Using Convolutional Neural Networks for Image Recognition
|
|
|
- Ross Richard
- 9 years ago
- Views:
Transcription
1 Using Convolutional Neural Networks for Image Recognition By Samer Hijazi, Rishi Kumar, and Chris Rowen, IP Group, Cadence Convolutional neural networks (CNNs) are widely used in pattern- and image-recognition problems as they have a number of advantages compared to other techniques. This white paper covers the basics of CNNs including a description of the various layers used. Using traffic sign recognition as an example, we discuss the challenges of the general problem and introduce algorithms and implementation software developed by Cadence that can trade off computational burden and energy for a modest degradation in sign recognition rates. We outline the challenges of using CNNs in embedded systems and introduce the key characteristics of the Cadence Tensilica Vision P5 digital signal processor (DSP) for Imaging and Computer Vision and software that make it so suitable for CNN applications across many imaging and related recognition tasks. Contents What Is a CNN?...1 Layers of CNNs...4 Why CNN?...7 Recognition Algorithm for GTSRB Dataset...8 Algorithm for Performance vs. Complexity Tradeoff...9 CNNs in Embedded Systems...10 CNNs on Tensilica Processors...10 The Future of CNNs...11 Conclusion...11 References...11 What Is a CNN? A neural network is a system of interconnected artificial neurons that exchange messages between each other. The connections have numeric weights that are tuned during the training process, so that a properly trained network will respond correctly when presented with an image or pattern to recognize. The network consists of multiple layers of feature-detecting neurons. Each layer has many neurons that respond to different combinations of inputs from the previous layers. As shown in Figure 1, the layers are built up so that the first layer detects a set of primitive patterns in the input, the second layer detects patterns of patterns, the third layer detects patterns of those patterns, and so on. Typical CNNs use 5 to 25 distinct layers of pattern recognition. Input Hidden Output Figure 1: An artificial neural network [1]
2 Training is performed using a labeled dataset of inputs in a wide assortment of representative input patterns that are tagged with their intended output response. Training uses general-purpose methods to iteratively determine the weights for intermediate and final feature neurons. Figure 2 demonstrates the training process at a block level. Adjust Weights Input Input Neural Network Output Σ Error + Desired Figure 2: Training of neural networks Neural networks are inspired by biological neural systems. The basic computational unit of the brain is a neuron and they are connected with synapses. Figure 3 compares a biological neuron with a basic mathematical model [2]. x 0 w 0 synapse axon from a neuron dendrite cell body 1 + i w 1 x 1 w 1 x b w 2 x 2 f( w 1x1 + b i f output axon activation function ( Figure 3: Illustration of a biological neuron (left) and its mathematical model (right) [2]. In a real animal neural system, a neuron is perceived to be receiving input signals from its dendrites and producing output signals along its axon. The axon branches out and connects via synapses to dendrites of other neurons. When the combination of input signals reaches some threshold condition among its input dendrites, the neuron is triggered and its activation is communicated to successor neurons. In the neural network computational model, the signals that travel along the axons (e.g., x 0 ) interact multiplicatively (e.g., w 0 x 0 ) with the dendrites of the other neuron based on the synaptic strength at that synapse (e.g., w 0 ). Synaptic weights are learnable and control the influence of one neuron or another. The dendrites carry the signal to the cell body, where they all are summed. If the final sum is above a specified threshold, the neuron fires, sending a spike along its axon. In the computational model, it is assumed that the precise timings of the firing do not matter and only the frequency of the firing communicates information. Based on the rate code interpretation, the firing rate of the neuron is modeled with an activation function f that represents the frequency of the spikes along the axon. A common choice of activation function is sigmoid. In summary, each neuron calculates the dot product of inputs and weights, adds the bias, and applies non-linearity as a trigger function (for example, following a sigmoid response function). A CNN is a special case of the neural network described above. A CNN consists of one or more convolutional layers, often with a subsampling layer, which are followed by one or more fully connected layers as in a standard neural network. 2
