5.35 Module 1 Lecture Summary 1 Fall 2012 SPECTROSCOPY Module #1

Similar documents
Time out states and transitions

5.33 Lecture Notes: Introduction to Spectroscopy

The Fundamentals of Infrared Spectroscopy. Joe Van Gompel, PhD

FTIR Instrumentation

Infrared Spectroscopy: Theory

F en = mω 0 2 x. We should regard this as a model of the response of an atom, rather than a classical model of the atom itself.

Waves - Transverse and Longitudinal Waves

Laboratory #3 Guide: Optical and Electrical Properties of Transparent Conductors -- September 23, 2014

Spectroscopy. Biogeochemical Methods OCN 633. Rebecca Briggs

Organic Chemistry Tenth Edition

Raman Scattering Theory David W. Hahn Department of Mechanical and Aerospace Engineering University of Florida

Examples of Uniform EM Plane Waves

Experiment #5: Qualitative Absorption Spectroscopy

Light as a Wave. The Nature of Light. EM Radiation Spectrum. EM Radiation Spectrum. Electromagnetic Radiation

Raman Spectroscopy Basics

Raman spectroscopy Lecture

Physics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives

Modern Classical Optics

Interaction of Atoms and Electromagnetic Waves

Determination of Molecular Structure by MOLECULAR SPECTROSCOPY

PHOTOELECTRIC EFFECT AND DUAL NATURE OF MATTER AND RADIATIONS

Physics 214 Waves and Quantum Physics. Lecture 1, p 1

Molecular Spectroscopy:

Introduction to Optics

How To Understand Light And Color

13C NMR Spectroscopy

1) The time for one cycle of a periodic process is called the A) wavelength. B) period. C) frequency. D) amplitude.

PUMPED Nd:YAG LASER. Last Revision: August 21, 2007

A More Efficient Way to De-shelve 137 Ba +

NMR Nuclear Magnetic Resonance

Does Quantum Mechanics Make Sense? Size

INFRARED SPECTROSCOPY (IR)

Concept 2. A. Description of light-matter interaction B. Quantitatities in spectroscopy

Nuclear Magnetic Resonance (NMR) Spectroscopy

- thus, the total number of atoms per second that absorb a photon is

Chapter 13 Spectroscopy NMR, IR, MS, UV-Vis

Determining the Structure of an Organic Compound

where h = J s

Near-field scanning optical microscopy (SNOM)

How To Understand The Measurement Process

Physical Science Study Guide Unit 7 Wave properties and behaviors, electromagnetic spectrum, Doppler Effect

Components for Infrared Spectroscopy. Dispersive IR Spectroscopy

Preview of Period 3: Electromagnetic Waves Radiant Energy II

Interferometers. OBJECTIVES To examine the operation of several kinds of interferometers. d sin = n (1)

EXPERIMENT 11 UV/VIS Spectroscopy and Spectrophotometry: Spectrophotometric Analysis of Potassium Permanganate Solutions.

Molecular Spectroscopy

Module 13 : Measurements on Fiber Optic Systems

v = fλ PROGRESSIVE WAVES 1 Candidates should be able to :

Periodic wave in spatial domain - length scale is wavelength Given symbol l y

Introduction to Fourier Transform Infrared Spectrometry

NMR for Physical and Biological Scientists Thomas C. Pochapsky and Susan Sondej Pochapsky Table of Contents

2. Molecular stucture/basic

Limiting factors in fiber optic transmissions

Infrared Spectroscopy 紅 外 線 光 譜 儀

Lecture 1: Basic Concepts on Absorption and Fluorescence

- particle with kinetic energy E strikes a barrier with height U 0 > E and width L. - classically the particle cannot overcome the barrier

Blackbody Radiation References INTRODUCTION

Symmetric Stretch: allows molecule to move through space

Time dependence in quantum mechanics Notes on Quantum Mechanics

7. DYNAMIC LIGHT SCATTERING 7.1 First order temporal autocorrelation function.

It has long been a goal to achieve higher spatial resolution in optical imaging and

Electronic Supplementary Information

Pulsed Fourier Transform NMR The rotating frame of reference. The NMR Experiment. The Rotating Frame of Reference.

