'I'WO- TO TEN-DAY PRECIPITATION FOR RETURN PERIODS OF 2 TO 100 YEARS IN THE CONTIGUOUS UNITED STATES

Similar documents
RAINFALL FREQUENCY ATLAS OF THE UNITED STATES

Rainfall Intensities for Southeastern Arizona

CHAPTER 2 HYDRAULICS OF SEWERS

Evaluation of Open Channel Flow Equations. Introduction :

TENNESSEE GAS PIPELINE COMPANY, L.L.C.

Visualizing of Berkeley Earth, NASA GISS, and Hadley CRU averaging techniques

Forecaster comments to the ORTECH Report

THUNDERSTORM RAINFALL IN THE SOUTHWEST -*

CHAPTER 4 EARTHWORK. Section I. PLANNING OF EARTHWORK OPERATIONS

The Rational Method. David B. Thompson Civil Engineering Deptartment Texas Tech University. Draft: 20 September 2006

This content downloaded on Tue, 19 Feb :28:43 PM All use subject to JSTOR Terms and Conditions

PROCEEDINGS NOVEMBER 24, ~933 POLICY LIMITS IN CASUALTY INSURANCE PRESIDENTIAL ADDRESS~ PAUL DORW~-ILER

AUTOMATION OF FLOOD HAZARD MAPPING BY THE FEDERAL EMERGENCY MANAGEMENT AGENCY ABSTRACT INTRODUCTION

Chapter 5: Working with contours

A HYDROLOGIC NETWORK SUPPORTING SPATIALLY REFERENCED REGRESSION MODELING IN THE CHESAPEAKE BAY WATERSHED

James R. Williams, Nebraska Department of Natural Resources Frank Aebly, University of Nebraska at Lincoln

STATE OF ILLINOIS. Issued by. Department of Registration and Education. NOBLE J. PUFFER, Director. State Water Survey Division

Benchmarking Residential Energy Use

Quality Assurance for Hydrometric Network Data as a Basis for Integrated River Basin Management

ESSENTIAL COMPONENTS OF WATER-LEVEL MONITORING PROGRAMS. Selection of Observation Wells

PROCEDURES FOR COMPLETING LEGAL DESCRIPTIONS AND BOUNDARY MAPS

Journal of Scientific Exploration, Vol. 11, No. 1, pp , /97

Climate and Weather. This document explains where we obtain weather and climate data and how we incorporate it into metrics:

USGS StreamStats Web Application for Kentucky

WAGE REPORTS FOR WORKERS COVERED BY FEDERAL OLD-AGE INSURANCE IN 1937

CONSTRUCTION GENERAL PERMIT RISK ASSESSMENT R-FACTOR CALCULATION NOTIFICATION

Guidance for Flood Risk Analysis and Mapping. Changes Since Last FIRM

Figure 1.1 The Sandveld area and the Verlorenvlei Catchment - 2 -

GEOENGINE MSc in Geomatics Engineering (Master Thesis) Anamelechi, Falasy Ebere

Annual Forage (AF) Pilot Program

VOLATILITY AND DEVIATION OF DISTRIBUTED SOLAR

NCSS Statistical Software Principal Components Regression. In ordinary least squares, the regression coefficients are estimated using the formula ( )

X X X a) perfect linear correlation b) no correlation c) positive correlation (r = 1) (r = 0) (0 < r < 1)

DATA INTERPRETATION AND STATISTICS

STATISTICAL SOFTWARE PACKAGE

2.8 Objective Integration of Satellite, Rain Gauge, and Radar Precipitation Estimates in the Multisensor Precipitation Estimator Algorithm

AZ EGER-PATAK HIDROLÓGIAI VIZSGÁLATA, A FELSZÍNI VÍZKÉSZLETEK VÁRHATÓ VÁLTOZÁSÁBÓL ADÓDÓ MÓDOSULÁSOK AZ ÉGHAJLATVÁLTOZÁS HATÁSÁRA

Use of numerical weather forecast predictions in soil moisture modelling

Algebra 1 Course Information

Appendix F Benefit-Cost Analysis of Flood Protection Measures

South Carolina College- and Career-Ready (SCCCR) Probability and Statistics

Module 6: Introduction to Time Series Forecasting

A Strategy for Teaching Finite Element Analysis to Undergraduate Students

Correlation key concepts:

Appendix C - Risk Assessment: Technical Details. Appendix C - Risk Assessment: Technical Details

Profile of IEEE Consultants. Prepared by R.H. Gauger, P.E. May 2003

E-1. Appendix E CONCENTRATION-RESPONSE RELATIONSHIPS FOR MODEL SENSITIVITY ANALYSIS IN RISK ASSESSMENT

6 th Grade Vocabulary-ALL CAMPUSES

WITH WASHINGTON WEATHER

ESTIMATION OF NRCS CURVE NUMBER FROM WATERSHED MORPHOMETRIC PARAMETERS: A CASE STUDY OF YIBA WATERSHED IN SAUDI ARABIA

The Correlation Coefficient

Current Standard: Mathematical Concepts and Applications Shape, Space, and Measurement- Primary

Exponential Smoothing with Trend. As we move toward medium-range forecasts, trend becomes more important.