3 The design of a CNN is motivated by the discovery of a visual mechanism, the visual cortex, in the brain. The visual cortex contains a lot of cells that are responsible for detecting light in small, overlapping sub-regions of the visual field, which are called receptive fields. These cells act as local filters over the input space, and the more complex cells have larger receptive fields. The convolution layer in a CNN performs the function that is performed by the cells in the visual cortex [3]. A typical CNN for recognizing traffic signs is shown in Figure 4. Each feature of a layer receives inputs from a set of features located in a small neighborhood in the previous layer called a local receptive field. With local receptive fields, features can extract elementary visual features, such as oriented edges, end-points, corners, etc., which are then combined by the higher layers. In the traditional model of pattern/image recognition, a hand-designed feature extractor gathers relevant information from the input and eliminates irrelevant variabilities. The extractor is followed by a trainable classifier, a standard neural network that classifies feature vectors into classes. In a CNN, convolution layers play the role of feature extractor. But they are not hand designed. Convolution filter kernel weights are decided on as part of the training process. Convolutional layers are able to extract the local features because they restrict the receptive fields of the hidden layers to be local. 32x32 28x28x108 5x5 Filter 2x2 convolutions subsampling convolutions 14x14x108 10x10x200 5x5x200 2-Stage FC full connection convolutions 5x5 Filter subsampling 2x2 7x7x neurons 43 neurons OUTPUT INPUT 1ST STAGE 2ND STAGE CLASSIFIER Figure 4: Typical block diagram of a CNN [4] CNNs are used in variety of areas, including image and pattern recognition, speech recognition, natural language processing, and video analysis. There are a number of reasons that convolutional neural networks are becoming important. In traditional models for pattern recognition, feature extractors are hand designed. In CNNs, the weights of the convolutional layer being used for feature extraction as well as the fully connected layer being used for classification are determined during the training process. The improved network structures of CNNs lead to savings in memory requirements and computation complexity requirements and, at the same time, give better performance for applications where the input has local correlation (e.g., image and speech). Large requirements of computational resources for training and evaluation of CNNs are sometimes met by graphic processing units (GPUs), DSPs, or other silicon architectures optimized for high throughput and low energy when executing the idiosyncratic patterns of CNN computation. In fact, advanced processors such as the Tensilica Vision P5 DSP for Imaging and Computer Vision from Cadence have an almost ideal set of computation and memory resources required for running CNNs at high efficiency. In pattern and image recognition applications, the best possible correct detection rates (CDRs) have been achieved using CNNs. For example, CNNs have achieved a CDR of 99.77% using the MNIST database of handwritten digits [5], a CDR of 97.47% with the NORB dataset of 3D objects [6], and a CDR of 97.6% on ~5600 images of more than 10 objects [7]. CNNs not only give the best performance compared to other detection algorithms, they even outperform humans in cases such as classifying objects into fine-grained categories such as the particular breed of dog or species of bird [8]. Figure 5 shows a typical vision algorithm pipeline, which consists of four stages: pre-processing the image, detecting regions of interest (ROI) that contain likely objects, object recognition, and vision decision making. The pre-processing step is usually dependent on the details of the input, especially the camera system, and is often implemented in a hardwired unit outside the vision subsystem. The decision making at the end of pipeline typically 3
