Implementing Deep Neural Networks with Non Volatile Memories



Similar documents
Phase Change Memory for Neuromorphic Systems and Applications

CS 1699: Intro to Computer Vision. Deep Learning. Prof. Adriana Kovashka University of Pittsburgh December 1, 2015

Hardware Acceleration for Just-In-Time Compilation on Heterogeneous Embedded Systems

Learning to Process Natural Language in Big Data Environment

On-Line Diagnosis using Orthogonal Multi-Tone Time Domain Reflectometry in a Lossy Cable

Administrivia. Traditional Recognition Approach. Overview. CMPSCI 370: Intro. to Computer Vision Deep learning

Image Classification for Dogs and Cats

Steven C.H. Hoi School of Information Systems Singapore Management University

Using Convolutional Neural Networks for Image Recognition

Image and Video Understanding

Deformable Part Models with CNN Features

Module 5. Deep Convnets for Local Recognition Joost van de Weijer 4 April 2016

Novelty Detection in image recognition using IRF Neural Networks properties

Coherent sub-thz transmission systems in Silicon technologies: design challenges for frequency synthesis

Conditioned Reflex Mimic Circuit Design

Pedestrian Detection with RCNN

Compacting ConvNets for end to end Learning

CEA LIST activity on Cable Monitoring and Diagnosis

Applications of Deep Learning to the GEOINT mission. June 2015

Taking Inverse Graphics Seriously

Clustering Big Data. Anil K. Jain. (with Radha Chitta and Rong Jin) Department of Computer Science Michigan State University November 29, 2012

Lecture 6: Classification & Localization. boris. ginzburg@intel.com

Introduction to Machine Learning CMU-10701

Stochastic Pooling for Regularization of Deep Convolutional Neural Networks

Advanced analytics at your hands

Convolutional Feature Maps

Lecture 6: CNNs for Detection, Tracking, and Segmentation Object Detection

Introduction to Artificial Neural Networks

arxiv: v2 [cs.cv] 19 Apr 2014

NATIONAL SUN YAT-SEN UNIVERSITY

Fast R-CNN Object detection with Caffe

Neural Network Design in Cloud Computing

A 240 G-ops/s Mobile Coprocessor for Deep Neural Networks

MANAGING QUEUE STABILITY USING ART2 IN ACTIVE QUEUE MANAGEMENT FOR CONGESTION CONTROL

Learning and transferring mid-level image representions using convolutional neural networks

Method of Combining the Degrees of Similarity in Handwritten Signature Authentication Using Neural Networks

Sense Making in an IOT World: Sensor Data Analysis with Deep Learning

Selecting Receptive Fields in Deep Networks

Applying Deep Learning to Car Data Logging (CDL) and Driver Assessor (DA) October 22-Oct-15

Learning to classify complex patterns using a VLSI network of spiking neurons

Spike-Based Sensing and Processing: What are spikes good for? John G. Harris Electrical and Computer Engineering Dept

Online Evolution of Deep Convolutional Network for Vision-Based Reinforcement Learning

A Dynamic Convolutional Layer for Short Range Weather Prediction

MulticoreWare. Global Company, 250+ employees HQ = Sunnyvale, CA Other locations: US, China, India, Taiwan

ImageNet Classification with Deep Convolutional Neural Networks

Analecta Vol. 8, No. 2 ISSN

3D Object Recognition using Convolutional Neural Networks with Transfer Learning between Input Channels

A Computer Vision System on a Chip: a case study from the automotive domain

An Introduction to Deep Learning

Introduction to Machine Learning and Data Mining. Prof. Dr. Igor Trajkovski

The Role of Size Normalization on the Recognition Rate of Handwritten Numerals

Deep Learning Meets Heterogeneous Computing. Dr. Ren Wu Distinguished Scientist, IDL, Baidu

Naive-Deep Face Recognition: Touching the Limit of LFW Benchmark or Not?