6. Base your answer to the following question on the graph below, which shows the average monthly temperature of two cities A and B.

4.3. David E. Rudack*, Meteorological Development Laboratory Office of Science and Technology National Weather Service, NOAA 1.

MATH BOOK OF PROBLEMS SERIES. New from Pearson Custom Publishing!

DESCRIPTIVE STATISTICS AND EXPLORATORY DATA ANALYSIS

Using probability to understand 100-year storms

Diagrams and Graphs of Statistical Data

Estimating Potential Reduction Flood Benefits of Restored Wetlands

LAGUARDIA COMMUNITY COLLEGE CITY UNIVERSITY OF NEW YORK DEPARTMENT OF MATHEMATICS, ENGINEERING, AND COMPUTER SCIENCE

Chapter 3: Weather Map. Weather Maps. The Station Model. Weather Map on 7/7/2005 4/29/2011

Section A. Index. Section A. Planning, Budgeting and Forecasting Section A.2 Forecasting techniques Page 1 of 11. EduPristine CMA - Part I

Impedance Matching. Using transformers Using matching networks

Landslide hazard zonation using MR and AHP methods and GIS techniques in Langan watershed, Ardabil, Iran

GRADES 7, 8, AND 9 BIG IDEAS

In mathematics, there are four attainment targets: using and applying mathematics; number and algebra; shape, space and measures, and handling data.

CREATING A CORPORATE BOND SPOT YIELD CURVE FOR PENSION DISCOUNTING DEPARTMENT OF THE TREASURY OFFICE OF ECONOMIC POLICY WHITE PAPER FEBRUARY 7, 2005

Chapter 6: Constructing and Interpreting Graphic Displays of Behavioral Data

Prattsville Berm Removal Project. 1.0 Project Location

Climate Extremes Research: Recent Findings and New Direc8ons

The Mississippi River & Tributaries Project

Stage 4. Geography. Blackline Masters. By Karen Devine

Geomatics Guidance Note 3

5.3.1 Arithmetic Average Method:

1 In this report, "tropical cyclone (TC)" is used as a generic term that includes "low pressure area (LPA)", "tropical depression

Road Rehabilitation and Reconstruction Using AutoCAD Civil 3D

Index-Velocity Rating Development (Calibration) for H-ADCP Real-Time Discharge Monitoring in Open Channels

SAVE POD AND FAR Normalization for Event Frequency in Performance Metrics (IFR Example)

Objectives. Experimentally determine the yield strength, tensile strength, and modules of elasticity and ductility of given materials.

Robichaud K., and Gordon, M. 1

Near Real Time Blended Surface Winds

Expression. Variable Equation Polynomial Monomial Add. Area. Volume Surface Space Length Width. Probability. Chance Random Likely Possibility Odds

Maps A Primer for Content & Production of Topographic Base Maps For Design Presented by SurvBase, LLC

Critical Assets and Extreme Weather Process & Lessons

Haar Fluctuations Scaling Analysis Software Without Interpolation

CHAPTER 13 SIMPLE LINEAR REGRESSION. Opening Example. Simple Regression. Linear Regression

ROSE CREEK WATERSHED HYDROLOGIC, HYDRAULIC, SEDIMENT TRANSPORT, AND GEOMORPHIC ANALYSES TASK 1 EXISTING DATA AND INFORMATION SUMMARY REPORT BACKGROUND

Intro to GIS Winter Data Visualization Part I

Tomlinson, R. F Computer Mapping: An Introduction to the Use of Electronic Computers In the Storage, Compilation and Assessment of Natural and

Operational methodology to assess flood damages in Europe

business statistics using Excel OXFORD UNIVERSITY PRESS Glyn Davis & Branko Pecar

Basic Hydrology. Time of Concentration Methodology

How To Write A Data Analysis

Internet Applications for Agrometeorological Products - Experiences from USA *

In-situ Load Testing to Evaluate New Repair Techniques

PACIFIC SOUTHWEST. Forest and Range Experiment st&on FOREST FIRE HISTORY... a computer method of data analysis. Romain M. Mees

Public Land Survey System - Definition

Quality assurance for hydrometric network data as a basis for integrated river basin management

CHAPTER 9 CHANNELS APPENDIX A. Hydraulic Design Equations for Open Channel Flow

Transcription:

U.S. DEPARTMENT OF COMMERCE WEATHER BUREAU TECHNCAL _PAPER NO. 9 ''WO TO TENDAY PRECPTATON FOR RETURN PERODS OF TO 1 YEARS N THE CONTGUOUS UNTED STATES WASHNGTON, D.C. 196 OKLAHOMA CiTY, vkl.a. RECEVED OCT 5196 USGS SURFACE WATER BRANCH

U.S. DEPARTMENT OF COMMERCE LUTHER H. HODGES, Secretary WEATHER BUREAU ROBERT M. WHTE, Chief TECHNCAL PAPER NO. 9 Two to TenDay Precipitation for Return Periods of to 1 Years in the Contiguous United States Prepared by JOHN F. MLLER Cooperative Studies Section, Office of Hydrology, U.S. Weather Bureau. for Engineering Division, Soil Conservation Service, U.S. Departm.ent of Agriculture WASHNGTON, D.C. 196 For BBle by the Superintendent of Documents, U.S. GovenunentPrinting Otlice, Waahiugton, D.C.,

PREFACE Authority.This report was prepared for the Soil Conservation Service to provide generalized rainfall information for planning and design purposes in connection with its Watershed Protection and Flood Prevention Program (authorization: P.L. 566, 83d Congress, and as amended). Scope.Precipitation data for various hydrologic design problems involving areas up to square miles and durations from to 1 days are presented. The data consist of generalized estimates of rainfallfrequency data for return periods from to 1 years. Accuracy of results.the degree of accuracy of the generalized estimates depicted on the rainfallfrequency maps presented in this report is believed to be adequate for practically all engineering purposes. t should be expected that somewhat greater accuracy might have been obtained had the maps been based on data from the several thousand available precipitation gages instead of from a few hundred. However, the collection and frequency analysis of rainfall data for durations up to 1 days for a few thousand gages would have been a formidable task and an extremely costly enterprise. Furthermore, the accuracy of the results obtained is much greater than indicated by the relatively small number of stations used since the approach involved the projection of the hour rainfallfrequency maps of Techm:wal Paper No. [], which are based on data from several thousand stations. The possible greater accuracy that might have been obtained by use of data. from a. much larger number of gages was judged to be incommensurate with the much greater cost involved. Acknowledgments.The project was under the general supervision of J. L. H. Paulhus, Chief of the Cooperative Studies Section of the Office of Hydrology, W. E. Hiatt, Acting Director. L. L. Weiss assisted with the investigations. W. E. Miller and N. S. Foat supervised the collection and processing of the basic data.. Drafting was supervised by C. W. Gardner. Coordination with the Soil Conservation Service was maintained through H.. Ogrosky, Chief, Hydrology Branch, Engineering Division. CONTENTS Pur ACE. = NTRODUCTON BASC DATA ~ Summarization of dataperiod and length of recordstation exposure. DUBATON ANALYSS hour vs. observationalday precipitationdurationinterpolation diagram. FB!QUENCY ANALYSS Two types of seriesfrequency considerationsconstruction of returnperiod diagramuse of returnperiod diagram General applicability of returnperiod diagram8ecular trend. lao PLUVAL MAPS Relation between year and hour amountssmoothing of isopluvial mapsyear 1day mapratio of 1year to year values1year 1day map additional mapsreliability of resultssoline intervalbmoothmg values read from maps. DEPTHABEA RELATONBBPS ntroductiondata useddetermination of area of networkconstruction of the ourvesgeographic variation. SEASONAL VARATON REriDENCES _ LST OF U.LUSTRATONS Figure.Precipitation stations. Figure.Relation between year observationalday and year 8hour precipxtation Figure 3.Durationinterpolation diagram. Figure.Relation between year day precipitation computed by extreme value analysis and year day precipitation estimated from durationinterpolation diagram (fig. 3) Figure 5.Returnperiodinterpolation diagram Figure 6.Relationship for estimating year 1day precipitation Figure 7.Relation between year 1day precipitation computed by extreme value analysis and year 1day precipitation estimated from figure 6. _ page ii 1 1.; 1 3 3 Figure 8.Points for which precipitationfrequency data were computed Figure 9.Bmoothing values read from isopluvial maps Figure 1.Deptharea curves _ Figure 11.Location of dense networks used to develop deptharea curves Figure 1.year day precipitation (in.) Figure 13.5year day precipitation (in.) _ Figure 1.1year day precipitation (ln.) Figure 15.5year day precipitation (ln.) _ Figure 16.5year day precipitation (in.) _ Figure 17.1year day precipitation (ln.) Figure 18.year day precipitation (in.) Figure 19.5year day precipitation {in.) Figure.1year day precipitation {in.) _ Figure 1.5year day precipitation {ln.) _ Figure.5year day precipitation {ln.) _ Figure 3.1year day precipitation (in.) Figure.year 7day precipitation (in.) _ Figure 5.5year 7day precipitation {in.) _ Figure 6.1year 7day precipitation ("ln.) _ Flgure 7.5year 7day precipitation (in.) _ Figure 8.5yeail, 7day precipitation (in.) _ Figure 9.1year 7day precipitation (in.) _ Figure 3.year 1day precipitation (ln.) Figure 31.5year 1day precipitation (in.) _ Figure 3.1year 1day precipitation (in.) Flgure 33.5year 1day precipitation (ln.) Figure 3.5year 1day precipitation (ln.) Figure 35.1year 1day precipitation ("ln.) Page.; 5 5 6 7 8 9 1 11 1 13 1 15 16 17 18 19 1 3 5 6 7 8 9