Copyright by Mark Brandt, Ph.D. 12

Energy. Mechanical Energy

Raman Spectroscopy. 1. Introduction. 2. More on Raman Scattering. " scattered. " incident

Assessment Plan for Learning Outcomes for BA/BS in Physics

Optical Metrology. Third Edition. Kjell J. Gasvik Spectra Vision AS, Trondheim, Norway JOHN WILEY & SONS, LTD

Fundamentals of modern UV-visible spectroscopy. Presentation Materials

Magnetic dynamics driven by spin current

Wave Function, ψ. Chapter 28 Atomic Physics. The Heisenberg Uncertainty Principle. Line Spectrum

Experiment 5. Lasers and laser mode structure

5. The Nature of Light. Does Light Travel Infinitely Fast? EMR Travels At Finite Speed. EMR: Electric & Magnetic Waves

Waves-Wave Characteristics

Introduction to acoustic imaging

Blackbody radiation derivation of Planck s radiation low

Flame Direct Attach UV-VIS Integrated Sampling System Installation and Operation Instructions

SPECTROSCOPY. Light interacting with matter as an analytical tool

Nuclear Magnetic Resonance Spectroscopy

2 Absorbing Solar Energy

The Physics of Guitar Strings

Today. next two weeks

Status of the Free Electron Laser

Chemistry 102 Summary June 24 th. Properties of Light

Overview. What is EMR? Electromagnetic Radiation (EMR) LA502 Special Studies Remote Sensing

RANDOM VIBRATION AN OVERVIEW by Barry Controls, Hopkinton, MA

Boardworks AS Physics

ULTRAFAST LASERS: Free electron lasers thrive from synergy with ultrafast laser systems

Curriculum Overview IB Physics SL YEAR 1 JUNIOR TERM I (2011)

Lecture 20: Scanning Confocal Microscopy (SCM) Rationale for SCM. Principles and major components of SCM. Advantages and major applications of SCM.

4. Molecular spectroscopy. Basel, 2008

5. Scanning Near-Field Optical Microscopy 5.1. Resolution of conventional optical microscopy

The Role of Electric Polarization in Nonlinear optics

Atomic Structure: Chapter Problems

Spectroscopy and Regions of the Spectrum

4. It is possible to excite, or flip the nuclear magnetic vector from the α-state to the β-state by bridging the energy gap between the two. This is a

From lowest energy to highest energy, which of the following correctly orders the different categories of electromagnetic radiation?

NMR SPECTROSCOPY. Basic Principles, Concepts, and Applications in Chemistry. Harald Günther University of Siegen, Siegen, Germany.

Experiment 3: Double Sideband Modulation (DSB)

electron does not become part of the compound; one electron goes in but two electrons come out.

Transcription:

SPECTROSCOPY 5.35 Module #1 Introduction to spectroscopy Spectroscopy permits measurement of a tremendous amount of information, often in a very simple way. Module consists of UV-VIS, fluorescence, IR, and NMR spectroscopy experiments You ll use spectroscopy to probe: Electronic orbitals of molecules & quantum dots (UV-VIS, fluorescence) Vibrations of molecules (IR) Spin states of protons in small molecules & proteins (NMR) And you ll learn how spectroscopy works! Seek an understanding that permits creative use of spectroscopy to measure the information that you need, in whatever way allows it to be determined. Light absorption Absorption spectra reveal the frequencies at which light absorption occurs. These reveal molecular resonances and energy levels, structure and dynamics. A (nm) or (Hz) The y-axis is absorptivity The x-axis is frequency or wavelength, measured in units that are reasonable for the part of the spectrum you re in. Why is light absorbed at some frequencies and not others? 5.111 & 5.11 picture of light absorption: purely quantum mechanical Light represented as photons, molecule represented as quantized energy levels Correctly conveys conservation of energy Photon energy = difference between quantum state energies 1.1

(a) Before After (b) Excited state Photon Molecule (Ground state) (No more photon) Molecule (Excited state) E = h = = hc/ = hc % Ground state Important information is not conveyed in this picture. Molecule does not generally end up in a stationary state! Classical mechanics: complementary picture of light absorption. Before After EM wave Molecule (Not vibrating) Molecule (Vibrating) EM wave (Attenuated) Light represented as a classical electromagnetic wave. Molecule represented as a classical harmonic oscillator, driven by the EM field Both pictures convey important information! We ll rely on the classical picture mostly, since your physical intuition is classical. To understand spectroscopy, it s essential to understand three things. What is light? What is matter? How do they interact? The electromagnetic (EM) field: What it is and how it can be measured We ll examine the electric field first, the magnetic field later for NMR 1.

1 E(t) or E(x).5 -.5-1 Time or Position For a single frequency: x, t ˆ E cos kx t E (1) Note the various features; Polarization unit vector ˆ (assumed time-independent) Amplitude E (assumed time-independent) Oscillating part. A propagating wave oscillates in time and space. Temporal oscillation period T = /. Frequency in units of rad/s or s -1. Alternate frequency variable = 1/T =, units cycles/sec or Hz. Spatial oscillation period = wavelength = = /k. k wavevector, in units of m -1. Sometimes we use wave number variable %= 1/, in units of cycles/m or cm -1 Phase (assumed time-independent) Light speed in vacuum c = 3 x 1 8 m/s = /T = /k. Simplified scalar expression for the field at one position: (neglecting polarization & phase) E t E cost 1.3