4 operates on recognized objects It may make complex decisions, but it operates on much less data, so these decisions are not usually computationally hard or memory-intensive problems. The big challenge is in the object detection and recognition stages, where CNNs are now having a wide impact. Pre-Processing ROI Selection Precise Modeling of ROI Decision Making Noise reduction Color space conversion Image scaling Gaussian pyramid Object detection Background subtraction Feature extraction Image segmentation Connected component labeling Object recognition Tracking Feature matching Gesture recognition Motion analysis Match/no match Flag events Image Processing Image Processing and CNN Vision and Control Processing Figure 5: Vision algorithm pipeline Layers of CNNs By stacking multiple and different layers in a CNN, complex architectures are built for classification problems. Four types of layers are most common: convolution layers, pooling/subsampling layers, non-linear layers, and fully connected layers. Convolution layers The convolution operation extracts different features of the input. The first convolution layer extracts low-level features like edges, lines, and corners. Higher-level layers extract higher-level features. Figure 6 illustrates the process of 3D convolution used in CNNs. The input is of size N x N x D and is convolved with H kernels, each of size k x k x D separately. Convolution of an input with one kernel produces one output feature, and with H kernels independently produces H features. Starting from top-left corner of the input, each kernel is moved from left to right, one element at a time. Once the top-right corner is reached, the kernel is moved one element in a downward direction, and again the kernel is moved from left to right, one element at a time. This process is repeated until the kernel reaches the bottom-right corner. For the case when N = 32 and k = 5, there are 28 unique positions from left to right and 28 unique positions from top to bottom that the kernel can take. Corresponding to these positions, each feature in the output will contain 28x28 (i.e., (N-k+1) x (N-k+1)) elements. For each position of the kernel in a sliding window process, k x k x D elements of input and k x k x D elements of kernel are element-byelement multiplied and accumulated. So to create one element of one output feature, k x k x D multiply-accumulate operations are required. 4
5 Input Feature Map Convolution Output N Convolution between k x k x D kernel and region of input feature map N k k D H H = # feature maps S = kernel stride N = input height and width k = kernel height and width D = input depth Figure 6: Pictorial representation of convolution process [9] Pooling/subsampling layers The pooling/subsampling layer reduces the resolution of the features. It makes the features robust against noise and distortion. There are two ways to do pooling: max pooling and average pooling. In both cases, the input is divided into non-overlapping two-dimensional spaces. For example, in Figure 4, layer 2 is the pooling layer. Each input feature is 28x28 and is divided into 14x14 regions of size 2x2. For average pooling, the average of the four values in the region are calculated. For max pooling, the maximum value of the four values is selected. Figure 7 elaborates the pooling process further. The input is of size 4x4. For 2x2 subsampling, a 4x4 image is divided into four non-overlapping matrices of size 2x2. In the case of max pooling, the maximum value of the four values in the 2x2 matrix is the output. In case of average pooling, the average of the four values is the output. Please note that for the output with index (2,2), the result of averaging is a fraction that has been rounded to nearest integer Average Pooling Max Pooling Figure 7: Pictorial representation of max pooling and average pooling [3] 5
6 Non-linear layers Neural networks in general and CNNs in particular rely on a non-linear trigger function to signal distinct identification of likely features on each hidden layer. CNNs may use a variety of specific functions such as rectified linear units (ReLUs) and continuous trigger (non-linear) functions to efficiently implement this non-linear triggering. ReLU A ReLU implements the function y = max(x,0), so the input and output sizes of this layer are the same. It increases the nonlinear properties of the decision function and of the overall network without affecting the receptive fields of the convolution layer. In comparison to the other non-linear functions used in CNNs (e.g., hyperbolic tangent, absolute of hyperbolic tangent, and sigmoid), the advantage of a ReLU is that the network trains many times faster. ReLU functionality is illustrated in Figure 8, with its transfer function plotted above the arrow. Transfer Function , Continuous trigger (non-linear) function Figure 8: Pictorial representation of ReLU functionality The non-linear layer operates element by element in each feature. A continuous trigger function can be hyperbolic tangent (Figure 9), absolute of hyperbolic tangent (Figure 10), or sigmoid (Figure 11). Figure 12 demonstrates how non-linearity gets applied element by element. Figure 9: Plot of hyperbolic tangent function Figure 10: Plot of absolute of hyperbolic tangent function tanh Figure 11: Plot of sigmoid function Figure 12: Pictorial representation of tanh processing 6
