5.3.1 Arithmetic Average Method:
|
|
|
- Myrtle Moody
- 9 years ago
- Views:
Transcription
1 Computation of Average Rainfall over a Basin: To compute the average rainfall over a catchment area or basin, rainfall is measured at a number of gauges by suitable type of measuring devices. A rough idea of the number of the needed rain gauges to be installed in a practical area is depending on experience of the hydrologist although this was determined by the regulation of the World Meteorological Organization (WMO). In areas where more than one rain gauge is established, following methods may be employed to compute the average rainfall: - Arithmetic average method - Weighing mean method or Thiessen polygon method - Isohyetal method Arithmetic Average Method: This is the simplest method of computing the average rainfall over a basin. As the name suggests, the result is obtained by the division of the sum of rain depths recorded at different rain gauge stations of the basin by the number of the stations. If the rain gauges are uniformly distributed over the area and the rainfall varies in a very regular manner, the results obtained by this method will be quite satisfactory and will not differ much than those obtained by other methods. This method can be used for the storm rainfall, monthly or annual rainfall average computations.
2 Example: During a storm the rainfall observations in a selected basin were found as follows: Table 3: Computation of average precipitation over a basin using Arithmetic mean method Station No. Precipitation in [mm] Average precipitation [mm] Total [mm] P = 120.6/6 = 30.1 mm Thiessen Polygon Method This is the weighted mean method. The rainfall is never uniform over the entire area of the basin or catchment, but varies in intensity and duration from place to place. Thus the rainfall recorded by each rain gauge station should be weighted according to the area, it represents. This method is more suitable under the following conditions: - For areas of moderate size. - When rainfall stations are few compared to the size of the basin. - In moderate rugged areas. For the construction of the polygon, the following procedure is to be followed:
3 Figure (1):Basin and location of stations P1 P2 P3 P6 P4 P5 P7 Step 1: Draw the area concerned to a suitable scale, showing its boundary, locations of the raingauges in the area and outside but close to the boundary Figure (2): Drawing of the triangles P2 P1 P3 P6 P4 P5 P7 Step 2: Join location of the raingauges to form a network of triangles Figure (3): Drawing the perpendicular bi-sectors of the triangles P2 P1 P3 P4 P5 P6 P7
4 Step 3: Draw perpendicular bisectors to the triangle sides. These bisectors form polygons around the stations Figure (4): Drawing of the polgons A2 P2 A A4 P1 Step 4: Delineate the formed polygons and measure their areas using a planimeter or by converting them into smaller regular geometric shapes (i.e. triangles, squares, rectangles, etc.) A3 P3 P4 A5 P5 A6 P6 A7 P7 Step 5: Compute the average rainfall using the following formula P 1 xa 1 + P 2 xa P n xa n A 1 + A A n Pav = If the calculated or measured sectional areas of the polygon, and the measured precipitation are given by the values presented in the following table (3) below.
5 Table (4): Bi-sectional areas (A) of Theissen polygon, and the measured precipitation (P) for stations Station No. Bi-sectional areas (Ai) Measured precipitation (Col. 2 * Col. 3) (Ai *Pi) [km 2 ] (Pi) [mm] P P P P P P P Total Then the average precipitation over the catchment will be computed by the total of the column 4 to the total area in column 2. The result will be found as: mm. isoyetal Method: An isohyetal is a line joining places where the rainfall amounts are equal on a rainfall map of a basin. An isohyetal map showing contours of equal rainfall is more accurate picture of the rainfall over the basin. This method is more suited under the following conditions:
6 - For hilly and rugged areas. - For large areas over 5000 km 2. - For areas where the network of rainfall stations within the storm area is sufficiently dense, isohyetal method gives more accurate distribution of rainfall. For explaining of drawing an isohyetal map for a basin, the following procedure is usually applied: Step 1: Draw the area under study to scale and mark rain gauges on it. Put at each of the raingauge location the recorded values of rainfall at the station, for the period within which the average is required to be determined. Figure (5): basin and rainfall stations. Step 2: Draw the isohyetes of various values by considering the point rainfall data as guidelines and interpolating between them. Also, incorporate the knowledge of orographic effects. lines Figure (6): Drawing the isohyetal