THE POSSIBILITY of using resistive memory devices as

Data Mining and Neural Networks in Stata

A PC-BASED TIME INTERVAL COUNTER WITH 200 PS RESOLUTION

Automatic 3D Reconstruction via Object Detection and 3D Transformable Model Matching CS 269 Class Project Report

Secure data processing: Blind Hypervision

THE HUMAN BRAIN. observations and foundations

Secured Embedded Many-Core Accelerator for Big Data Processing

Biological Neurons and Neural Networks, Artificial Neurons

TRAINING A LIMITED-INTERCONNECT, SYNTHETIC NEURAL IC

DEEP LEARNING WITH GPUS

PASSENGER/PEDESTRIAN ANALYSIS BY NEUROMORPHIC VISUAL INFORMATION PROCESSING

Bert Huang Department of Computer Science Virginia Tech

Architectures and Platforms

A Digital Neurosynaptic Core Using Embedded Crossbar Memory with 45pJ per Spike in 45nm

Agenda. Michele Taliercio, Il circuito Integrato, Novembre 2001

Multi-Column Deep Neural Network for Traffic Sign Classification

Handwritten Digit Recognition with a Back-Propagation Network

A bachelor of science degree in electrical engineering with a cumulative undergraduate GPA of at least 3.0 on a 4.0 scale

Reconfigurable Architecture Requirements for Co-Designed Virtual Machines

«A 32-bit DSP Ultra Low Power accelerator»

Pixels Description of scene contents. Rob Fergus (NYU) Antonio Torralba (MIT) Yair Weiss (Hebrew U.) William T. Freeman (MIT) Banksy, 2006

arxiv: v1 [cs.cv] 6 Feb 2015

路 論 Chapter 15 System-Level Physical Design

CIKM 2015 Melbourne Australia Oct. 22, 2015 Building a Better Connected World with Data Mining and Artificial Intelligence Technologies

GPU-Based Deep Learning Inference:

Implementation of emulated digital CNN-UM architecture on programmable logic devices and its applications

Intel Labs at ISSCC Copyright Intel Corporation 2012

NEURAL NETWORK FUNDAMENTALS WITH GRAPHS, ALGORITHMS, AND APPLICATIONS

Runtime Code Generation for Code Polymorphism

A 10,000 Frames/s 0.18 µm CMOS Digital Pixel Sensor with Pixel-Level Memory

Getting Started with Caffe Julien Demouth, Senior Engineer

Neural Networks in Data Mining

Fast R-CNN. Author: Ross Girshick Speaker: Charlie Liu Date: Oct, 13 th. Girshick, R. (2015). Fast R-CNN. arxiv preprint arxiv:

UTBB-FDSOI 28nm : RF Ultra Low Power technology for IoT

Fault Modeling. Why model faults? Some real defects in VLSI and PCB Common fault models Stuck-at faults. Transistor faults Summary

The Research and Application of College Student Attendance System based on RFID Technology

NAVIGATING SCIENTIFIC LITERATURE A HOLISTIC PERSPECTIVE. Venu Govindaraju

Reconfigurable Low Area Complexity Filter Bank Architecture for Software Defined Radio

Router Architectures

EFFICIENT DATA PRE-PROCESSING FOR DATA MINING

Impact of Feature Selection on the Performance of Wireless Intrusion Detection Systems

A Storage Architecture for High Speed Signal Processing: Embedding RAID 0 on FPGA

Stream Processing on GPUs Using Distributed Multimedia Middleware

Machine Learning Introduction

Bricata Next Generation Intrusion Prevention System A New, Evolved Breed of Threat Mitigation

Transcription:

NeuroSTIC 2015 July 1st, 2015 Implementing Deep Neural Networks with Non Volatile Memories Olivier Bichler 1 (olivier.bichler@cea.fr) Daniele Garbin 2 Elisa Vianello 2 Luca Perniola 2 Barbara DeSalvo 2 Christian Gamrat 1 www.cea.fr 1 CEA, LIST, Laboratory for Enhancing Reliability of Embedded Systems 2 CEA, LETI

