 2 2 x u ± h3 6 3 x u + h4 24 4 x u ± h5 ] 120 5 x u + i,j u i,j±1 = [u ± h y u + h2 2 2 y u ± h3 6 3 y u + h4 24 4 y u ± h5 ] 120 5 y u + i,j Since T i,j = L h u i,j + f i,j and f i,j = u i,j, we obtain T i,j := 1 12 h2 ( 4 x u+ 4 y u) i,j + 1 360 h4 ( 6 x u+ 6 y u) i,j +O(h 6 ), (i, j) J Ω. 23 / 39

A Finite Difference Method for a Model Problem Analysis of the Finite Difference Solutions of the Model Problem Consistency and Order of Accuracy of L h 1 Consistent condition of the scheme (or L h to L) in l -normµ lim T h = lim max T i,j = 0, h 0 h 0 (i,j) J Ω 2 The order of the approximation accuracy of the scheme (or L h to L): 2nd order approximation accuracy, since T h = O(h 2 ) 24 / 39

A Finite Difference Method for a Model Problem Analysis of the Finite Difference Solutions of the Model Problem Stability of the Scheme Remember that e h = ( L h ) 1 T h ( L h ) 1 T h lim T h = lim max T i,j = 0, h 0 h 0 (i,j) J Ω therefore lim h 0 e h = 0, if ( L h ) 1 is uniformly bounded, i.e. there exists a constant C independent of h such that ( ) max U i,j C max f i,j + max (u D ) i,j. (i,j) J (i,j) J Ω (i,j) J D ( L h ) 1 C is the stability of the scheme in l -norm. 25 / 39

Convergence and the Accuracy of the Scheme Remember that L h U i,j = 4U i,j U i 1,j U i,j 1 U i+1,j U i,j+1 h 2 = f i,j, (i, j) J Ω. L h e i,j 4e i,j e i 1,j e i,j 1 e i+1,j e i,j+1 h 2 = T i,j, (i, j) J Ω. therefore, since max (i,j) JD e i,j = 0, ( ) implies also max e i,j C (i,j) J max U i,j C (i,j) J max f i,j + max (u D ) i,j (i,j) J Ω (i,j) J D max T i,j C T h C h 2 (i,j) J Ω max (x,y) Ω. (M xxxx + M yyyy ), where M xxxx = max (x,y) Ω 4 x u, M yyyy = max (x,y) Ω 4 y u.

The Maximum Principle and Comparison Theorem Maximum principle of L h : for any grid function Ψ, L h Ψ 0, i.e 4Ψ i,j Ψ i 1,j + Ψ i+1,j + Ψ i,j 1 + Ψ i,j+1, implies that Ψ can not assume nonnegative maximum in the set of interior nodes J Ω, unless Ψ is a constant. Comparison Theorem: Let F = max (i,j) JΩ f i,j and Φ(x, y) = (x 1/2) 2 + (y 1/2) 2, take a comparison function Ψ ± i,j = ±U i,j + 1 4 F Φ i,j, (i, j) J. It is easily verified that L h Ψ ± 0. Thus, noticing that Φ 0 and by the maximum principle, we obtain ±U i,j ±U i,j + 1 4 F Φ i,j max (i,j) J D (u 0 ) i,j + 1 8 F, (i, j) J Ω. Consequently, U 1 8 max (i,j) J Ω f i,j + max (i,j) JD (u 0 ) i,j,

A Finite Difference Method for a Model Problem Analysis of the Finite Difference Solutions of the Model Problem The Maximum Principle and Comparison Theorem Apply the maximum principle and comparison theorem to the error equation L h e i,j 4e i,j e i 1,j e i,j 1 e i+1,j e i,j+1 h 2 = T i,j, (i, j) J Ω. we obtain e max e i,j + 1 (i,j) J D 8 T h, where T h = max (i,j) JΩ T i,j is the l -norm of the truncation error. 28 / 39

General Finite Difference Approximations Grid and multi-index of grid Grid and multi-index of grid 1 Discretize Ω R n : introduce a grid, say by taking the step sizes h i = x i, i = 1,..., n, for the corresponding coordinate components; 2 The set of multi-index: J = {j = (j 1,, j n ) : x = x j (j 1 h 1,, j n h n ) Ω}; 3 The index set of Dirichlet boundary nodes: J D = {j J : x = (j 1 h 1,, j n h n ) Ω D }; 4 The index set of interior nodes: J Ω = J \ J D. For simplicity, both (i, j) and (x i, y j ) are called grid nodes. 29 / 39

General Finite Difference Approximations Grid and multi-index of grid Regular and irregular interior nodes with respect to L h 1 Adjacent nodes: j, j J are adjacent, if n k=1 j k j k = 1; 2 D Lh (j): the set of nodes used in calculating L h U j 3 Regular interior nodes (with respect to L h ): j J Ω such that D Lh (j) Ω; 4 Regular interior set J Ω : the set of all regular interior nodes; 5 Irregular interior set: J Ω = J Ω \ J Ω ; 6 Irregular interior nodes (with respect to L h ): j J Ω. 30 / 39