7 Step 3: Determine the area between each pair of the isohyet lines, either by a planimeter or by converting the areas into smaller regular geometric shapes. Step 4: Calculate the average rainfall using the following formula: A 1 (P 1 + P 2 )/2 + A 2 (P 2 + P 3 )/ A n-1 (P n-1 + P n )/2 (A 1 + A A n ) P av = P i = Value of Isohyet lines A i = Area between pair of isohyet lines. Example: Calculate the average rainfall over the area given in the figure using Isohyetal method. Table (5): Rainfall computation by Isohyetal Method Isohyet (mm) Area Between Isohyets (sq.km) Average Rainfall (mm) Rainfall volume (col 3 x col4) (mm-sq.km) , , , , , less , Total , map Figure (7): Isohyetal Pav = 103, /1, = mm
8 Comparison Between the Three Methods: Arithmetic mean method: 1- This is the simplest and easiest method to compute average rainfall. 2- In this method every station has equal weight regardless its location. 3- If the recording stations and rainfall is uniformly distributed over the entire catchment, then this method is equally accurate. Thiessen method 1-This method is also mechanical 2-In this method the rainfall stations located at a short distance beyond the boundary of drainage are also used to determine the mean rainfall of the basin, but their influence diminishes as the distance from the boundary increases. 3-It is commonly used for flat and low rugged areas. Isohyetal method: 1- It is the best method for rugged areas and hilly regions. 2- It is the most accurate method if the contours are drawn correctly. However to obtain the best results good judgment in drawing the isohyets and in assigning the proper mean rainfall values to the area between them is required. 3- Other points are as for Thiessen method.
9 Summary for Basin Average Rainfall Analysis Techniques The Isohyetal method allows the use of judgment and experience in drawing the contour map. The accuracy is largely dependent on the skill of the person performing the analysis and the number of gauges. If simple linear interpolation between stations is used for drawing the contours, the results will be essentially the same as those obtained by the Thiessen method. The advantages of both the Thiessen and Isohyetal methods can be combined where the area closes to the gauge is defined by the polygons but the rainfall over that area is defined by the contours from the Isohyetal method. This combination also eliminates the disadvantage of having to draw different polygon patterns when analyzing several different storm events with a variety of reporting gauges. Regardless of the technique selected for analysis of basin average rainfall, a regional map of areal distribution for the total storm event is also produced.
Tallahassee Community College PERIMETER
Tallahassee Community College 47 PERIMETER The perimeter of a plane figure is the distance around it. Perimeter is measured in linear units because we are finding the total of the lengths of the sides
Calculating Area, Perimeter and Volume
Calculating Area, Perimeter and Volume You will be given a formula table to complete your math assessment; however, we strongly recommend that you memorize the following formulae which will be used regularly
Geometry - Calculating Area and Perimeter
Geometry - Calculating Area and Perimeter In order to complete any of mechanical trades assessments, you will need to memorize certain formulas. These are listed below: (The formulas for circle geometry
Slope Density. Appendix F F-1 STATEMENT OF PURPOSE DISCUSSION OF SLOPE
Appendix F Slope Density F-1 STATEMENT OF PURPOSE This document has been prepared with the intent of acquainting the general reader with the slope-density approach to determining the intensity of residential
Chapter 12: Three Methods for Computing the Volume of a Lake
January 000 Manual of Fisheries Survey Methods II: with periodic updates Chapter : Three Methods for Computing the Volume of a Lake Clarence M. Taube Suggested citation: Taube, Clarence M. 000. Instructions
Geometry Course Summary Department: Math. Semester 1
Geometry Course Summary Department: Math Semester 1 Learning Objective #1 Geometry Basics Targets to Meet Learning Objective #1 Use inductive reasoning to make conclusions about mathematical patterns Give
2Digital tablets or computer scanners can
Appendix A Measuring Lake Surface Area Lake surface area can be measured with a bathymetric map using any of the following techniques: 1One of the most accurate methods is to use a planimeter to trace
ANALYSIS OF RAINFALL AND ITS INFLOW INTO MOBILE, ALABAMA S, ESLAVA SEWER SHED SYSTEM
ANALYSIS OF RAINFALL AND ITS INFLOW INTO MOBILE, ALABAMA S, ESLAVA SEWER SHED SYSTEM Jerrod Frederking, Department of Earth Sciences, University of South Alabama, Mobile, AL 36688. E-mail: [email protected].