Cliquez pour modifier le style Summary du titre Context Opportunity Deep Neural Networks Challenge The Memory Bottleneck Paradigm Shift Spiking, NVM-based Networks Related Developments Perspectives CEA. All rights reserved DACLE Division July 2015 2

Cliquez pour Internet modifier of (Smart?) le style du Things titre CEA. All rights reserved DACLE Division July 2015 3

Cliquez pour How modifier Smart le Can style We du Get? titre ImageNet classification (Hinton s team, hired by Google) [1] 1.2 million high res images, 1,000 different classes Top-5 17% error rate (huge improvement) Learned features on first layer Facebook s DeepFace Program (labs head: Y. LeCun) [2] 4 million images, 4,000 identities 97.25% accuracy, vs. 97.53% human performance CEA. All rights reserved DACLE Division July 2015 4

Cliquez State-of-the-art pour modifier le in style Recognition du titre Database # Images # Classes Best score MNSIT Handwritten digits 60,000 + 10,000 10 99.79% [3] GTSRB Traffic sign CIFAR-10 airplane, automobile, bird, cat, deer, dog, frog, horse, ship, truck ~ 50,000 43 99.46% [4] 50,000 + 10,000 10 91.2% [5] Caltech-101 ~ 50,000 101 86.5% [6] ImageNet ~ 1,000,000 1,000 Top-5 83% [1] DeepFace ~ 4,000,000 4,000 97.25% [2] State-of-the-art are Deep Neural Networks every time INCREASING COMPLEXITY CEA. All rights reserved DACLE Division July 2015 5

Cliquez Main pour Actors modifier at International le style du Level titre ACADEMICS INDUSTRIALS Deep learning Andrew Ng NVM-based architectures H.-S. P. Wong Deep learning G. Hinton O. Temam TrueNorth chip PCM-based architectures Deep learning Y. LeCun DeepFace Deep learning G. Hinton A. Krizhevsky Deep learning Overfeat, Torch Y. LeCun RRAM-based architectures D. Strukov NVM-based architectures H. Hwang RRAM-based architectures S. Park Speech Recognition DBN, RNN R. Sarikaya G. E. Dahl Project Adam Memristor / RRAM R. S. Williams Zeroth chip nn-x FPGA / GPU Cloud Y. LeCun C. Farabet Deep learning Andrew Ng E. M. Izhikevich BrainOS Madbits Deep learning C. Farabet Deep learning J. Schmidhuber Specialized architectures H.-J. Yoo NVM-based architectures Wei Lu Software Bio-inspired S. J. Thorpe NeuroDSP chip Cognimem chip CEA. All rights reserved DACLE Division July 2015 6

Cliquez Deep pour modifier Convolutional le style Networks du titre Convolutional Neural Network (CNN) or similar topology Source: Rodrigo Benenson github page http://rodrigob.github.io/are_we_there_yet/build/ CEA. All rights reserved DACLE Division July 2015 7

Input map (I i,j matrix) Cliquez pour modifier Convolutional le style du Layer titre O i,j = tanh n 1 k=0 n 1 l=0 I i+k,j+l. K k,l Output feature map (O i,j matrix) 0 1 0-11 0-11 0-11 0-11 -1-1 0-1 1-1 -1 0-1 0 1-1 0-1 0-1 0 1-1 0-1 0-1 0 1-1 0-1 0-1 0 1-1 0-1 -1 1-1 0 1-1 0 1-1 0 1-1 0 1-1 0 1-1 0-1 -11-1 01-1 01-1 01-1 01 01 0 0 1-1 -1 1-1 -1 1 0 n n kernel (K k,l matrix) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 Each kernel generates output feature maps Convolution operation: O i,j = tanh n 1 k=0 n 1 l=0 I i+k,j+l. K k,l Kernels are learned with gradient-descent algorithms (classical back-propagation is very efficient!) CEA. All rights reserved DACLE Division July 2015 8