Two to TenDay Precipitation for Return Periods of to 1 Years in the Contiguous United States JOHN F. MLLER Cooperative Studies Section, Office of Hydrology, U.S. Weather Bureau, Washington, D.C. NTRODUCTON The "Rainfall Frequency Atlas of the United States," [1] presents generalized estimates for durations from 3 minutes to hours and return periods from 1 to 1 years. The present report is an extension of that work. n a series of maps and diagrams this report provides generalized estimates of the precipitationfrequency regime of the United States for durations from to 1 days and for return periods from to 1 years. A relation for obtaining 1day values from 1 and hour data was developed and was applied to the 1 and hour values of (1]. Two key maps, the year and 1year 1day maps, were then constructed. These maps, together with two key maps from the Atlas, the year and 1year hour, were used with generalized duration and returnperiod diagrams to provide estimates for a 33point grid for additional maps. BASC DATA S~ of data.first, daily data from 9 stations were summarized into sequences from 1 to 1 days. The stations (encircled dots in fig. 1) were so distributed geographically as to provide a good representation of the various precipitation regimes. T1eir data were the basis for the conversion factors for adjusting observationalday amounts to nhour amounts and for the durationand returnperiodinterpolation diagrams. One and 1day data were then sumarized for 76 additional stations (plain dots in fig.1). These data were used to supplement the data from the first group of 9 stations to develop the relation between 1 and 1day amounts. Period and length of record.data for the 9 stations in the first category were tabulated for the 5year period, 19161, except for a few cases of missing or incomplete data. The average length of record available from all stations was 9 years. Data for the 76 stations in the second group were tabulated for the year period, 1961. Breaks in record at a few stations necessitated tabulation of a few years of data prior to 19 to obtain a year record. n a few cases, 18 or 19 years of data were used when a year record was not available. n no case, however, was less than 18 years of data used. Station wposure.n refined analysis of mean annual and mean seasonal rainfall data it is necessary to evaluate station exposures by methods such as doublemasscurve analysis []. Such methods are not appropriate for extreme values. Except for selection of stations that had had consistent exposures during the period of record used, no attempt has been made to adjust precipitation values to a standard exposure. Stahons lor wlvch dcoly preopitahon data were summarized for and 1 days only.. l ~\~ s; j. G V L F FGURE 1.Prectpitatlon stations. 1

