3. Convex functions. basic properties and examples. operations that preserve convexity. the conjugate function. quasiconvex functions



Similar documents
Optimisation et simulation numérique.

2.3 Convex Constrained Optimization Problems

Convex Optimization. Lieven Vandenberghe University of California, Los Angeles

Additional Exercises for Convex Optimization

Convex analysis and profit/cost/support functions

1 Norms and Vector Spaces

Pattern Analysis. Logistic Regression. 12. Mai Joachim Hornegger. Chair of Pattern Recognition Erlangen University

Vector and Matrix Norms

10. Proximal point method

Bindel, Spring 2012 Intro to Scientific Computing (CS 3220) Week 3: Wednesday, Feb 8

Lecture 5 Principal Minors and the Hessian

SF2940: Probability theory Lecture 8: Multivariate Normal Distribution

Inner Product Spaces

SMOOTHING APPROXIMATIONS FOR TWO CLASSES OF CONVEX EIGENVALUE OPTIMIZATION PROBLEMS YU QI. (B.Sc.(Hons.), BUAA)

Duality in General Programs. Ryan Tibshirani Convex Optimization /36-725

October 3rd, Linear Algebra & Properties of the Covariance Matrix

Notes on Symmetric Matrices

PUTNAM TRAINING POLYNOMIALS. Exercises 1. Find a polynomial with integral coefficients whose zeros include

MATH 304 Linear Algebra Lecture 20: Inner product spaces. Orthogonal sets.

Lecture 13 Linear quadratic Lyapunov theory

Summer course on Convex Optimization. Fifth Lecture Interior-Point Methods (1) Michel Baes, K.U.Leuven Bharath Rangarajan, U.

Section Inner Products and Norms

Introduction to Algebraic Geometry. Bézout s Theorem and Inflection Points

NOV /II. 1. Let f(z) = sin z, z C. Then f(z) : 3. Let the sequence {a n } be given. (A) is bounded in the complex plane

Modern Optimization Methods for Big Data Problems MATH11146 The University of Edinburgh

EE364a Homework 3 solutions

t := maxγ ν subject to ν {0,1,2,...} and f(x c +γ ν d) f(x c )+cγ ν f (x c ;d).

BANACH AND HILBERT SPACE REVIEW

Inner Product Spaces and Orthogonality

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 5 9/17/2008 RANDOM VARIABLES

SF2940: Probability theory Lecture 8: Multivariate Normal Distribution

Cost Minimization and the Cost Function

Tim Kerins. Leaving Certificate Honours Maths - Algebra. Tim Kerins. the date

Proximal mapping via network optimization

MATH PROBLEMS, WITH SOLUTIONS

1 Introduction to Matrices

A QUICK GUIDE TO THE FORMULAS OF MULTIVARIABLE CALCULUS

sekolahsultanalamshahkoleksisoalansi jilpelajaranmalaysiasekolahsultanala mshahkoleksisoalansijilpelajaranmala ysiasekolahsultanalamshahkoleksisoal

Follow links for Class Use and other Permissions. For more information send to:

MATH 425, PRACTICE FINAL EXAM SOLUTIONS.

LABEL PROPAGATION ON GRAPHS. SEMI-SUPERVISED LEARNING. ----Changsheng Liu

Two-Stage Stochastic Linear Programs

Understanding Basic Calculus

Stochastic Inventory Control

DATA ANALYSIS II. Matrix Algorithms

Adaptive Online Gradient Descent

Error Bound for Classes of Polynomial Systems and its Applications: A Variational Analysis Approach

A FIRST COURSE IN OPTIMIZATION THEORY

Introduction to Probability

Mathematics Review for MS Finance Students

The Steepest Descent Algorithm for Unconstrained Optimization and a Bisection Line-search Method

Problem Set 5 Due: In class Thursday, Oct. 18 Late papers will be accepted until 1:00 PM Friday.