MECHANICAL PRINCIPLES HNC/D MOMENTS OF AREA. Define and calculate 1st. moments of areas. Define and calculate 2nd moments of areas.
MECHANICAL PRINCIPLES HNC/D MOMENTS OF AREA The concepts of first and second moments of area fundamental to several areas of engineering including solid mechanics and fluid mechanics. Students who are
CSO Modelling Considering Moving Storms and Tipping Bucket Gauge Failures M. Hochedlinger 1 *, W. Sprung 2,3, H. Kainz 3 and K.
CSO Modelling Considering Moving Storms and Tipping Bucket Gauge Failures M. Hochedlinger 1 *, W. Sprung,, H. Kainz and K. König 1 Linz AG Wastewater, Wiener Straße 151, A-41 Linz, Austria Municipality
Geometry Chapter 1. 1.1 Point (pt) 1.1 Coplanar (1.1) 1.1 Space (1.1) 1.2 Line Segment (seg) 1.2 Measure of a Segment
Geometry Chapter 1 Section Term 1.1 Point (pt) Definition A location. It is drawn as a dot, and named with a capital letter. It has no shape or size. undefined term 1.1 Line A line is made up of points
Convert between units of area and determine the scale factor of two similar figures.
CHAPTER 5 Units of Area c GOAL Convert between units of area and determine the scale factor of two. You will need a ruler centimetre grid paper a protractor a calculator Learn about the Math The area of
Area. Area Overview. Define: Area:
Define: Area: Area Overview Kite: Parallelogram: Rectangle: Rhombus: Square: Trapezoid: Postulates/Theorems: Every closed region has an area. If closed figures are congruent, then their areas are equal.
Module 6 : Quantity Estimation of Storm Water. Lecture 6 : Quantity Estimation of Storm Water
1 P age Module 6 : Quantity Estimation of Storm Water Lecture 6 : Quantity Estimation of Storm Water 2 P age 6.1 Factors Affecting the Quantity of Stormwater The surface run-off resulting after precipitation
CAMI Education linked to CAPS: Mathematics
- 1 - TOPIC 1.1 Whole numbers _CAPS curriculum TERM 1 CONTENT Mental calculations Revise: Multiplication of whole numbers to at least 12 12 Ordering and comparing whole numbers Revise prime numbers to
Three daily lessons. Year 5
Unit 6 Perimeter, co-ordinates Three daily lessons Year 4 Autumn term Unit Objectives Year 4 Measure and calculate the perimeter of rectangles and other Page 96 simple shapes using standard units. Suggest
Target To know the properties of a rectangle
Target To know the properties of a rectangle (1) A rectangle is a 3-D shape. (2) A rectangle is the same as an oblong. (3) A rectangle is a quadrilateral. (4) Rectangles have four equal sides. (5) Rectangles
Glencoe. correlated to SOUTH CAROLINA MATH CURRICULUM STANDARDS GRADE 6 3-3, 5-8 8-4, 8-7 1-6, 4-9
Glencoe correlated to SOUTH CAROLINA MATH CURRICULUM STANDARDS GRADE 6 STANDARDS 6-8 Number and Operations (NO) Standard I. Understand numbers, ways of representing numbers, relationships among numbers,
LESSON 4 Missing Numbers in Multiplication Missing Numbers in Division LESSON 5 Order of Operations, Part 1 LESSON 6 Fractional Parts LESSON 7 Lines,
Saxon Math 7/6 Class Description: Saxon mathematics is based on the principle of developing math skills incrementally and reviewing past skills daily. It also incorporates regular and cumulative assessments.
Perimeter is the length of the boundary of a two dimensional figure.
Section 2.2: Perimeter and Area Perimeter is the length of the boundary of a two dimensional figure. The perimeter of a circle is called the circumference. The perimeter of any two dimensional figure whose
Technical Standards and Guidelines for Planning and Design DRAFT VOLUME FLOOD CONTROL
DEPARTMENT OF PUBLIC WORKS AND HIGHWAYS JAPAN INTERNATIONAL COOPERATION AGENCY Technical Standards and Guidelines for Planning and Design DRAFT VOLUME FLOOD CONTROL MARCH 2002 Project for the Enhancement
Algebra III. Lesson 33. Quadrilaterals Properties of Parallelograms Types of Parallelograms Conditions for Parallelograms - Trapezoids
Algebra III Lesson 33 Quadrilaterals Properties of Parallelograms Types of Parallelograms Conditions for Parallelograms - Trapezoids Quadrilaterals What is a quadrilateral? Quad means? 4 Lateral means?