7 Fully connected layers Fully connected layers are often used as the final layers of a CNN. These layers mathematically sum a weighting of the previous layer of features, indicating the precise mix of ingredients to determine a specific target output result. In case of a fully connected layer, all the elements of all the features of the previous layer get used in the calculation of each element of each output feature. Figure 13 explains the fully connected layer L. Layer L-1 has two features, each of which is 2x2, i.e., has four elements. Layer L has two features, each having a single element. ww (LL) 0, Element-by-Element Multiplication and Accumulation 29 Accumulation YY 0 (LL) 88 YY (LL-1) ww (LL) 0, Element-by-Element Multiplication and Accumulation 59 YY (LL-1) ww (LL) 1, Element-by-Element Multiplication and Accumulation 12 6 Accumulation YY 1 (LL) 13 1 ww (LL) 1, Element-by-Element Multiplication and Accumulation Figure 13: Processing of a fully connected layer Why CNN? While neural networks and other pattern detection methods have been around for the past 50 years, there has been significant development in the area of convolutional neural networks in the recent past. This section covers the advantages of using CNN for image recognition. Ruggedness to shifts and distortion in the image Detection using CNN is rugged to distortions such as change in shape due to camera lens, different lighting conditions, different poses, presence of partial occlusions, horizontal and vertical shifts, etc. However, CNNs are shift invariant since the same weight configuration is used across space. In theory, we also can achieve shift invariantness using fully connected layers. But the outcome of training in this case is multiple units with identical weight patterns at different locations of the input. To learn these weight configurations, a large number of training instances would be required to cover the space of possible variations. Fewer memory requirements In this same hypothetical case where we use a fully connected layer to extract the features, the input image of size 32x32 and a hidden layer having 1000 features will require an order of 10 6 coefficients, a huge memory requirement. In the convolutional layer, the same coefficients are used across different locations in the space, so the memory requirement is drastically reduced. 7
8 Easier and better training Again using the standard neural network that would be equivalent to a CNN, because the number of parameters would be much higher, the training time would also increase proportionately. In a CNN, since the number of parameters is drastically reduced, training time is proportionately reduced. Also, assuming perfect training, we can design a standard neural network whose performance would be same as a CNN. But in practical training, a standard neural network equivalent to CNN would have more parameters, which would lead to more noise addition during the training process. Hence, the performance of a standard neural network equivalent to a CNN will always be poorer. Recognition Algorithm for GTSRB Dataset The German Traffic Sign Recognition Benchmark (GTSRB) was a multi-class, single-image classification challenge held at the International Joint Conference on Neural Networks (IJCNN) 2011, with the following requirements: 51,840 images of German road signs in 43 classes (Figures 14 and 15) Size of images varies from 15x15 to 222x193 Images are grouped by class and track with at least 30 images per track Images are available as color images (RGB), HOG features, Haar features, and color histograms Competition is only for the classification algorithm; algorithm to find region of interest in the frame is not required Temporal information of the test sequences is not shared, so temporal dimension cannot be used in the classification algorithm Figure 14: GTSRB ideal traffic signs 8