1 VECTOR SPACES AND SUBSPACES

14. Nonlinear least-squares

Eigenvalues, Eigenvectors, Matrix Factoring, and Principal Components

3. INNER PRODUCT SPACES

Applications to Data Smoothing and Image Processing I

South Carolina College- and Career-Ready (SCCCR) Pre-Calculus

Class Meeting # 1: Introduction to PDEs

Pacific Journal of Mathematics

Calculus. Contents. Paul Sutcliffe. Office: CM212a.

Math Review. for the Quantitative Reasoning Measure of the GRE revised General Test

Numerisches Rechnen. (für Informatiker) M. Grepl J. Berger & J.T. Frings. Institut für Geometrie und Praktische Mathematik RWTH Aachen

Inverse Functions and Logarithms

Concentration inequalities for order statistics Using the entropy method and Rényi s representation

1 if 1 x 0 1 if 0 x 1

Linear Threshold Units

RESULTANT AND DISCRIMINANT OF POLYNOMIALS

Algebra Unpacked Content For the new Common Core standards that will be effective in all North Carolina schools in the school year.

Advanced Microeconomics

Master s Theory Exam Spring 2006

Solutions to TOPICS IN ALGEBRA I.N. HERSTEIN. Part II: Group Theory

Several Views of Support Vector Machines

Mathematical Methods of Engineering Analysis

it is easy to see that α = a

Algebra I Vocabulary Cards

Nonlinear Programming Methods.S2 Quadratic Programming

MINIMIZATION OF ENTROPY FUNCTIONALS UNDER MOMENT CONSTRAINTS. denote the family of probability density functions g on X satisfying

Electrical Engineering 103 Applied Numerical Computing

Tail inequalities for order statistics of log-concave vectors and applications

LS.6 Solution Matrices

FINAL EXAM SECTIONS AND OBJECTIVES FOR COLLEGE ALGEBRA

Lecture Notes to Accompany. Scientific Computing An Introductory Survey. by Michael T. Heath. Chapter 10

Linear Algebra I. Ronald van Luijk, 2012

3 1. Note that all cubes solve it; therefore, there are no more

Lecture Notes on Elasticity of Substitution

INTRODUCTORY SET THEORY

Lecture 7: Finding Lyapunov Functions 1

Chapter 13: Basic ring theory

Online Convex Optimization

Math 241, Exam 1 Information.

Math Assignment 6

M2S1 Lecture Notes. G. A. Young ayoung

Increasing for all. Convex for all. ( ) Increasing for all (remember that the log function is only defined for ). ( ) Concave for all.

8. Linear least-squares

THREE DIMENSIONAL GEOMETRY

Notes from Week 1: Algorithms for sequential prediction

Transcription:

3. Convex functions Convex Optimization Boyd & Vandenberghe basic properties and examples operations that preserve convexity the conjugate function quasiconvex functions log-concave and log-convex functions convexity with respect to generalized inequalities 3 1

Definition f : R n R is convex if domf is a convex set and f(θx+(1 θ)y) θf(x)+(1 θ)f(y) for all x,y domf, 0 θ 1 (x,f(x)) (y,f(y)) f is concave if f is convex f is strictly convex if domf is convex and f(θx+(1 θ)y) < θf(x)+(1 θ)f(y) for x,y domf, x y, 0 < θ < 1 Convex functions 3 2

Examples on R convex: affine: ax+b on R, for any a,b R exponential: e ax, for any a R powers: x α on R ++, for α 1 or α 0 powers of absolute value: x p on R, for p 1 negative entropy: xlogx on R ++ concave: affine: ax+b on R, for any a,b R powers: x α on R ++, for 0 α 1 logarithm: logx on R ++ Convex functions 3 3

Examples on R n and R m n affine functions are convex and concave; all norms are convex examples on R n affine function f(x) = a T x+b norms: x p = ( n i=1 x i p ) 1/p for p 1; x = max k x k examples on R m n (m n matrices) affine function f(x) = tr(a T X)+b = m i=1 n A ij X ij +b j=1 spectral (maximum singular value) norm f(x) = X 2 = σ max (X) = (λ max (X T X)) 1/2 Convex functions 3 4