Cliquez pour modifier CNNs le Organization style du titre Deep = number of layers >> 1 CEA. All rights reserved DACLE Division July 2015 9

Cliquez State-of-the-art pour modifier le CNN style Example du titre The German Traffic Sign Recognition Benchmark (GTSRB) 43 traffic sign types > 50,000 images Neurons: 287,843 Synapses: 1,388,800 Total memory: 1.5MB (with 8 bits synapses) Connections: 124,121,800 [3] D. Ciresan, U. Meier, J. Masci, J. Schmidhuber, Multi-column deep neural network for traffic sign classification, Neural Networks (32), pp. 333-338, 2012 Near human recognition (> 98%) [3] CEA. All rights reserved DACLE Division July 2015 10

MULT ADD Cliquez pour modifier The Memory le style Bottleneck du titre Input matrix memory Output matrix memory? REG System clock: Store Apply the result non-linearity back (tanh memory function) Kernel memory n n cycles per kernel + non-linearity computation output matrix size number of kernels in output feature map number of output feature maps in layer number of layers CEA. All rights reserved DACLE Division July 2015 11

Cliquez The Memory pour modifier Bottleneck: style Solutions? du titre data level parallelism SIMD instructions: 2 32 acceleration But limited by the size of the memory bus number of processing cores (number of cores) acceleration (assuming distributed memory) High-end GPU: 100 acceleration over CPU! (@ 250W power consumption ) Back to our example: ~ 125MM MAC operations (for 48x48 pixels inputs) 128 bit memory bus (SIMD x16) 16 processing cores (distributed memory) 500K cycles @ 200 Mhz = 2.5 ms / input ROIs extraction @ 30 frames/s Time to process 12 ROIs / frame Highly specialized architectures required to envision embeddable systems CEA. All rights reserved DACLE Division July 2015 12

Cliquez pour Is a Paradigm modifier le Shift style Possible? du titre Fully distributed, fully parallel? MAC computation in memory? Compute in memory! Read current Signal to accumulate I = G U NVM conductance Synaptic weight Read pulse voltage Input signal Input signal coding? Voltage level: digital to analog converter Pulse duration: pulse width modulation Non-linearity computation? Analog computation Look-up table Spike-based coding! t CEA. All rights reserved DACLE Division July 2015 13

Cliquez Spike-based pour modifier Neural le style Networks du titre Input signal: rate-based coding From 1 pulse to N pulses / input time slot N precision of the input signal discretization Tunability: energy consumption N, applicative performances N Non-linearity: refractory period Approximates tanh() with a piece-wise linear function [7] Easy to implement, no applicative performance penalty! t Direct interface to bio-inspired sensors [8]: T refrac [7] J. A. Pérez-Carrasco et al., Mapping from Frame-Driven to Frame-Free Event-Driven Vision Systems by Low-Rate Rate-Coding and Coincidence Processing. Application to Feed-Forward ConvNets, IEEE Trans. on Pattern Analysis and Machine Intelligence, 2014 [8] L. Camuñas-Mesa et al., An Event-Driven Multi-Kernel Convolution Processor Module for Event-Driven Vision Sensors, IEEE J. of Solid-State Circuits, 2012 CEA. All rights reserved DACLE Division July 2015 14

29x29 pixels 841 addresses Cliquez Spike-based pour modifier Coding le style Propagation du titre Pixel brightness Spiking frequency V f MIN Rate-based input coding f MAX t layer 1 layer 2 layer 3 layer 4 Correct Output Time CEA. All rights reserved DACLE Division July 2015 15