9 Figure 15: GTSRB traffic signs with impairments [10] Cadence Algorithm for Traffic Sign Recognition in GTSRB Dataset Cadence has developed various algorithms in MATLAB for traffic sign recognition using the GTSRB dataset, starting with a baseline configuration based on a well-known paper on sign recognition [1]. The correct detection rate of 99.24% and compute effort of almost >50 million multiply-adds per sign is shown as a thick green point in Figure 16. Cadence has achieved meaningfully better results using our new proprietary Hierarchical CNN approach. In this algorithm, 43 traffic signs have been divided into five families. In total, we implement six smaller CNNs. The first CNN decides which family the received traffic sign belongs to. Once the family of the sign is known, the CNN (one of the remaining five) corresponding to the family detected is run to decide the traffic sign within that family. Using this algorithm, Cadence has achieved a correct detection rate of 99.58%, the best CDR achieved on GTSRB to date. Algorithm for Performance vs. Complexity Tradeoff In order to control the complexity of CNNs in embedded applications, Cadence has also developed a proprietary algorithm using eigenvalue decomposition that reduces a trained CNN to its canonical dimension. Using this algorithm, we have been able to drastically reduce the complexity of the CNN without any performance degradation, or with a small controlled CDR reduction. Figure 16 shows the results achieved: Performance (% Correct Detection) % 99.50% 99.00% 98.50% 98.00% 97.50% 97.00% 96.50% Performance vs Complexity 0.27% error increase, 36x op decrease 96.00% % error increase, 36X op decrease Complexity (MACs per Frame) Best previous best performance Best MLCNN performance 50% less complexity with 0.05% less detection accuracy Figure 16: Performance vs. complexity plot for various CNN configurations to detect traffic signs in GTSRB dataset Baseline 9
10 The green point in Figure 16 is the baseline configuration. This configuration is quite close to the configuration suggested in Reference [4]. It requires 53 MMACs per frame for an error rate of 0.76%. The second point from the left requires 1.47 million MACs per frame for an error rate of 1.03%, i.e., for an increase in the error rate of 0.27%, the MAC requirement has been reduced by a factor of The leftmost point requires 0.61 MMACs per frame for achieving an error rate of 2.26%, i.e., the number of MACs is reduced by a factor of 86.4 times. The points in blue are for a single-level CNN, whereas the points in red are for a hierarchical CNN. A best-case performance of 99.58% is achieved by the hierarchical CNN. CNNs in Embedded Systems As shown in Figure 5, a vision subsystem requires a lot of image processing in addition to a CNN. In order to run CNNs on a power-constrained embedded system that supports image processing, it should fulfill the following requirements: Availability of high computational performance: For a typical CNN implementation, billions of MACs per second is the requirement. Larger load/store bandwidth: In the case of a fully connected layer used for classification purpose, each coefficient gets used in multiplication only once. So, the load-store bandwidth requirement is greater than the number of MACs performed by the processor. Low dynamic power requirement: The system should consume less power. To address this issue, fixed-point implementation is required, which imposes the requirement of meeting the performance requirements using the minimum possible finite number of bits. Flexibility: It should be possible to easily upgrade the existing design to new better performing design. Since computational resources are always a constraint in embedded systems, if the use case allows a small degradation in performance, it is helpful to have an algorithm that can achieve huge savings in computational complexity at the cost of a controlled small degradation in performance. So, Cadence s work on an algorithm to achieve complexity versus a performance tradeoff, as explained in the previous section, has great relevance for implementing CNNs on embedded systems. CNNs on Tensilica Processors The Tensilica Vision P5 DSP is a high-performance, low-power DSP specifically designed for image and computer vision processing. The DSP has a VLIW architecture with SIMD support. It has five issue slots in an instruction word of up to 96 bits and can load up to 1024-bit words from memory every cycle. Internal registers and operation units range from 512 bits to 1536 bits, where the data is represented as 16, 32, or 64 slices of 8b, 16b, 24b, 32b, or 