Please see: The Electromagnetic Spectrum 1.4

Absorption spectroscopy To record an absorption spectrum, we need lots of frequency components. L E t E1 cos1t E cost E3 cos3t d E cost (Note we ve neglected polarization & phase) Usually the distribution of frequencies E () is smoothly varying. How to measure it, before and after a sample? Absorption spectrometer UV-VIS spectrometer schematic illustration Image removed due to copyright restrictions. Please see: Ocean Optics. USB4 Fiber Optic Spectrometer Installation and Operation Manual. Document Number 11----11. Appendix C, p. 7. Ocean Optics UV/VIS Spectrometer (from instruction manual). 1 optical fiber connection, slit, 3 filter, 4 collimating mirror, 5 grating, 6 focusing mirror, 7 collector lens, 8 detector. Diffraction grating separates the frequency components Intensity of each is measured at a CCD Intensity I c E (units of Watt/m = Joule/s/m ) 4 Change in light intensity di() at any frequency due to sample absorption: Proportional to - incident intensity I () 1.5

- concentration c of the absorbing species - absorptivity () of the sample, discussed much further later - for an infinitesimal sample, the thickness dl di() = -() c dl I () -() c dl I() where I() is intensity after the sample di()/i() = -() c dl can be integrated to derive Beer s Law (do the derivation!) Result for macroscopic (thick) sample: log I I ( ) c L A A() is typically displayed in an absorption spectrometer. If concentration c is in units of molecules/cm 3, then () is in units of cm. If concentration is in moles/liter, then () is usually written as (), the extinction coefficient, in units of liter/mole-cm. We ll treat () or A() below by deriving the power absorbed by a classical oscillator when it s driven by a periodic force of frequency. Fourier transform spectroscopy (FTIR) Instead of separating frequency components, could measure the time-dependent field Simple example: Gaussian distribution of frequencies, peaked at p with bandwidth. p t p E t d Ee cost e cos t with = 1/(). Light field temporal profile is a pulse with a Gaussian time dependence and a duration,, that is given by the inverse of the spectral bandwidth. Let s look at such a pulse. E(t) t Pulse is short because many frequency components go out of phase and cancel at long times. Broader frequency range shorter pulse duration 1.6

Integral above is a Fourier integral. In general, f(t) and F(w) are Fourier transforms of each other if they are related through the following integrals. F 1 f tcos tdt f t 1 F cos td General result: We can measure the time-dependence of the field whatever it is, Gaussian or otherwise and determine the frequency-dependence taking the inverse Fourier transform as shown above. The field can be fully characterized through measurement, and mathematical description, in the frequency domain (measure the amplitude of each frequency component, and if needed the phase also) or in the time domain (measure the time-dependent profile of the field). How can we determine the time-dependent profile of a light field? It oscillates too fast to measure electronically. Can measure the field optically with an interferometer. Beamsplitter (dashed line) transmits and reflects equal parts of the light which return to the beamsplitter after reflection off the mirrors. Depending on mirror positions, they interfere constructively or destructively. Detector measures oscillating intensity as function of mirror position! 1.7

I t I 1 cos t where t is the temporal delay between the two fields. In terms of the spatial delay x I x I 1 cos kx Position domain measurement of the field Fourier transform of cos I k dxi x kx gives output as a function of wavelength through relation = /k or as a function of frequency through relation /k = c As before, make measurement with & without sample in place, and compare results to determine absorption spectrum. Works the same way in FTIR even with an incoherent (or partially coherent) light source The sample response to light Classical equation of motion d Q dq cos dt b KQ ae t dt Q is the vibrational coordinate b is a friction coefficient K is the force constant a is a coupling constant between the electric field of the light & the molecular vibration Note: Like the classical equations of motion generally, this is a differential equation Techniques for solving differential equations are taught in a math course on differential equations! We are going to look at solutions of this equation, and you should plug them in to verify that they solve it, but you are never going to have to solve a differential equation on your own in this module!! You do not need math beyond basic calculus for any aspect of this module 1.8

Simplest case: No driving force, no damping Initial condition: Stretch the spring to some initial displacement Q, and let go Solution: Qt Q cos t with resonance frequency K. Next simplest case: No driving force, but damping included Initial condition: Stretch the spring to some initial displacement Q, and let go t Solution: Qt Qe cos t = b/ is the damping constant oscillation frequency Full treatment: Driving force included, damping included Assume steady state driving force is on forever Q t Asin t Solution: A ae 4 1 Vibrational amplitude A() increases as the driving frequency approaches the resonance frequency. The vibrational amplitude depends linearly on the driving field amplitude. Power absorbed: force x velocity. We re interested in the power averaged over a cycle of the light. P ae ae 4 4 (5) Lorentzian function for the absorption spectrum, with width given by the damping constant. 1.9

MIT OpenCourseWare http://ocw.mit.edu 5.35 / 5.35U Introduction to Experimental Chemistry Fall 1 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.