DURATON ANALYSS Observati<malday 'VB. 'Tirhour precipitation.since the basic data consisted mostly of observa.tionalday amounts, relations had to be established between observationalday data and the corresponding nhour amounts, i.e., the observa.tiona.lday to 8hour, the 3observ.ationalday to 7hour, etc. These relations a.re ratios of the mean of the annual series (see section on Frequency Analysis) of the nhour precipitation to the mean of the annual series of the corresponding observationalday data. The adjustment factors a.re shown in table 1. The conversion factor between the observationalday and nhour amounts is an average relationship. A graphical illustration of the quality of the rela.tionships, based on data from 5 widely distributed stations, is shown in figure for the yea.r 8hour and observationalday precipitation. Differences between amounts for the 8hour and longer dura.tions and the corresponding nminute amounts are negligible. TABLE 1.Empiricai factors tor 11oerling obseroationaldau amoutot8 to the corresponding nhour amounts Observatlonalday Conversion factor tonhour ].Of 3 1.3 1.3 5 1. 6 1. 7 1. 8 1. 9 1.1 1 1.1 Durati<Jninterpolation diagram.a generalized relationship was developed for estimating precipitation for &ny duration between and 1 days for a selected return period when the and 1day 11.mounts for that return period are given (fig. 3). This generalization was obtained empirically from data for the 9 stations. The durationinterpolation diagram was developed using data for the yea.r return period. To use this diagram, a straightedge is laid across the values given for and 1 days, a.nd the amounts for other durations are read at the proper intersections. The quality of this relationship is illustrated in figure for the 96hour duration and yea.r return period. Tests have shown negligible differences for other return periods. The inclusion of regional variation and other paranteters produced no improvement. FREQUENCY ANALYSS Two t'!jpeb of series.frequency analyses of precipitation data are based on one of two types of data series. The annual series consists only of the highest value for each yea.r. The partialdura.tion series recognizes that the second highest of some yea.r occasionally exceeds the highest of some other yea.r, and utilizes all items above a base value which is selected to yield nitems for nyea.rs. The highest value of record, of course, is the top value of either series, but the lower values in the partialduration series tend to be higher than those of the annua.l series. The purposes served by this publication require that the results be expressed in terms of partia.lduration frequencies. n order to avoid la.borious processing of partialduration data, the annual series TABLE.Empiricai factors for omwerting partiaj:.durotton aeries fo annual Berie8 Bolum period Con..man factor yr..88 5yr..95 1oyr..99 YEAR OBSERVATONALDAY PRECPTATON (NCHES) Fl:GUBE.Relatlon between year obllervatlonalda:v and :vear 8bour precipitation. were collected, analyzed, and the resulting statistics transformed to partialduration statistics. Consequently, the maps of figures 1 to 35 are, in effect, based on partialduration series da.ta. These data ma.y be converted to annual series data by multiplying by the factors given in table, which is based on data from 5 widely scattered stations. The two types of data series show no appreciable differences for return periods greater than 1 years. These conversion fa.ctors a.re the same as those used in [1]. Frequency considerations.extreme values of rainfall depth form a frequency distribution which ma.y be defined in terms of its statistical moments. nvestigation of hundreds of rainfall distributions. with lengths of record ordinarily encountered in practice (usually less tl1an 5 years) indicates that these records are too short to provide reliable statistics beyond the first a.nd second moments. The distribution must therefore be regarded as a function of the first two moments. The yea.r value is a mea.sure of the first momentthe central tendency of the distribution. The relationship of the yea.r to 1yea.r va.lue is a mea.sure of the second momentthe dispersion of the distribution. OonstructWn of returnperiod diagram.the returnperiod dis. gra.m of figure 5 was obtained by the method described by Weiss [3]. f values for return periods between and 1 years a.re read from the returnperiod diagram, then converted to annua.l series values by applying the factors of table an.? plotted on either extreme or lognormal probability paper, the points will very nea.rly define a. straight line. Use of the returnperiod diagram.the two intercepts needed for the frequency relation of figure 5 are the yea.r and 1year values obtained from the maps of this report. Thus, given the and 1 year returnperiod va.lues for a pa.rticular duration, a straightedge is laid across these values on the diagram a.nd the intermediate va.lues are determined. General, appucability of returnperiod relati(}1'1jjhip.tf!dts have shown that within the range of the data and the purpose of this paper, the returnperiod relationship is independent of duration. Comparison of this rela.tionship with that developed for durations 7. ~ 1 9 8 7 6 5 3.! 1 1 ',. 1 z t: 1 ~ 1 g 9 8 7 6 5 3 ' DURATON Hours 8 7 96 1 1 168 19 16 1 1 1 1 1 1 1 1 1 c 5 6 7 DURATON Days ) FGUE 3.Dnratlonlnterpolation diagram. zo 1 9 8 7 1 6 5 3 8 9 1 1. ~ u 1 1= z ;:: ;:!: A: iil 9: less than hours [1] has shown only negligible differences. Studies have not disclosed a.lly regional pattern that would improve the relationship. SecUlar trend.the use of shortrecord data introduces the question of possible secular trend and biased sample. Routine tests with subsamples of equal size from different periods of record for each of several stations showed no appreciable trend, indicating that the direct use of shortrecord data is legitima.te. SOPLUVAL MAPS Relation beflween S'!feU/1' 9 OJTUi S/1)hcur am.ounta.processing of hourly data for durations in excess of hours is a laborious and costly task. For this reason, it was decided to estimate rather than compute to 1day rainfalls for the majority of the stations. Relationships, using in part datn. already ava.ilable for the shorter 7 6 3 YEAR DAY PREQPJTAnON (lnchesj EmMATG FRO NTERPOL.AnOH DMJAJ FioUBE.Relatlon between year day precipitation computed by extreme value analysis and year day precipitation estimated trom durationinterpolation diagram (fig. 3). 3! 8 z 6 18. ~ u ~1 6 % g ~ A: ~.._ f 8 6 5 1 5 5 RETURN PEROD Yoau) FGUBE 5.Returnperlodlnterpolation diagram. 3 8 z z 1 8 ~ 6=. z ;:: ~ A: : 8 6 1

