Mass Flow Meter (MFM) for Gases

Similar documents
Mass Flow Controller (MFC)/ Mass Flow Meter (MFM) for Gases

Control- and feedback head for integrated mounting on Robolux valves Type 2036

How To Use A Flowmeter

How To Control A Power Supply With A Mini Transmitter And Switch (Power Supply)

Digital inductive conductivity transmitter

3/2-way Solenoid Valve, direct-acting, NC or NO

red-y smart series product information Thermal Mass Flow Meters and Controllers for Gases

Cable Plug acc. to DIN EN , Form A

T U R B I N E G A S M E T E R

3/2-way pneumatic cartridge solenoid valve

4/2-Way Pneumatic Solenoid Valve

VSO MAX HP High Flow Proportional Valve

Electric Rotary Actuator - On/Off or programmable control actuator

DMP 331. Industrial Pressure Transmitter for Low Pressure. Stainless Steel Sensor

Typical Aluminum GFM Mass Flow Meter

Miniature Pneumatic Solenoid Valve. Power Options: 0.5 Watt (6 psig model) 1.0 Watt (30, 100 psig model) Voltage Options: 3, 5, 12 or 24 VDC

MTI10 Insertion and MTL10 In-line Thermal Mass Flowmeter and Temperature Transmitter

Assisted lift operated 2/2-way solenoid valves Type EV250B

Thermal flow sensors TA10-ZG8c and TA10-ZG9c for exact and stable, long-term measuring of lower flow velocities (Laminar Flow)

Solenoid valves 2/2-way direct-operated Type EV210A

Precision Mass Flow Metering For CVD Applications.

3/2-way Mini Solenoid Valve

FMA 3100/3100ST/3300/3300ST Series Thermal Mass Flow Sensors and Meters

In semiconductor applications, the required mass flows

3/2-, 5/2- and 5/3-way Solenoid Valves for process pneumatics

Thermal Mass Flow Meters and Controllers for Gases

Pressure Switch for gas and air

OPTIMASS 1400 Technical Datasheet

Material test chamber with mechanical convection

Electronic pressure switch with display Model PSD-30, standard version Model PSD-31, with flush diaphragm

VP23, 3-way proportional pressure control valves Seat valve with μp-driven pressure control

Valve series MN-06 acc. to NAMUR, 3/2-way G1/4 750 Nl/min (0.762 Cv)

OPTIMASS 6000 Technical Datasheet

Valve Proving System VPS 504 Series S06 (120 VAC) Series S05 (24 VDC)

Proportional pressure regulators VPPE

Relative and absolute pressure switch type 529

Pressure transmitter For general industrial applications Model A-10

Digital pressure gauge for industrial applications Model DG-10-S, Standard version Model DG-10-E, Enhanced version

PORTER MASS FLOW MEASUREMENT AND CONTROL SYSTEMS

How To Use A Corona Mdi 110

Thermal Flow Sensor Die

Certified according to DIN EN ISO 9001 Technical Datasheet TRICOR Series Mass Flow Meters

OEM-EP Pressure Controllers

2-Port Self-acting Temperature Control Valve Selection for Heating and Cooling Applications

Series 240 Type and Type Pneumatic Control Valves Type 3244 Three-way Valve

4 Posiflow Proportional Solenoid Valves

Thermal Mass Flow Meter (Series MST)

2/2 and 3/2 Way Size 6 Seat Valves

Vacuum drying oven for non-flammable solvents

Battery Powered Thermal Mass Flow Meters for Gases

2/ These vacuum switches are used in measuring ranges between -1 and 0 bar.

Self-operated Pressure Regulators Universal Pressure Reducing Valve Type 41-23

ELECTROMAGNETIC FLOWMETER COMPACT

Precision Mass Flow Meters / Controllers for Liquids and Gases

Self-operated Temperature Regulators Temperature Regulator Type 1u

Side-Trak 830/840. Process Gas Mass Flow Meters and Controllers.