Restriction of a convex function to a line f : R n R is convex if and only if the function g : R R, g(t) = f(x+tv), domg = {t x+tv domf} is convex (in t) for any x domf, v R n can check convexity of f by checking convexity of functions of one variable example. f : S n R with f(x) = logdetx, domf = S n ++ g(t) = logdet(x +tv) = logdetx +logdet(i +tx 1/2 VX 1/2 ) n = logdetx + log(1+tλ i ) where λ i are the eigenvalues of X 1/2 VX 1/2 g is concave in t (for any choice of X 0, V); hence f is concave i=1 Convex functions 3 5

Extended-value extension extended-value extension f of f is f(x) = f(x), x domf, f(x) =, x domf often simplifies notation; for example, the condition 0 θ 1 = f(θx+(1 θ)y) θ f(x)+(1 θ) f(y) (as an inequality in R { }), means the same as the two conditions domf is convex for x,y domf, 0 θ 1 = f(θx+(1 θ)y) θf(x)+(1 θ)f(y) Convex functions 3 6

First-order condition f is differentiable if domf is open and the gradient f(x) = exists at each x domf ( f(x), f(x),..., f(x) ) x 1 x 2 x n 1st-order condition: differentiable f with convex domain is convex iff f(y) f(x)+ f(x) T (y x) for all x,y domf f(y) f(x) + f(x) T (y x) (x,f(x)) first-order approximation of f is global underestimator Convex functions 3 7

Second-order conditions f is twice differentiable if domf is open and the Hessian 2 f(x) S n, exists at each x domf 2 f(x) ij = 2 f(x) x i x j, i,j = 1,...,n, 2nd-order conditions: for twice differentiable f with convex domain f is convex if and only if 2 f(x) 0 for all x domf if 2 f(x) 0 for all x domf, then f is strictly convex Convex functions 3 8

Examples quadratic function: f(x) = (1/2)x T Px+q T x+r (with P S n ) f(x) = Px+q, 2 f(x) = P convex if P 0 least-squares objective: f(x) = Ax b 2 2 f(x) = 2A T (Ax b), 2 f(x) = 2A T A convex (for any A) quadratic-over-linear: f(x,y) = x 2 /y 2 2 f(x,y) = 2 y 3 [ y x ][ y x ] T 0 f(x,y) 1 0 2 2 convex for y > 0 1 y 0 2 x 0 Convex functions 3 9

log-sum-exp: f(x) = log n k=1 expx k is convex 2 f(x) = 1 1 T z diag(z) 1 (1 T z) 2zzT (z k = expx k ) to show 2 f(x) 0, we must verify that v T 2 f(x)v 0 for all v: v T 2 f(x)v = ( k z kv 2 k )( k z k) ( k v kz k ) 2 ( k z k) 2 0 since ( k v kz k ) 2 ( k z kv 2 k )( k z k) (from Cauchy-Schwarz inequality) geometric mean: f(x) = ( n k=1 x k) 1/n on R n ++ is concave (similar proof as for log-sum-exp) Convex functions 3 10

Epigraph and sublevel set α-sublevel set of f : R n R: C α = {x domf f(x) α} sublevel sets of convex functions are convex (converse is false) epigraph of f : R n R: epif = {(x,t) R n+1 x domf, f(x) t} epif f f is convex if and only if epif is a convex set Convex functions 3 11

Jensen s inequality basic inequality: if f is convex, then for 0 θ 1, f(θx+(1 θ)y) θf(x)+(1 θ)f(y) extension: if f is convex, then f(ez) Ef(z) for any random variable z basic inequality is special case with discrete distribution prob(z = x) = θ, prob(z = y) = 1 θ Convex functions 3 12