Advanced Math Study Guide
Advanced Math Study Guide Topic Finding Triangle Area (Ls. 96) using A=½ bc sin A (uses Law of Sines, Law of Cosines) Law of Cosines, Law of Cosines (Ls. 81, Ls. 72) Finding Area & Perimeters of Regular
D.2. The Cartesian Plane. The Cartesian Plane The Distance and Midpoint Formulas Equations of Circles. D10 APPENDIX D Precalculus Review
D0 APPENDIX D Precalculus Review SECTION D. The Cartesian Plane The Cartesian Plane The Distance and Midpoint Formulas Equations of Circles The Cartesian Plane An ordered pair, of real numbers has as its
APPLICATIONS AND MODELING WITH QUADRATIC EQUATIONS
APPLICATIONS AND MODELING WITH QUADRATIC EQUATIONS Now that we are starting to feel comfortable with the factoring process, the question becomes what do we use factoring to do? There are a variety of classic
Charlesworth School Year Group Maths Targets
Charlesworth School Year Group Maths Targets Year One Maths Target Sheet Key Statement KS1 Maths Targets (Expected) These skills must be secure to move beyond expected. I can compare, describe and solve
Dŵr y Felin Comprehensive School. Perimeter, Area and Volume Methodology Booklet
Dŵr y Felin Comprehensive School Perimeter, Area and Volume Methodology Booklet Perimeter, Area & Volume Perimeters, Area & Volume are key concepts within the Shape & Space aspect of Mathematics. Pupils
Solids. Objective A: Volume of a Solids
Solids Math00 Objective A: Volume of a Solids Geometric solids are figures in space. Five common geometric solids are the rectangular solid, the sphere, the cylinder, the cone and the pyramid. A rectangular
Curriculum Map by Block Geometry Mapping for Math Block Testing 2007-2008. August 20 to August 24 Review concepts from previous grades.
Curriculum Map by Geometry Mapping for Math Testing 2007-2008 Pre- s 1 August 20 to August 24 Review concepts from previous grades. August 27 to September 28 (Assessment to be completed by September 28)
Quality Assurance for Hydrometric Network Data as a Basis for Integrated River Basin Management
Quality Assurance for Hydrometric Network Data as a Basis for Integrated River Basin Management FRANK SCHLAEGER 1, MICHAEL NATSCHKE 1 & DANIEL WITHAM 2 1 Kisters AG, Charlottenburger Allee 5, 52068 Aachen,
Map Patterns and Finding the Strike and Dip from a Mapped Outcrop of a Planar Surface
Map Patterns and Finding the Strike and Dip from a Mapped Outcrop of a Planar Surface Topographic maps represent the complex curves of earth s surface with contour lines that represent the intersection
43 Perimeter and Area
43 Perimeter and Area Perimeters of figures are encountered in real life situations. For example, one might want to know what length of fence will enclose a rectangular field. In this section we will study
9 Area, Perimeter and Volume
9 Area, Perimeter and Volume 9.1 2-D Shapes The following table gives the names of some 2-D shapes. In this section we will consider the properties of some of these shapes. Rectangle All angles are right
Today s Objective COMPOSITE BODIES
Today s Objective: Students will be able to determine: a) The location of the center of gravity, b) The location of the center of mass, c) And, the location of the centroid using the method of composite
16 Circles and Cylinders
16 Circles and Cylinders 16.1 Introduction to Circles In this section we consider the circle, looking at drawing circles and at the lines that split circles into different parts. A chord joins any two
The Rational Method. David B. Thompson Civil Engineering Deptartment Texas Tech University. Draft: 20 September 2006
The David B. Thompson Civil Engineering Deptartment Texas Tech University Draft: 20 September 2006 1. Introduction For hydraulic designs on very small watersheds, a complete hydrograph of runoff is not
CSU Fresno Problem Solving Session. Geometry, 17 March 2012
CSU Fresno Problem Solving Session Problem Solving Sessions website: http://zimmer.csufresno.edu/ mnogin/mfd-prep.html Math Field Day date: Saturday, April 21, 2012 Math Field Day website: http://www.csufresno.edu/math/news
Finite Elements for 2 D Problems
Finite Elements for 2 D Problems General Formula for the Stiffness Matrix Displacements (u, v) in a plane element are interpolated from nodal displacements (ui, vi) using shape functions Ni as follows,
Conjectures. Chapter 2. Chapter 3
Conjectures Chapter 2 C-1 Linear Pair Conjecture If two angles form a linear pair, then the measures of the angles add up to 180. (Lesson 2.5) C-2 Vertical Angles Conjecture If two angles are vertical
PERIMETER AND AREA. In this unit, we will develop and apply the formulas for the perimeter and area of various two-dimensional figures.