Cliquez pour Our modifier Simulation le style Tools: du Xnet titre Example on the MNIST database Deep network description file: network.ini MNIST database (60000 images) ; Environment [env] SizeX=29 SizeY=29 ConfigSection=env.config [env.config] ImageScale=0 ; First layer (convolutionnal) [conv1] Input=env Type=Conv KernelWidth=5 KernelHeight=5 NbChannels=6 Stride=2 ConfigSection=common.config ; Second layer (convolutionnal) [conv2] Input=conv1 Type=Conv KernelWidth=5 KernelHeight=5 NbChannels=12 Stride=2 ConfigSection=common.config ; Third layer (fully connected) [fc1] Input=conv2 Type=Fc NbOutputs=100 ConfigSection=common.config ; Output layer (fully connected) [fc2] Input=fc1 Type=Fc NbOutputs=10 ConfigSection=common.config ; Common config for static model [common.config] NoBias=1 WeightsLearningRate=0.0005 Threshold=1.0 NoClamping=1 xnet_convnet network.ini mnist -learn 6000000 -log 10000 CONFIDENTIAL CEA. All rights reserved DACLE Division July 2015 16

Cliquez Back-propagation pour modifier Offline le style Learning du titre Simulated network topology for MNIST (auto-generated) Learning and test performances Learning Recogn. rate: 99.7% Test Learned kernels for conv1 layer Recogn. rate: 98.7% CONFIDENTIAL CEA. All rights reserved DACLE Division July 2015 17

Cliquez Spike-based pour modifier Read-only le style Network du titre Spiking propagation of one pattern Spike-based test performances Test 0% performance drop vs. static network! Recogn. rate: 98.7% Spike-based network statistics Layer Synapses (shared) Connections Events/ frames Events/ connection conv1 conv2 fc1 fc2 conv1 150 25,350 36,666 1.45 conv2 1,800 45,000 173,278 3.85 fc1 30,000 30,000 226,859 7.56 fc2 1,000 1,000 8,037 8.04 CONFIDENTIAL CEA. All rights reserved DACLE Division July 2015 18

PCM Cliquez Spike-based pour modifier Networks le style with du NVMs titre From spiking pre-synaptic neurons (inputs) V RD I LTP Unsupervised cars trajectories extraction I LTD Crystallization/ Amorphization I = I LTP - I LTD Spiking postsynaptic neuron Equivalent (output) 2-PCM synapse [9] O. Bichler et al., Visual pattern extraction using energy-efficient 2-PCM synapse neuromorphic architecture. Electron Devices, IEEE Transactions on, 2012 CBRAM Unsupervised MNIST handwritten digits classification with stochastic learning Forming/ Dissolution of conductive filament [10] M. Suri et al., CBRAM devices as binary synapses for low-power stochastic neuromorphic systems: Auditory (cochlea) and visual (retina) cognitive processing applications, IEDM, 2012 CEA. All rights reserved DACLE Division July 2015 19

Signal propagation Output neurons Cliquez Implementation pour modifier with le NVM style Devices du titre Spike-based computing principle Input spike Signal propagation Output neurons Convolution kernel Input neurons Input spike Convolution kernel Synaptic weighting of the spike (multi-level or binary RRAM device(s)) Other convolution kernel(s) CMOS dynamic interconnect CEA. All rights reserved DACLE Division July 2015 20