N=85 R=.99 STANDARD ERROR =.53 NCH MEAN OF COMPUTED YEAR 1DAY PRECPTATON =5.31 NCHES ) 16 ;;; > _, < z < 1 1 1 B 6 8 YEAR 1DAY PRECPTATON (NCHES) Fxol!BE 6._:.Relation for estimating year lqday precipitation from year 1 and bour rainfall and latitude. durations, were developed to estimate amounts for longer durations. Since satisfactory durationinterpolation and returnperiod diagrams were available, the 1day duration was selected for development of such a relation. A total of 85 stations with hourly data provided the basic data. The parameters used to estimate the year 1day values were: (1) the year hour rainfall, () the year 1hour rainfall, and (3) latitude. The use of latitude as a parameter implies a smooth geographic variation with isopletha of departure of estimated from computed year 1day amounts parallel to the latitude circles. To test this hypothesis departures from the computed year 1day amounts were plotted on a map. The isopleths showed that, in general, there was an orderly latitudinal variation in these departures. n the development of this relationship (fig. 6) all and 1hour data were adjusted to the corresponding nminute amounts. The 1day values were adjusted to the corresponding hour amounts. ntroduction of additional parameters in the relationship of figure 6 did not improve the results. Other parameters tested included elevation and mean. annual number of days with precipitation greater than.9 in.. The index of correlation between the computed and estimated amounts was.99, with a standard error of estimate of.53 in. The mean of the computed values was 5.31 in. The scatter of estimated v.s. computed values is shown in figure 7. Smoothing of isoplwoial mapa.the analysis of a series of maps involves the question of bow much to smooth the data. An understanding of the degree of smoothing in the analysis is necessary to the most effective use of the maps. The problem of drawing isopluvia.l lines through a field of data is analogous, in some important respects, to drawing regression lines on a scatter diagram. Just as an irregular regression line can be drawn to every point on a scatter diagram, so i.solines may be drawn to fit every point. Such a. complicated pattern of many small highs and lows would be unrealistic in most cases. There is a degree of inconsistency between smoothness and closeness of fit. Any analysis must strive for a balance between the two, sacrificing some closeness of fit for smoothness and vice versa. The maps of this report were drawn so that the standard error of estimate was commensurate with the sampling and other errors in the data and methods used. ~yea1 1aay map (fig. 3).The relationship (fig. 6) described in the preceding paragraphs, and the year 1hour and year hour maps of [1] were used to estimate the year 1day vajues for a grid of 38 points (fig. 8). Also plotted on the map were the data for the 37 stations (fig. 1) for which 1day data had been tabulated. On this and other similar maps all precipitation data have been adjusted by the factors of table 1 to nhour amounts, i.e., the day map presents 8hour amounts, the day presents 96hour amounts, etc. Ratio of 1year to year valu6!j.a working map was prepared showing the 1year to year ratio for the 1day amounts. A smooth geographical patterzi. was indicated. The ratio varied from about 1.8 to 3. with an average ratio about.. The highest ratios were found in southern California and along the western slopes of the Sierra, with the lowest ratios in western Oregon and Washington. 1yeaT 1day map (fig. 35).The 1year'lOday values were computed for the grid points of figure 8 by multiplying the values read from the year 1da.y map by those from the 1 to yea.r ratio map. As a further aid in the analysis of the isopluvial pattern, the 1year 1day values computed for the 37 stations for which data had been processed were also plotted, in addition to the grid points.!1 additional, maps.for the intermediate maps required for this report, values were computed for the 33 grid points (fig. 8). First, values were read from the year hour and 1day maps and the 1year hour and 1da.y maps. Then, the durationinterpolation diagram (fig. 3) and the returnperiod diagram (fig. 5) were used to compute amounts for the grid points. The frequency values w ::E w. "" X.w >., w. :::> ~ ::E 81 u; w :X: u :. z ;::. < ::: ij w ~ "" > 6 < ~ "" < w > N 6 8 1 1 1 YEAR 1DAY PRECPTATON {NCHES) ESTMATED FROM FGURE 6 FxoUBE 7.Relation between year l~ay precipitation computed by extreme value analysis and year loday precipitation estimated from figure 6. \ computed for stations for which data were processed were also plotted on each of the maps. solines were then drawn. Pronounced "highs" and "lows" are positioned in consistent locations on all the maps. The precipitationfrequency maps are shown at the end of the text (figs. 135). ReUability of TeBUlta.The term reliability is used here in the statistical sense to refer to the degree of confidence that can be placed in the accuracy of the results. The reliability is influenced by the accuracy of [1] and the accuracy of the relationships developed for this report. The accuracy of the results presented in [1] was discussed in that report. The reliability of the relationships developed may be partially assessed by reference to the various figures indicating a m811$ure of their quality. The scatter of points in these diagrams is a result of sampling error in time and space. Sampling error in space is a result of:. (1) the chance occurrence of an anomalous storm which bas a disproportionate effect on the record at a station as compared with that of a nearby station, and () the use of station data that are not representative of the rainfall regime of the surrounding area. Similarly, sampling error in time results from the use of data for a given period that is not representative for a longer period. 3