PERIMETER AND AREA In this unit, we will develop and apply the formulas for the perimeter and area of various two-dimensional figures. Perimeter Perimeter The perimeter of a polygon, denoted by P, is the
Watershed Modeling System
Watershed Modeling System WMS v8.0 MARICOPA COUNTY TUTORIALS TABLE OF CONTENTS 1 MARICOPA COUNTY: NFF AND HEC-1... 1-1 1.1 OBJECTIVES... 1-1 1.2 DELINEATING THE WATERSHED... 1-1 1.3 BUILDING THE NFF SIMULATION...
CHAPTER 2 HYDRAULICS OF SEWERS
CHAPTER 2 HYDRAULICS OF SEWERS SANITARY SEWERS The hydraulic design procedure for sewers requires: 1. Determination of Sewer System Type 2. Determination of Design Flow 3. Selection of Pipe Size 4. Determination
Cabri Geometry Application User Guide
Cabri Geometry Application User Guide Preview of Geometry... 2 Learning the Basics... 3 Managing File Operations... 12 Setting Application Preferences... 14 Selecting and Moving Objects... 17 Deleting
FOREWORD. Executive Secretary
FOREWORD The Botswana Examinations Council is pleased to authorise the publication of the revised assessment procedures for the Junior Certificate Examination programme. According to the Revised National
How To Find The Area Of A Shape
9 Areas and Perimeters This is is our next key Geometry unit. In it we will recap some of the concepts we have met before. We will also begin to develop a more algebraic approach to finding areas and perimeters.
Perimeter, Area and Volume of Regular Shapes
Perimeter, Area and Volume of Regular Sapes Perimeter of Regular Polygons Perimeter means te total lengt of all sides, or distance around te edge of a polygon. For a polygon wit straigt sides tis is te
Geometry Module 4 Unit 2 Practice Exam
Name: Class: Date: ID: A Geometry Module 4 Unit 2 Practice Exam Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which diagram shows the most useful positioning
11.3 Curves, Polygons and Symmetry
11.3 Curves, Polygons and Symmetry Polygons Simple Definition A shape is simple if it doesn t cross itself, except maybe at the endpoints. Closed Definition A shape is closed if the endpoints meet. Polygon
CHAPTER 3 STORM DRAINAGE SYSTEMS
CHAPTER 3 STORM DRAINAGE SYSTEMS 3.7 Storm Drains 3.7.1 Introduction After the tentative locations of inlets, drain pipes, and outfalls with tail-waters have been determined and the inlets sized, the next
Perimeter. 14ft. 5ft. 11ft.
Perimeter The perimeter of a geometric figure is the distance around the figure. The perimeter could be thought of as walking around the figure while keeping track of the distance traveled. To determine
Numeracy Targets. I can count at least 20 objects
Targets 1c I can read numbers up to 10 I can count up to 10 objects I can say the number names in order up to 20 I can write at least 4 numbers up to 10. When someone gives me a small number of objects
Geometry of 2D Shapes
Name: Geometry of 2D Shapes Answer these questions in your class workbook: 1. Give the definitions of each of the following shapes and draw an example of each one: a) equilateral triangle b) isosceles
Quality assurance for hydrometric network data as a basis for integrated river basin management
Water in Celtic Countries: Quantity, Quality and Climate Variability (Proceedings of the Fourth InterCeltic Colloquium on Hydrology and Management of Water Resources, Guimarães, Portugal, July 2005). IAHS
In mathematics, there are four attainment targets: using and applying mathematics; number and algebra; shape, space and measures, and handling data.