Product data sheet. JUMO MIDAS Pressure Transmitter. Sales No. Order code JUMO AS /

Combi switchbox with integrated 3/2 way pilot valve

Battery Powered Digital Mass Flow Meters for Gases

The Unique Accelabar Flow Meter

Certified according to DIN EN ISO 9001 Technical Datasheet C-Flow Coriolis Mass Flow Meter

Solenoid valves Type EVU

Battery Powered Thermal Mass Flow Meters for Gases

Plastic tube flowmeters Series PT/PS

REGTRONIC OPERATING INSTRUCTIONS

Electronic Pressure Monitoring New Products

Model 111 Mass Flow Instruments

HIGH PRESSURE TECHNOLOGY HYDRAULICS PNEUMATICS TESTING EQUIPMENT

Hydraulic Control Solutions

HERZ-Thermal Actuators

Refrigeration Compressed Air Dryer Buran Ultrapulse

Grant Agreement No SFERA. Solar Facilities for the European Research Area SEVENTH FRAMEWORK PROGRAMME. Capacities Specific Programme

VAD. Variable Area Desuperheaters

BM SERIES WAVE COMPACT 6.3 GHZ CW SERIES PULSE RADAR LEVEL INSTRUMENTS (6.3 GHz)

RPS High Accuracy Resonant Pressure Sensor. GE Measurement & Control Solutions. Features:

COMBIMASS. Technical Data COMBIMASS eco-bio +

Seated valves (PN 16) VF 2 2-way valve, flange VF 3 3-way valve, flange

Kompressoren. Adsorption Dryer AD

Pilot Operated Pressure Reducing Valve PRV 47 (Steel) PRV47I (St.Steel)

VDL 53 - Vacuum drying oven for flammable solvents

BB-18 Black Body High Vacuum System Technical Description

API Marine. BMS Presentation. Ballast Measurement Systems

3/2, 5/2, 5/2 bistable and 5/3 way pneumatic solenoid valve

Heating oven with mechanical control

Type 3353 Angle Seat Valve

Liquid Level Limit Switch liquiphant T FTL 20

RPS/DPS High Accuracy Resonant Pressure Sensor. GE Measurement & Control. Features:

Electrically operated valves Series M-05, 3/2-, 5/2- and 5/3-way G1/8 650 and 750 Nl/min (0.661 and Cv)

Micro Motion 3098 Gas Specific Gravity Meter

PolyGard Carbon Monoxide CO Transmitter ADTX3 1110

Digital Pressure Measuring Instrument MDR480

Fundamentals of Mass Flow Control

AMTRON E-30 Compact heat and cooling meter

Tadahiro Yasuda. Introduction. Overview of Criterion D200. Feature Article

Conductive Level Switch FK 2 Technical Data:

Current valve. for AC 24 V pulse/pause control of electrical loads up to 30 kw

Heating, air-conditioning, cooling

Self-operated Temperature Regulators Type 1 to Type 9. PN 16 to 40 Class 125 to 300 DN 15 to 250 NPS ½ to 10 G ½ to 1 Up to 350 C Up to 660 F

Analogue Input, 4-fold, MDRC AE/S 4.1, GH Q R0001

For Multi-Parameter Meters see mvx

Transcription:

873 Mass Flow Meter (MFM) for Gases Type 873 can be combined with Direct flow measurement by MEMS- Technology for nominal flow rates from 1 ml N /min to 8 l N /min (N 2 ) High accuracy Short response time Compact design and digital communication Type 33 3/2 or 2/2-way valve Type 613 2/2-way valve Mass flow meter are used in process technology for the direct measurement of the mass flow of gases. In case of volumetric flow meters, it is necessary to measure the temperature and the pressure or the density, because gases change their density or rather their volume depending on the pressure. The measurement of the mass flow, on the other hand, is independent of the pressure and temperature. The digital mass flow meter type 873 uses a sensor on silicon chip basis located directly in contact with the gas. Due to the fact that the sensor is directly in the bypass channel a very fast response time of the MFM is reached. The actual flow is given over RS485-communication. Type 873 can optionally be calibrated for two different gases, the user is able to switch between these two gases. This instrument communicates with master devices digitally, no further A/D conversions needed. Technical Data Nominal flow range 1) 1 ml N /min 2) to 8 l N /min (N 2 ), (Q nominal ) see table on p. 2 Turn-down ratio 1:5, higher turn-down ratio on request Operating gas Neutral, non-contaminated gases, on request Calibration gas Operating gas or air with conversion factor Max. operating pressure 1 bar (145 psi) (Inlet pressure) depending on the orifi ce of the valve Gas temperature -1 to +7 C (-1 to +6 C with oxygen) Ambient temperature -1 to +5 C 3) Accuracy ±.8% o.r. ±.3% F.S. (after 1 min. warm up time) Repeatability ±.1% F.S. Response time (t 95% ) < 3 ms Materials Body Aluminium or stainless steel Housing Metal Seals FKM, EPDM Port connection NPT 1/4, G 1/4, screw-in fi tting or sub-base, others on request Electr. connection Plug D-Sub 9-pin Power supply 24V DC Voltage tolerance ±1% Residual ripple < 2% Power consumption Max. 11.5 W (depending on control valve used) Communication Digital via RS485 (half-duplex or full-duplex), RS422, RS232 via adapter Protection class IP4 Dimensions [mm] see drawings p. 5-6 Total weight ca. 5 g (aluminium body) Installation horizontal or vertical Light emitting diodes (default functions, Indication for power, limit and error other functions programmable) Binary inputs (default functions, other functions programmable) Binary output (default functions, other functions programmable) Two 1. Start Autotune 2. not assigned One relay output for: 1. Limit (setpoint not reached) Max. Load: 25V, 1A, 25VA 1) The nominal fl ow value is the max. fl ow value calibrated which can be controlled. The nominal fl ow range defi nes the range of nominal fl ow rates (full scale values) possible. 2) Index N: Flow rates referred to 1.13 bar and C. Alternatively Index S which refers to 1.13 bar and 2º C. 3) Higher temperature on request. www.burkert.com p. 1/6

873 Measurement principle The actual flow rate is detected by a sensor. This operates according to a thermal principle which has the advantage of delivering the mass flow without any corrections for the required pressure or temperature. A small part of the total gas stream is diverted into a small, specifically designed bypass channel, that ensures laminar flow conditions. The sensor element is a chip immersed into the wall of this channel. The chip, produced in MEMS technology, contains a heating resis-tor and two temperature sensors (thermopiles) which are arranged symmetrically upstream and downstream of the heater. The differential voltage of the thermopiles is a measure of the mass flow rate passing this bypass channel. The calibration procedure effectuates a unique assignment of the sensor signal to the total flow rate passing the device. Pressure Loss Diagram (ref. to air, with 25μm inlet filter) Δp [mbar] 12 11 1 9 8 7 6 5 G1/4 Flansch The diagram shows exemplarily the pressure loss characteristics when air fl owing through. For determining the pressure loss with another gas it needs to calculate the air equivalent and respect the fl uidics needed with the other gas. 4 3 2 1 5 1 15 2 25 3 35 4 45 5 55 6 65 7 75 8 Q [l N/min] Notes regarding the selection of the unit (Other gases on request) Gas Min. Q Nom [l N /min] Argon.1 8 Helium.1 5 Carbon dioxide.2 4 Air.1 8 Methane.1 8 Oxygen.1 8 Nitrogen.1 8 Hydrogen.1 5 Max. Q Nom [l N /min] Notes regarding the selection of the unit The decisive factors for the perfect functioning of an MFM within the application are the fl uid compatibility, the normal inlet pressure and the correct choice of the fl ow meter range. The pressure drop over the MFM depends on the fl ow rate and the operating pressure. The request for quotation form on page 6 contains the relevant fl uid specifi cation. p. 2/6