48b pixel data. The DSP addresses all the challenges for implementing CNNs in embedded systems as discussed in the previous section. Availability of high computational performance: In addition to the advanced support for implementing image signal processing, the DSP has instruction support for all stages of CNNs. For convolution operations, it has a very rich instruction set supporting multiply/multiply-accumulate operations supporting 8b x 8b, 8b x 16b and 16b x 16b operations for signed/unsigned data. It can perform up to 64 8b x 16b and 8b x 8b multiply/multiplyaccumulate operations in one cycle and 32 16b x 16b multiply/multiply-accumulate operations in one cycle. For max pooling and ReLU functionality, the DSP has instructions to do 64 8-bit comparisons in one cycle. For implementing non-linear functions with finite ranges like tanh and signum, it has instructions to implement a look-up table for 64 7-bit values in one cycle. In most of the cases, instructions for comparison and look-up table get scheduled in parallel with multiply/multiply-accumulate instructions and do not take any extra cycles. Larger load/store bandwidth: The DSP can perform up to two 512-bit load/store operations per cycle. Low dynamic power requirement: The DSP is a fixed-point machine. Due to the flexible handling of a variety of data types, full performance and energy advantage of mixed 16b and 8b computation can be achieved at minimal loss of accuracy. 10
11 Flexibility: Since the DSP is a programmable processor, the system can be upgraded to a new version just by performing a firmware upgrade. Floating Point: For algorithms requiring an extended dynamic range for their data and/or coefficients, the DSP has an optional vector floating-point unit. The Vision P5 DSP is delivered with a complete set of software tools that includes a high-performance C/C++ compiler with automatic vectorization and scheduling to support the SIMD and VLIW architecture without the need to write assembly language. This comprehensive toolset also includes the linker, assembler, debugger, profiler, and graphical visualization tools. A comprehensive instruction set simulator (ISS) allows the designer to quickly simulate and evaluate performance. When working with large systems or lengthy test vectors, the fast, functional TurboXim simulator option achieves speeds that are 40X to 80X faster than the ISS for efficient software development and functional verification. Cadence has implemented a single-layer architecture CNN on the DSP for German traffic sign recognition. Cadence has achieved a CDR of % with 16-bit quantization for data samples and 8-bit quantization for coefficients in all the layers for this architecture. It has two convolution layers, three fully connected layers, four ReLU layers, three max pooling layers, and one tanh non-linear layer. Cadence has achieved a performance of MACs/ cycle on an average for the complete network including the cycles for all the max pooling, tanh, and ReLU layers. Cadence has achieved best-case performance of MACs per cycle for the third layer, including the cycles for tanh and ReLU functionalities. This DSP running at 600MHz can process more than 850 traffic signs in one second. The Future of CNNs Among the promising areas of neural networks research are recurrent neural networks (RNNs) using long shortterm memory (LSTM). These areas are delivering the current state of the art in time-series recognition tasks like speech recognition and handwriting recognition. RNN/autoencoders are also capable of generating handwriting/ speech/images with some known distribution [10],[11],[12],[13],14]. Deep belief networks, another promising type of network utilizing restricted Boltzman machines (RMBs)/autoencoders, are capable of being trained greedily, one layer at a time, and hence are more easily trainable for very deep networks [15],[16]. Conclusion CNNs give the best performance in pattern/image recognition problems and even outperform humans in certain cases. Cadence has achieved best-in-industry results using proprietary algorithms and architectures with CNNs. We have developed hierarchical CNNs for recognizing traffic signs in the GTSRB, achieving the best performance ever on this dataset. We have developed another algorithm for the performance-versus-complexity tradeoff and have been able to achieve a complexity reduction by a factor of 86 for a CDR degradation of less than 2%. The Tensilica Vision P5 DSP for imaging and computer vision from Cadence has all the features required to implement