MATHEMATICS: THE LEVEL DESCRIPTIONS In mathematics, there are four attainment targets: using and applying mathematics; number and algebra; shape, space and measures, and handling data. Attainment target
Investigating Area Under a Curve
Mathematics Investigating Area Under a Curve About this Lesson This lesson is an introduction to areas bounded by functions and the x-axis on a given interval. Since the functions in the beginning of the
Selected practice exam solutions (part 5, item 2) (MAT 360)
Selected practice exam solutions (part 5, item ) (MAT 360) Harder 8,91,9,94(smaller should be replaced by greater )95,103,109,140,160,(178,179,180,181 this is really one problem),188,193,194,195 8. On
ME 111: Engineering Drawing
ME 111: Engineering Drawing Lecture # 14 (10/10/2011) Development of Surfaces http://www.iitg.ernet.in/arindam.dey/me111.htm http://www.iitg.ernet.in/rkbc/me111.htm http://shilloi.iitg.ernet.in/~psr/ Indian
Chapter 3.1 Angles. Geometry. Objectives: Define what an angle is. Define the parts of an angle.
Chapter 3.1 Angles Define what an angle is. Define the parts of an angle. Recall our definition for a ray. A ray is a line segment with a definite starting point and extends into infinity in only one direction.
VOLUME of Rectangular Prisms Volume is the measure of occupied by a solid region.
Math 6 NOTES 7.5 Name VOLUME of Rectangular Prisms Volume is the measure of occupied by a solid region. **The formula for the volume of a rectangular prism is:** l = length w = width h = height Study Tip:
Basic Math for the Small Public Water Systems Operator
Basic Math for the Small Public Water Systems Operator Small Public Water Systems Technology Assistance Center Penn State Harrisburg Introduction Area In this module we will learn how to calculate the
Making an image using altitude as background image
Try to re-do the previous exercise with different settings under Distance in Km between gridlines, Maximum interpolation radius (in Km), Minimum number of nearest stations and Maximum number of nearest
Geometry Notes VOLUME AND SURFACE AREA
Volume and Surface Area Page 1 of 19 VOLUME AND SURFACE AREA Objectives: After completing this section, you should be able to do the following: Calculate the volume of given geometric figures. Calculate
Chapter 11. Areas of Plane Figures You MUST draw diagrams and show formulas for every applicable homework problem!
Chapter 11 Areas of Plane Figures You MUST draw diagrams and show formulas for every applicable homework problem! Objectives A. Use the terms defined in the chapter correctly. B. Properly use and interpret
Mathematics 2540 Paper 5540H/3H
Edexcel GCSE Mathematics 540 Paper 5540H/3H November 008 Mark Scheme 1 (a) 3bc 1 B1 for 3bc (accept 3cb or bc3 or cb3 or 3 b c oe, but 7bc 4bc gets no marks) (b) x + 5y B for x+5y (accept x+y5 or x + 5
Geometry Unit 6 Areas and Perimeters
Geometry Unit 6 Areas and Perimeters Name Lesson 8.1: Areas of Rectangle (and Square) and Parallelograms How do we measure areas? Area is measured in square units. The type of the square unit you choose
MATHS LEVEL DESCRIPTORS
MATHS LEVEL DESCRIPTORS Number Level 3 Understand the place value of numbers up to thousands. Order numbers up to 9999. Round numbers to the nearest 10 or 100. Understand the number line below zero, and
Senior Phase Grade 8 Today Planning Pack MATHEMATICS
M780636110236 Senior Phase Grade 8 Today Planning Pack MATHEMATICS Contents: Work Schedule: Page Grade 8 2 Lesson Plans: Grade 8 4 Rubrics: Rubric 1: Recognising, classifying and representing numbers...22
MATHEMATICS FOR ENGINEERING BASIC ALGEBRA
MATHEMATICS FOR ENGINEERING BASIC ALGEBRA TUTORIAL 4 AREAS AND VOLUMES This is the one of a series of basic tutorials in mathematics aimed at beginners or anyone wanting to refresh themselves on fundamentals.