Operations that preserve convexity practical methods for establishing convexity of a function 1. verify definition (often simplified by restricting to a line) 2. for twice differentiable functions, show 2 f(x) 0 3. show that f is obtained from simple convex functions by operations that preserve convexity nonnegative weighted sum composition with affine function pointwise maximum and supremum composition minimization perspective Convex functions 3 13

Positive weighted sum & composition with affine function nonnegative multiple: αf is convex if f is convex, α 0 sum: f 1 +f 2 convex if f 1,f 2 convex (extends to infinite sums, integrals) composition with affine function: f(ax+b) is convex if f is convex examples log barrier for linear inequalities f(x) = m log(b i a T i x), i=1 domf = {x a T i x < b i,i = 1,...,m} (any) norm of affine function: f(x) = Ax+b Convex functions 3 14

Pointwise maximum if f 1,..., f m are convex, then f(x) = max{f 1 (x),...,f m (x)} is convex examples piecewise-linear function: f(x) = max i=1,...,m (a T i x+b i) is convex sum of r largest components of x R n : f(x) = x [1] +x [2] + +x [r] is convex (x [i] is ith largest component of x) proof: f(x) = max{x i1 +x i2 + +x ir 1 i 1 < i 2 < < i r n} Convex functions 3 15

Pointwise supremum if f(x,y) is convex in x for each y A, then is convex examples g(x) = supf(x,y) y A support function of a set C: S C (x) = sup y C y T x is convex distance to farthest point in a set C: f(x) = sup x y y C maximum eigenvalue of symmetric matrix: for X S n, λ max (X) = sup y T Xy y 2 =1 Convex functions 3 16

Composition with scalar functions composition of g : R n R and h : R R: f(x) = h(g(x)) f is convex if g convex, h convex, h nondecreasing g concave, h convex, h nonincreasing proof (for n = 1, differentiable g,h) f (x) = h (g(x))g (x) 2 +h (g(x))g (x) note: monotonicity must hold for extended-value extension h examples expg(x) is convex if g is convex 1/g(x) is convex if g is concave and positive Convex functions 3 17

Vector composition composition of g : R n R k and h : R k R: f(x) = h(g(x)) = h(g 1 (x),g 2 (x),...,g k (x)) f is convex if g i convex, h convex, h nondecreasing in each argument g i concave, h convex, h nonincreasing in each argument proof (for n = 1, differentiable g,h) f (x) = g (x) T 2 h(g(x))g (x)+ h(g(x)) T g (x) examples m i=1 logg i(x) is concave if g i are concave and positive log m i=1 expg i(x) is convex if g i are convex Convex functions 3 18

Minimization if f(x,y) is convex in (x,y) and C is a convex set, then is convex examples g(x) = inf y C f(x,y) f(x,y) = x T Ax+2x T By +y T Cy with [ A B B T C ] 0, C 0 minimizing over y gives g(x) = inf y f(x,y) = x T (A BC 1 B T )x g is convex, hence Schur complement A BC 1 B T 0 distance to a set: dist(x,s) = inf y S x y is convex if S is convex Convex functions 3 19

Perspective the perspective of a function f : R n R is the function g : R n R R, g(x,t) = tf(x/t), domg = {(x,t) x/t domf, t > 0} g is convex if f is convex examples f(x) = x T x is convex; hence g(x,t) = x T x/t is convex for t > 0 negative logarithm f(x) = logx is convex; hence relative entropy g(x,t) = tlogt tlogx is convex on R 2 ++ if f is convex, then g(x) = (c T x+d)f ( (Ax+b)/(c T x+d) ) is convex on {x c T x+d > 0, (Ax+b)/(c T x+d) domf} Convex functions 3 20

the conjugate of a function f is The conjugate function f (y) = sup (y T x f(x)) x dom f f(x) xy x (0, f (y)) f is convex (even if f is not) will be useful in chapter 5 Convex functions 3 21

examples negative logarithm f(x) = logx f (y) = sup(xy +logx) = x>0 { 1 log( y) y < 0 otherwise strictly convex quadratic f(x) = (1/2)x T Qx with Q S n ++ f (y) = sup(y T x (1/2)x T Qx) x = 1 2 yt Q 1 y Convex functions 3 22