General Finite Difference Approximations Control volume, Grid functions and Norms The control volume, grid functions and norms 1 Control volume of the node j J: ω j = {x Ω : (j i 1 2 )h i x i < (j i + 1 2 )h i, 1 i n}, and denote V j = meas(ω j ); 2 Grid function U(x): extend U j to a piecewise constant function defined on Ω U(x) = U j, x ω j. 3 L p (Ω) (1 p ) norms of U(x): { U p = V j U j p} 1/p, j J U = max j J U j. 31 / 39

General Finite Difference Approximations Construction of Finite Difference Schemes Basic Difference Operators 1 1 st -order forward: +x v(x, x ) := v(x + x, x ) v(x, x ); 2 1 st -order backward: x v(x, x ) := v(x, x ) v(x x, x ); 3 1 st -order central: on one grid step δ x v(x, x ) := v(x + 1 2 x, x ) v(x 1 2 x, x ), and on two grid steps 0x v(x, x ) := 1 2 ( +x + x ) v(x, x ) = 1 2 [ v(x + x, x ) v(x x, x ) ] 4 2nd order central: δ 2 xv(x, x ) = δ x (δ x v(x, x )) = v(x + x, x ) 2v(x, x ) + v(x x, x ). 32 / 39

A FD Scheme for the Steady State Convection-Diffusion Equation (a(x, y) u(x, y))+ (u(x, y) v(x, y)) = f (x, y), (x, y) Ω, Substitute the differential operators by difference operators: 1 (au x ) x i,j δ x (a i,j δ x u i,j )/( x) 2 : where δ x (a i,j δ x u i,j ) = a i+ 1 2,j(u i+1,j u i,j ) a i 1 2,j(u i,j u i 1,j ); 2 (au y ) y i,j δ y (a i,j δ y u i,j )/( y) 2 : where δ y (a i,j δ y u i,j ) = a i,j+ 1 (u i,j+1 u i,j ) a 2 i,j 1 (u i,j u i,j 1 ); 2 3 (uv 1 ) x i,j 2 x 0x (uv 1 ) i,j = (uv 1 ) i+1,j (uv 1 ) i 1,j ; 4 (uv 2 ) y i,j 2 y 0y (uv 2 ) i,j = (uv 2 ) i,j+1 (uv 2 ) i,j 1 ;

General Finite Difference Approximations Construction of Finite Difference Schemes A FD Scheme for the Steady State Convection-Diffusion Equation we are lead to the following finite difference scheme for the steady state convection-diffusion equation: a i+ 1 2,j(U i+1,j U i,j ) a i 1 2,j(U i,j U i 1,j ) ( x) 2 a i,j+ 1 2 (U i,j+1 U i,j ) a i,j 1 (U i,j U i,j 1 ) 2 ( y) 2 + (Uv 1 ) i+1,j (Uv 1 ) i 1,j 2 x + (Uv 2 ) i,j+1 (Uv 2 ) i,j 1 2 y = f i,j. 34 / 39

A Finite Volume Scheme for the Steady State Convection-Diffusion Equation in Conservation Form (a(x, y) u(x, y) u(x, y)v(x, y)) ν(x, y) ds+ f (x, y) dxdy = 0. ω ω Take a proper control volume ω and substitute the differential operators by appropriate difference operators, and integrals by appropriate numerical quadratures: 1 for the index (i, j) J Ω, taking the control volume ω i,j = { (x, y) Ω {[(i 1 2 )h x, (i + 1 2 )h x) [(j 1 2 )h y, (j + 1 } 2 )h y )} ; 2 Applying the middle point quadrature on ω i,j as well as on its four edges; 3 ν u(x i+ 1, y j ) (u i+1,j u i,j )/h x, etc.; 2

A Finite Volume Scheme for the Steady State Convection-Diffusion Equation in Conservation Form we are lead to the following finite volume scheme for the steady state convection-diffusion equation: a i+ 1,j(U i+1,j U i,j ) a 2 i 1,j(U i,j U i 1,j ) 2 ( x) 2 a i,j+ 1 (U i,j+1 U i,j ) a 2 i,j 1 (U i,j U i,j 1 ) 2 ( y) 2 + (U i+1,j + U i,j )v 1 i+ 1 2,j (U i,j + U i 1,j )v 1 i 1 2,j 2 x (U i,j+1 + U i,j )v 2 (U i,j+ + 1 i,j + U i,j 1 )v 2 i,j 1 2 2 2 y which is also called a conservative finite difference scheme. = f i,j,

General Finite Difference Approximations Construction of Finite Difference Schemes A Finite Volume Scheme for Partial Differential Equations in Conservation Form Finite volume methods: 1 control volume; 2 numerical flux; 3 conservative form. 37 / 39

General Finite Difference Approximations Construction of Finite Difference Schemes More General Finite Difference Schemes In more general case, say for triangular grid, hexagon grid, nonuniform grid, unstructured grid, and even grid less situations, in principle, we could still establish a finite difference scheme by 1 Taking proper neighboring nodes J(P); 2 Approximating Lu(P) by L h U P := i J(P) c i(p)u(q i ); 3 Determining the weights c i (P) according to certain requirements, say the order of the local truncation error, local conservative property, discrete maximum principle, etc.. 38 / 39

SK 1µ1, 3 Thank You!