G U L T t\. ~,.. \ \ denser net.works were subdivided to provide additional points for the smaller areas. Determination of atea of wtworica.there is no completely satisfactory method for determining the size of the area for which the precipitation measured by a. particular network may be considered to be representative. The size of the area represented by a network in this study was presumed to be equal to the area of the smallest circle encompabsing the network. t should not be inferred, however, that such a circle actually delineates the shape and location of the "true" representative area. Construction of the CWMJea.The annual series for the period of record for each network was tabulated for the and 8hour durations, and the, 5, 1, 5, 5, and 1year values were computed. The method of computation for the percentage reduction for each network was the same as that used in []. These percentage reductions were then plotted on a series of charts, one for each return period, and curves were fitted by eye. The curves for the various return periods were compared, and a mean curve was drawn for each duration. The individual curves drawn for the different return periods varied by no more than about 1 percent from the mean curve, indicating that there was no need for separate curves for each return period. The hour curve showed only negligible differences from that used in previous reports [1, ), and it was therefore decided to use the curve originally developed for those reports. For durations longer than 8 hours "cross section" at several sizes of area were taken, and the percentages for the 1,, and 8hour values were plotted on semilogarithmic paper. A smooth curve for each size of area was then drawn through these plotted points and extrapolated to hours. Data for the longer durations for a. few networks were then tabulated and used to check the extrapolation. Geo(!Taphic variation.while the areareduction curves of figure 1 are based on networks widely scattered throughout the country, there are many large regions not represented by a network (fig. 11). n the process of constructing the curves, the data from the different networks were closely examined in an attempt to detect regional variations. None was apparent. However, it should be kept in mind that the network sampling was not adequate for delineating regional variations and that the lack of any indication of such variation is not conclusive. Pending the availability of additional dense network data, the curves of figure 1 must be considered applicable to all parts of the country. FGURE B.Points for which precipitationfrequency data were computed in deriving the intermediate maps from the key mads, the year hour and 1day and the 1year hour and 1(klay. SEASONAL VARATON /soline interval.n general, a different isoline :interval was used east and west of 15 W. longitude. Within each region a dashed intermediate l:ine was added if the isopluvials were widely separated or if the spacing of isopluvials was nonlinear to minimize the errois of interpolation. Occasionally, along the slopes of the Sierras and Cascades of California, Washington, and Oregon, it was necessary to omit an isopluvial because of the extremely steep gradient. Lows that close within the boundaries of the United States have been hatched inwardly. Smoothing value8 Tead /Tom the mapa.the complex patterns and steep gradients of the isopluvials combined with the difficulties of interpolation and accurate location of a specific point on a series of maps might result in inconsistencies in data read from the maps. Such inconsistencies CJl be minimized by fitting smooth curves to a plot of the data obtained from the maps. Figure 9 illustrates two sets of curves on logarithmic paper, one for a point (a) 39 N., 9 W. and the other (b) at 3' N., 111 15' W. Data for the ltour values for these curves have been taken from [1]..An alternative procedure would be to read these values from the duration:interpolationdiagram (fig.3). n one plot in figure 9 the curve of best fit is a straight l:ine, while in the ot.her, a curve provides a better fit. n regions where the isopluvial pattern is relatively simple and exhibits flat gradients, minor differences in locating points have less effect on the interpolated values, and the plotted po:ints will more clearly define a smooth set of curves. n mounta:inous regions complex patterns and steep gradients complicate interpolation, and the curves will be more poorly defined. nterpolated_ values for a particular duration should define an almost straight line on the returnperiod diagram of figure 5. Also, the interpolated values for a particular return period should very nearly define a straight. line on the durationinterpolation diagram offigure3. D~AREA RELATONSHPS lnttoo!uction..any value read from am. isopluvial map for a point is an average depth for the location, for a given return period and duration. The deptharea curve attempts to relate this average point value, for a given duration and frequency and within a. given area, to the average depth over that area for the same duration and frequency. The curves of figure 1 depict the relationship for durations of 1 to 1 days and for areas up to square miles, and are to be used in reducing the point values of precipitation shown on the maps of ~oures 1 to 35 to areal values. Data uaed.data. from 7 dense networks were used to develop the deptharea curves of figure 1. The networks, together with the total area, number of gages, number of subnetworks, and length of record are listed in table 3, and their locations are shown in figure 11. The average length of record used was 17 years. Only networks that had at least 1 years of record were considered. The The basic data for the precipitationfrequency maps of figures 1 to 35 show seasonal trends. Some months may contribute most of the annual series or partial series data used in the frequency analyses, while other months may contribute little or nothing. Also, the months contributing most of the series data. for the shorter durations, say, one or two days, may not be the same as those contributing most of the data for the longer durations, say, nine or ten days. Teclvnical PapeT No. J [1] presented a series of seasonal probability charts for 1, 6, and hour rainfall for the region east of the Rockies. None was presented for the mountainous region to the west because of the effects of local climatic and topographic infl.uences. Seasonal probability curves were not derived :for this report because the relatively small number of stations providing the basic datn. precluded the delineation of the boundaries of areas of representativeness for seasonal probability curves. Data from many more stations would have been required to depict properly the regional variations of the seasonal probalility curves. t appeared that their usefulness was not commensurate with the costs of collecting and processing the additional data required for their construction.