Chapter 6 Notes: Circles
Chapter 6 Notes: Circles IMPORTANT TERMS AND DEFINITIONS A circle is the set of all points in a plane that are at a fixed distance from a given point known as the center of the circle. Any line segment
The Effect of Forced Air Cooling on Heat Sink Thermal Ratings
zpero 1 The Effect of Forced Air Cooling on Heat Sink Thermal Ratings By Paul Bachman, Fellow Engineer & Ronnie Haiduk, Applications Engineer, Crydom, Inc. ABSTRACT A heat sink s ability to dissipate thermal
Figure 1.1 The Sandveld area and the Verlorenvlei Catchment - 2 -
Figure 1.1 The Sandveld area and the Verlorenvlei Catchment - 2 - Figure 1.2 Homogenous farming areas in the Verlorenvlei catchment - 3 - - 18 - CHAPTER 3: METHODS 3.1. STUDY AREA The study area, namely
Havnepromenade 9, DK-9000 Aalborg, Denmark. Denmark. Sohngaardsholmsvej 57, DK-9000 Aalborg, Denmark
Urban run-off volumes dependency on rainfall measurement method - Scaling properties of precipitation within a 2x2 km radar pixel L. Pedersen 1 *, N. E. Jensen 2, M. R. Rasmussen 3 and M. G. Nicolajsen
Flash Flood Science. Chapter 2. What Is in This Chapter? Flash Flood Processes
Chapter 2 Flash Flood Science A flash flood is generally defined as a rapid onset flood of short duration with a relatively high peak discharge (World Meteorological Organization). The American Meteorological
Impact of rainfall and model resolution on sewer hydrodynamics
Impact of rainfall and model resolution on sewer hydrodynamics G. Bruni a, J.A.E. ten Veldhuis a, F.H.L.R. Clemens a, b a Water management Department, Faculty of Civil Engineering and Geosciences, Delft
International Indian School, Riyadh SA1 Worksheet 2015-2016 Class: VI Mathematics
International Indian School, Riyadh SA1 Worksheet 2015-2016 Class: VI Mathematics CH KNOWING OUR NUMBERS I Fill In the blanks 1. 1km = mm 2. 1 gram = milligrams 3. The roman numeral M stands for the number
By the end of this set of exercises, you should be able to:
BASIC GEOMETRIC PROPERTIES By the end of this set of exercises, you should be able to: find the area of a simple composite shape find the volume of a cube or a cuboid find the area and circumference of
AUTUMN UNIT 3. first half. Perimeter. Centimetres and millimetres. Metres and centimetres. Area. 3D shapes PART 3 MEASURES AND PROPERTIES OF SHAPES
PART AUTUMN first half MEASURES AND PROPERTIES OF SHAPES SECTION Perimeter SECTION Centimetres and millimetres SECTION Metres and centimetres SECTION Key Stage National Strategy CROWN COPYRIGHT 00 Area
WORK SCHEDULE: MATHEMATICS 2007
, K WORK SCHEDULE: MATHEMATICS 00 GRADE MODULE TERM... LO NUMBERS, OPERATIONS AND RELATIONSHIPS able to recognise, represent numbers and their relationships, and to count, estimate, calculate and check
Module 7: Hydraulic Design of Sewers and Storm Water Drains. Lecture 7 : Hydraulic Design of Sewers and Storm Water Drains
1 P age Module 7: Hydraulic Design of Sewers and Storm Water Drains Lecture 7 : Hydraulic Design of Sewers and Storm Water Drains 2 P age 7.1 General Consideration Generally, sewers are laid at steeper
Page. Trigonometry Sine Law and Cosine Law. push
Trigonometry Sine Law and Cosine Law Page Trigonometry can be used to calculate the side lengths and angle measures of triangles. Triangular shapes are used in construction to create rigid structures.
Chapters 6 and 7 Notes: Circles, Locus and Concurrence
Chapters 6 and 7 Notes: Circles, Locus and Concurrence IMPORTANT TERMS AND DEFINITIONS A circle is the set of all points in a plane that are at a fixed distance from a given point known as the center of
Quick Reference ebook
This file is distributed FREE OF CHARGE by the publisher Quick Reference Handbooks and the author. Quick Reference ebook Click on Contents or Index in the left panel to locate a topic. The math facts listed
Definitions, Postulates and Theorems
Definitions, s and s Name: Definitions Complementary Angles Two angles whose measures have a sum of 90 o Supplementary Angles Two angles whose measures have a sum of 180 o A statement that can be proven
1. Kyle stacks 30 sheets of paper as shown to the right. Each sheet weighs about 5 g. How can you find the weight of the whole stack?