873 Ordering table for accessories Article Item no. 9-pin electrical connection D-Sub socket 9-pin solder connection with housing 917 623 Adapters 4) RS232 adapter for connection with an extension cable (item N.917 39) 667 53 Computer extension cable for RS232 9-pin socket/plug 2m 917 39 USB adapter (version 1.1, USB-socket type B) 67 693 Communication software MassFlowCommunicator Info at www.burkert.com (type 8713) 4) Das Adapterzubehör dient der Inbetriebnahme und Diagnose und ist nicht zwingend für den Betrieb erforderlich Software MassFlowCommunicator for Communication with Bürkert MFC/MFM The communication software allows the user to program additionally various functions. For that purpose the MFC or MFM has to be connected to the computer by a RS232 adapter. p. 3/6

873 Pin Assignment 6 9 1 5 Pin Connection 1 Binary input (related to GND Pin 2) 2 GND 3 Power supply +24V DC 4 Relay, C contact 5 Relay, NC contact 6 TX+ (RS485-Y) bridge with pin 9 at half-duplex 7 TX- (RS485-Z) bridge with pin 8 at half-duplex 8 RX- (RS485-B) 9 RX+ (RS485-A) Networking Pin 9, RS485 A Pin 8, RS485 B Pin 9, RS485 A Pin 8, RS485 B Pin 9, RS485 A Pin 8, RS485 B Master: i.e. PLC with RS485 Interface Slaves (max. 32) Mass Flow Controller p. 4/6

873 Dimensions [mm] Threaded version 2x M 4 6 1 97 17 28 2 approx. 3.5 1.7 81.5 62.5 3 12.5 G1/4 or NPT1/4 12 Sub-base version 4x 4.5 58.5 17.75 14 14 17.75 35.5 35.5 2x 8.8 2x 6 1 26 58.5 81 92 97 43 17 approx. 3.5 1.7 81.5 62.5 3 2 x M 4 5 p. 5/6

873 MFC/MFM-applications - Request for quotation Please complete and send to your nearest Bürkert sales centre Company Contact person Note You can fill out the fields directly in the PDF file before printing out the form. Customer No Address Postcode/Town Department Tel./Fax E-mail MFC-Application MFM-Application Quantity Required delivery date Medium data Type of gas (or gas proportion in mixtures) Density kg/m 3 5) Gas temperature [ºC or ºF] ºC ºF Moisture content g/m 3 Abrasive components/solid particles no yes, as follows: Fluidic data Flow range Q nom Min. l N /min 5) l S /min (slpm) 6) Max. m N3 /h 5) kg/h cm N3 /min 5) cm S3 /min (sccm) 6) l N /h 5) l S /h 6) 7) Inlet pressure at Q nom p 1 = bar(g) Outlet pressure at Q nom p 2 = bar(g) Max. inlet pressure P 1max bar(g) MFC/MFM port connection without screw-in fitting 1/4 G-thread (DIN ISO 228/1) 1/4 NPT-thread (ANSI B1.2) with screw-in fitting (acc. to specification for pipeline) mm pipeline (external Ø) inch pipeline (external Ø) Flange version Installation horizontal vertical, flow upwards Ambient temperature C vertical, flow downwards Material data Body Aluminium Stainless steel Seal FKM EPDM Please quote all pressure values as overpressures with respect to atmospheric pressure bar(ü) 5) at: 1,13 bar(a) and ºC 6) at: 1.13 bar (a) and 2ºC 7) matches with calibration pressure To find your nearest Bürkert facility, click on the orange box g www.burkert.com In case of special application conditions, please consult for advice. Subject to alteration. Christian Bürkert GmbH & Co. KG 1212/4_EU_en_891971 p. 6/6