[env] SizeX=48 SizeY=48 ConfigSection=env.config [env.config] ImageScale=1 Application Cliquez pour Benchmarking modifier le style in Xnet du titre (1) Kernel.Gamma=0.3 Kernel[0][0].Theta=0.0 Kernel[0][1].Theta=45.0 Kernel[0][2].Theta=90.0 Kernel[0][3].Theta=135.0 ConfigSection=common_fixed.config [conv1_7x7] Input=env Type=Conv KernelWidth=7 KernelHeight=7 NbChannels=4 Stride=1 Kernel=Gabor Kernel.Sigma=2.8 Kernel.Lambda=3.5 Kernel.Psi=0.0 Kernel.Gamma=0.3 Kernel[0][0].Theta=0.0 Kernel[0][1].Theta=45.0 Kernel[0][2].Theta=90.0 Kernel[0][3].Theta=135.0 ConfigSection=common_fixed.config [conv1_9x9] Input=env Type=Conv KernelWidth=9 KernelHeight=9 NbChannels=4 Stride=1 Padding=1 Kernel=Gabor Kernel.Sigma=3.6 Kernel.Lambda=4.6 Kernel.Psi=0.0 [pool1] Input=conv1_7x7,conv1_9x9 Type=Pool PoolWidth=8 PoolHeight=8 NbChannels=8 Stride=4 Pooling=Max Mapping.Size=1 Mapping.NbIterations=4 [fc1] Input=pool1 Type=Fc NbOutputs=20 ConfigSection=common.config [fc2] Input=fc1 Type=Fc NbOutputs=2 ConfigSection=common.config [common_fixed.config] NoBias=1 WeightsLearningRate=0.0 BiasLearningRate=0.0 NoClamping=1 [common.config] NoBias=1 NoClamping=1 Simplified HMAX -like: pool1 mapping 1 0 0 0 # conv1_7x7 0 1 0 0 # conv1_7x7 0 0 1 0 # conv1_7x7 0 0 0 1 # conv1_7x7 1 0 0 0 # conv1_9x9 0 1 0 0 # conv1_9x9 0 0 1 0 # conv1_9x9 0 0 0 1 # conv1_9x9 8,560 weights to learn 925,320 shared weights CEA. All rights reserved DACLE Division July 2015 21

Application Cliquez pour Benchmarking modifier le style in Xnet du titre (2) Caltech 101 subset: 2 categories Faces_easy (435 images) 200 learning / 200 testing BACKGROUND_Google (468 images) 200 learning / 200 testing CEA. All rights reserved DACLE Division July 2015 22

Application Cliquez pour Benchmarking modifier le style in Xnet du titre (3) 20 output neurons Fast learning Learning (20,000 steps) Testing 98.25% Weights discretization Precision (number of levels) Ideal 256 128 64 32 16 8 4 Score 98.25 99 98 97.75 97.75 98.5 89.75 55.5 tanh() approximated with simple saturation identical performances CEA. All rights reserved DACLE Division July 2015 23

Recon. rate Recon. rate Towards Hardware Synthesis Cliquez pour modifier le style du titre 1) Deep network builder 2) Defects learning ; Environment [env] SizeX=8 SizeY=8 ConfigSection=env.config [env.config] ImageScale=0 ; First layer (convolutionnal) [conv1] Input=env Type=Conv KernelWidth=3 KernelHeight=3 NbChannels=32 Stride=1 ; Second layer (pooling) [pool1] Input=conv1 Type=Pool PoolWidth=2 PoolHeight=2 NbChannels=32 Stride=2 ; Third layer (fully connected) [fc1] Input=conv2 Type=Fc NbOutputs=100 ; Output layer (fully connected) [fc2] Input=fc1 Type=Fc NbOutputs=10 xnet network.ini database -learn 3) Performances analysis Learning Estimated defects visualization 4) C Export and RTL synthesis Test Recon. rate: 95% CEA. All rights reserved DACLE Division July 2015 24

Cliquez pour modifier Towards le style Fully du CNNs titre State-of-the-art in image segmentation Take arbitrary input size Trained end-to-end, pixels-to-pixels Eliminate redundant calculations inherent to patch segmentation Spike-coding compatible! [11] Jon Long, Evan Shelhamer, Trevor Darrell, Fully Convolutional Networks for Semantic Segmentation, CVPR, 2015 CEA. All rights reserved DACLE Division July 2015 25

Cliquez pour modifier Long-Term le style Perspectives du titre Towards even more bio-inspired systems! Unsupervised online learning (Spike-Timing-Dependent Plasticity) Learning directly from bio-inspired sensors (artificial retina, cochlea, ) Kernel (15x15 synapses) Output feature map activity (factor 2 subsampling = 57x57) Input activity (128x128) CONFIDENTIAL CEA. All rights reserved DACLE Division July 2015 26