Prisms and Cylinders Answer Key Vocabulary: cylinder, height (of a cylinder or prism), prism, volume Prior Knowledge Questions (Do these BEFORE using the Gizmo.) [Note: The purpose of these questions is
NEW MEXICO Grade 6 MATHEMATICS STANDARDS
PROCESS STANDARDS To help New Mexico students achieve the Content Standards enumerated below, teachers are encouraged to base instruction on the following Process Standards: Problem Solving Build new mathematical
Ratio and Proportion Study Guide 12
Ratio and Proportion Study Guide 12 Ratio: A ratio is a comparison of the relationship between two quantities or categories of things. For example, a ratio might be used to compare the number of girls
Application of Monte Carlo Simulation Technique with URBS Model for Design Flood Estimation of Large Catchments
Application of Monte Carlo Simulation Technique with URBS Model for Design Flood Estimation of Large Catchments J. Charalambous ab, A. Rahman c and D. Carroll a a City Design, Brisbane City Council, [email protected]
Appendix 3 Water-Harvesting Earthworks Calculations
Appendix 3 Water-Harvesting Earthworks Calculations List of Equations and Other Information Box A3.1. Abbreviations, Conversions, and Constants for English and Metric Measurement Units Equation 1. Catchment
GEOMETRY COMMON CORE STANDARDS
1st Nine Weeks Experiment with transformations in the plane G-CO.1 Know precise definitions of angle, circle, perpendicular line, parallel line, and line segment, based on the undefined notions of point,
3D Model of the City Using LiDAR and Visualization of Flood in Three-Dimension
3D Model of the City Using LiDAR and Visualization of Flood in Three-Dimension R.Queen Suraajini, Department of Civil Engineering, College of Engineering Guindy, Anna University, India, [email protected]
Area of Parallelograms (pages 546 549)
A Area of Parallelograms (pages 546 549) A parallelogram is a quadrilateral with two pairs of parallel sides. The base is any one of the sides and the height is the shortest distance (the length of a perpendicular
39 Symmetry of Plane Figures
39 Symmetry of Plane Figures In this section, we are interested in the symmetric properties of plane figures. By a symmetry of a plane figure we mean a motion of the plane that moves the figure so that
Flood risk assessment through a detailed 1D/2D coupled model
CORFU Project Barcelona Case Study Final Workshop 19 th of May 2014 Flood risk assessment through a detailed 1D/2D coupled model Beniamino Russo Aqualogy Urban Drainage Direction Introduction and general
ACT Math Vocabulary. Altitude The height of a triangle that makes a 90-degree angle with the base of the triangle. Altitude
ACT Math Vocabular Acute When referring to an angle acute means less than 90 degrees. When referring to a triangle, acute means that all angles are less than 90 degrees. For eample: Altitude The height
Storm Drainage Systems 11.9-1
Storm Drainage Systems 11.9-1 11.9 Gutter Flow Calculations 11.9.1 Introduction Gutter flow calculations are necessary in order to relate the quantity of flow (Q) in the curbed channel to the spread of
Areas of Polygons. Goal. At-Home Help. 1. A hockey team chose this logo for their uniforms.
-NEM-WBAns-CH // : PM Page Areas of Polygons Estimate and measure the area of polygons.. A hockey team chose this logo for their uniforms. A grid is like an area ruler. Each full square on the grid has
Circle Name: Radius: Diameter: Chord: Secant:
12.1: Tangent Lines Congruent Circles: circles that have the same radius length Diagram of Examples Center of Circle: Circle Name: Radius: Diameter: Chord: Secant: Tangent to A Circle: a line in the plane
Precalculus. What s My Locus? ID: 8255
What s My Locus? ID: 855 By Lewis Lum Time required 45 minutes Activity Overview In this activity, students will eplore the focus/directri and reflection properties of parabolas. They are led to conjecture
Perimeter, Area, and Volume
Perimeter, Area, and Volume Perimeter of Common Geometric Figures The perimeter of a geometric figure is defined as the distance around the outside of the figure. Perimeter is calculated by adding all
Situation: Proving Quadrilaterals in the Coordinate Plane
Situation: Proving Quadrilaterals in the Coordinate Plane 1 Prepared at the University of Georgia EMAT 6500 Date Last Revised: 07/31/013 Michael Ferra Prompt A teacher in a high school Coordinate Algebra