15 1 9 8 'iii ~6 (.) ~5 _..~ 7.. f. ~Y!. v v \."fep.~s"' ~E~\OQ. ~ ' t:: '""" ~Elu~ll _:. :;. r' :1.,_.! ~ ~ ~~ ~ ' l ~ ~ ~ ~ ~ f 1 39 N 9 W f 1 (A) 3 5 6 7 8 9 1 DURATON (DAYS) ~r.,,,,,, 15 1 9~~+++~+~~ 8 (B) 3 5 6 7 8 9 1 DURATON (DAYS) ).....,.'t i i ( i \,,~ \. ~ l..,_.. ~!{ '; i \ ) J! / l 1~ \_"j i '! i 1_ ~ f ' i.,,.._!..,, _). t. t ', ~ '\ '! i!. ~. ). ;,';. j '.,._.r:' "<; \\ i ~1~ <_ \ ;,..,. l,,. \ 1 ; r..,, l ',.. _ \ r,, """' ~ /._. \ i ~! i l ~.,::.r \ r ~L ~ '['.',.r ~t.c.o > ~ ; i r r'";.~'.. "'' V {;!y../ "",.J.,..~.! t.. )! \ '....._::,!! _,. 1..,..! ~! \ \ ' i! 1.. '>, _.J"..;:.J ~ \. "' \ L i ~1.,,) '\ i "(i' "r\ '. ' '\'.. \. \ '\ FloUBE 9.smoothlng values read from isopluvial maps. Points are values read from maps of figures,1 to 35 for (A) 35"' N., 9"' w~ and (B) "3' N~ 111"15' W. The x's are values obtsined from the mapa of [1]. FloUBE 11.Locatlon ot dpnse networks used to develop deptharea curves. Network TABLE 3.Denae network datil Ce.Womla 1... CaiUomla. Ce.Womla 3 Calltorn1a... CaJomla 6 California 6 Calllomla 7 California 8... Ce.Womla 9... Callfomla 1 Conuectico.t 1 Florlcla!... ~'l:1~ :::::::::::::::::::::::::::::::::::::::::::: owa 1.. Maryland 1... Mlssotu11. Mlssotu'l. New Jersey 1.. New Jersey New York 1.. New York.. Oblo 1.. Orogon 1 Oregon.. Texas 1 _. Wasblngtoo 1. Ale& (sq.ml) 17 1lK 86 31 177 11 176 78 f1 316 1 3f6 38 63 M 66 176 83 16 83 f3 78 33 38 Tolal No. No.ofSnb Length of or gages networks record (years) s 6 f s 6 6 f 13 9 7 6 7 7 6 5 f 6 f f 1 1 1 1 7 6 6 6 1 f 1 1 15 16 1 16 18 17 11 1 16 1 1 18 1 15 3 18 1f 19 17 19 1 gol~ljl~~~~ 1 lioo AREA (SQUARE MLES) Flaum;: 1.Deptharea curves. REFERENCES 1. U.S. Weather Bureau, "RainfallFrequency Atlas of the United States," Technical PGper No., May 1961,115 pp.. M. A. Kobler, "DoubleMass Analysis for Testing the Consistency of Records and for Making Required Adjustments," Bulleli# of the Amenca# Meteorologiclll8ooielg, vol 8, No.5, May 199, pp.lbs18. 3. L. L. Weiss, "A General Relation between Frequency and Duration of Preeipltatlon," MatatAll/ WeGther Revielo, VOL 9, No. 8, Mar. 196, pp. 8788.. U.S. Weather Bureau, "Rainfall ntensityfrequency Reginte, Part Southeastern United States," Teohnical PGper No. 9, Mar. 1958, 51 pp. 5