Quasiconvex functions f : R n R is quasiconvex if domf is convex and the sublevel sets are convex for all α S α = {x domf f(x) α} β α a b c f is quasiconcave if f is quasiconvex f is quasilinear if it is quasiconvex and quasiconcave Convex functions 3 23

x is quasiconvex on R Examples ceil(x) = inf{z Z z x} is quasilinear logx is quasilinear on R ++ f(x 1,x 2 ) = x 1 x 2 is quasiconcave on R 2 ++ linear-fractional function is quasilinear distance ratio f(x) = at x+b c T x+d, domf = {x ct x+d > 0} f(x) = x a 2 x b 2, domf = {x x a 2 x b 2 } is quasiconvex Convex functions 3 24

internal rate of return cash flow x = (x 0,...,x n ); x i is payment in period i (to us if x i > 0) we assume x 0 < 0 and x 0 +x 1 + +x n > 0 present value of cash flow x, for interest rate r: PV(x,r) = n (1+r) i x i i=0 internal rate of return is smallest interest rate for which PV(x,r) = 0: IRR(x) = inf{r 0 PV(x,r) = 0} IRR is quasiconcave: superlevel set is intersection of open halfspaces IRR(x) R n (1+r) i x i > 0 for 0 r < R i=0 Convex functions 3 25

Properties modified Jensen inequality: for quasiconvex f 0 θ 1 = f(θx+(1 θ)y) max{f(x),f(y)} first-order condition: differentiable f with cvx domain is quasiconvex iff f(y) f(x) = f(x) T (y x) 0 x f(x) sums of quasiconvex functions are not necessarily quasiconvex Convex functions 3 26

Log-concave and log-convex functions a positive function f is log-concave if logf is concave: f(θx+(1 θ)y) f(x) θ f(y) 1 θ for 0 θ 1 f is log-convex if logf is convex powers: x a on R ++ is log-convex for a 0, log-concave for a 0 many common probability densities are log-concave, e.g., normal: f(x) = 1 (2π)n detσ e 1 2 (x x)t Σ 1 (x x) cumulative Gaussian distribution function Φ is log-concave Φ(x) = 1 2π x e u2 /2 du Convex functions 3 27

Properties of log-concave functions twice differentiable f with convex domain is log-concave if and only if f(x) 2 f(x) f(x) f(x) T for all x domf product of log-concave functions is log-concave sum of log-concave functions is not always log-concave integration: if f : R n R m R is log-concave, then g(x) = f(x,y) dy is log-concave (not easy to show) Convex functions 3 28

consequences of integration property convolution f g of log-concave functions f, g is log-concave (f g)(x) = f(x y)g(y)dy if C R n convex and y is a random variable with log-concave pdf then is log-concave f(x) = prob(x+y C) proof: write f(x) as integral of product of log-concave functions p is pdf of y f(x) = g(x+y)p(y)dy, g(u) = { 1 u C 0 u C, Convex functions 3 29

example: yield function Y(x) = prob(x+w S) x R n : nominal parameter values for product w R n : random variations of parameters in manufactured product S: set of acceptable values if S is convex and w has a log-concave pdf, then Y is log-concave yield regions {x Y(x) α} are convex Convex functions 3 30

Convexity with respect to generalized inequalities f : R n R m is K-convex if domf is convex and for x, y domf, 0 θ 1 f(θx+(1 θ)y) K θf(x)+(1 θ)f(y) example f : S m S m, f(x) = X 2 is S m +-convex proof: for fixed z R m, z T X 2 z = Xz 2 2 is convex in X, i.e., z T (θx +(1 θ)y) 2 z θz T X 2 z +(1 θ)z T Y 2 z for X,Y S m, 0 θ 1 therefore (θx +(1 θ)y) 2 θx 2 +(1 θ)y 2 Convex functions 3 31