Cliquez pour modifier le style Conclusion du titre Deep Neural Networks are at the edge of today s recognition systems deployed in large-scale commercial products (Facebook, Google, ) hard to integrate into embedded products, even with ASICs Spiking NVM-based deep networks are promising: Computing capabilities identical to conventional networks Provide the high memory density required True computing in memory, eliminate the memory bottleneck Simple and efficient performance tunability capabilities Direct interface to bio-inspired sensors (retina, cochlea ) Large potential for advanced bio-inspired learning systems CEA. All rights reserved DACLE Division July 2015 27

Centre de Grenoble 17 rue des Martyrs 38054 Grenoble Cedex Thank you! Questions? Centre de Saclay Nano-Innov PC 172 91191 Gif sur Yvette Cedex Implementing Deep Neural Networks with Non Volatile Memories Olivier Bichler olivier.bichler@cea.fr NeuroSTIC 2015 July 1st, 2015

Cliquez pour modifier le style References du titre [1] A. Krizhevsky, I. Sutskever, G. E. Hinton, ImageNet Classification with Deep Convolutional Neural Networks, NIPS 2012 [2] Y. Taigman, M. Yang, M. Ranzato, L. Wolf, DeepFace: Closing the Gap to Human-Level Performance in Face Verification, CVPR 2014 [3] D. Ciresan, U. Meier, J. Schmidhuber, Multi-column Deep Neural Networks for Image Classification, CVPR 2012 [4] D. Ciresan, U. Meier, J. Masci, J. Schmidhuber, Multi-column deep neural network for traffic sign classification, Neural Networks (32), pp. 333-338, 2012 [5] M. Lin, Q. Chen, S. Yan, Network In Network, ICLR 2014 [6] M. D. Zeiler, R. Fergus, Visualizing and Understanding Convolutional Networks, arxiv:1311.2901 [7] J. A. Pérez-Carrasco et al., Mapping from Frame-Driven to Frame-Free Event-Driven Vision Systems by Low- Rate Rate-Coding and Coincidence Processing. Application to Feed-Forward ConvNets, IEEE Trans. on Pattern Analysis and Machine Intelligence, 2014 [8] L. Camuñas-Mesa et al., An Event-Driven Multi-Kernel Convolution Processor Module for Event-Driven Vision Sensors, IEEE J. of Solid-State Circuits, 2012 [9] O. Bichler, M. Suri, D. Querlioz, D. Vuillaume, B. DeSalvo, and C. Gamrat. Visual pattern extraction using energy-efficient 2-PCM synapse neuromorphic architecture. Electron Devices, IEEE Transactions on, 2012 [10] M. Suri, O. Bichler, D. Querlioz, G. Palma, E. Vianello, D. Vuillaume, C. Gamrat, and B. DeSalvo. CBRAM devices as binary synapses for low-power stochastic neuromorphic systems: Auditory (cochlea) and visual (retina) cognitive processing applications, IEDM, 2012 CEA. All rights reserved DACLE Division July 2015 29

Cliquez Unsupervised pour modifier Features le style Extraction du titre Conductance change W (%) 120 100 80 60 40 20 0-20 -40-60 Learning rule Exp. data [BiPoo] LTP LTD LTP simulation LTD simulation T LTP -100-50 0 50 100 T = t post - t pre (ms) Lateral inhibition Lateral inhibition Network topology CMOS Retina 16,384 spiking pixels 128 2 nd layer 1 st layer 128 Neurons activity Input stimuli Synaptic weights Xnet Neuron model Synaptic model Neuron membrane potential Leaky Integrate Fire: u = u. e t spike t last_spike τ leak + w Conductance (ns) 40 20 Conductance (ns) 40 20 0 0 20 40 60 80 100 Pulse number 0 0 20 40 60 80 100 Pulse number O. Bichler et al. Extraction of temporally correlated features from dynamic vision sensors with spike-timing-dependent plasticity. Neural Networks, 2012 CEA. All rights reserved DACLE Division July 2015 30