CNNs in addition to the features required to do image signal processing. More than 850 traffic sign recognitions can be performed running the DSP at 600MHz. The Tensilica Vision P5 DSP from Cadence has an almost ideal set of features to run CNNs. References [1] Artificial neural network. Wikipedia. [2] Karpathy, Andrej Neural Networks Part 1: Setting Up the Architecture. Notes for CS231n Convolutional Neural Networks for Visual Recognition, Stanford University. [3] Convolutional neural network. Wikipedia. [4] Sermanet, Pierre, and Yann LeCun Traffic Sign Recognition with Multi Scale Networks. Courant Institute of Mathematical Sciences, New York University. [5] Ciresan, Dan, Ueli Meier, and Jürgen Schmidhuber Multi-column deep neural networks for image classification IEEE Conference on Computer Vision and Pattern Recognition (New York, NY: Institute of Electrical and Electronics Engineers (IEEE))
12 [6] Ciresan, Dan, Ueli Meier, Jonathan Masci, Luca M. Gambardella, and Jurgen Schmidhuber Flexible, High Performance Convolutional Neural Networks for Image Classification. Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence-Volume Two: Retrieved 17 November [7] Lawrence, Steve, C. Lee Giles, Ah Chung Tsoi, and Andrew D. Back Face Recognition: A Convolutional Neural Network Approach. IEEE Transactions on Neural Networks, Volume 8; Issue 1. [8] Russakovsky, O. et al ImageNet Large Scale Visual Recognition Challenge. International Journal of Computer Vision. [9] Ovtcharov, Kalin, Olatunji Ruwarse, Joo-Young Kim et al. Feb 22, Accelerating Deep Convolutional Networks Using Specialized Hardware. Microsoft Research. [10] Stallkamp, J., M. Schlipsing, J. Salmen, and C. Igel. Man Vs. Computer: Benchmarking Machine Learning Algorithms For Traffic Sign Application. IJCNN [11] Hochreiter, Sepp, and Jürgen Schmidhuber Long Short-Term Memory. Neural Computation, 9(8): ftp://ftp.idsia.ch/pub/juergen/lstm.pdf [12] Graves, Alex Generating Sequences With Recurrent Neural Networks. [13] Schmidhuber, Jurgen Recurrent Neural Networks. [14] Olshausen, Bruno A., and David J. Field Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature : [15] Hinton, G. E. and Salakhutdinov, R. R Reducing the dimensionality of data with neural networks. Science vol. 313 no pp [16] Hinton, Geoffrey E Deep belief networks. Scholarpedia, 4(5): Cadence Design Systems enables global electronic design innovation and plays an essential role in the creation of today s electronics. Customers use Cadence software, hardware, IP, and expertise to design and verify today s mobile, cloud and connectivity applications Cadence Design Systems, Inc. All rights reserved worldwide. Cadence, the Cadence logo, and Tensilica are registered trademarks of Cadence Design Systems, Inc. in the United States and other countries. All other trademarks are the property of their respective owners /15 SA/DM/PDF
Applying Deep Learning to Car Data Logging (CDL) and Driver Assessor (DA) October 22-Oct-15
Applying Deep Learning to Car Data Logging (CDL) and Driver Assessor (DA) October 22-Oct-15 GENIVI is a registered trademark of the GENIVI Alliance in the USA and other countries Copyright GENIVI Alliance
Multi-Column Deep Neural Network for Traffic Sign Classification
Multi-Column Deep Neural Network for Traffic Sign Classification Dan Cireşan, Ueli Meier, Jonathan Masci and Jürgen Schmidhuber IDSIA - USI - SUPSI Galleria 2, Manno - Lugano 6928, Switzerland Abstract
Taking Inverse Graphics Seriously
CSC2535: 2013 Advanced Machine Learning Taking Inverse Graphics Seriously Geoffrey Hinton Department of Computer Science University of Toronto The representation used by the neural nets that work best
Lecture 6: Classification & Localization. boris. [email protected]
Lecture 6: Classification & Localization boris. [email protected] 1 Agenda ILSVRC 2014 Overfeat: integrated classification, localization, and detection Classification with Localization Detection. 2 ILSVRC-2014
Image Classification for Dogs and Cats
Image Classification for Dogs and Cats Bang Liu, Yan Liu Department of Electrical and Computer Engineering {bang3,yan10}@ualberta.ca Kai Zhou Department of Computing Science [email protected] Abstract
Biological Neurons and Neural Networks, Artificial Neurons
Biological Neurons and Neural Networks, Artificial Neurons Neural Computation : Lecture 2 John A. Bullinaria, 2015 1. Organization of the Nervous System and Brain 2. Brains versus Computers: Some Numbers
Novelty Detection in image recognition using IRF Neural Networks properties
Novelty Detection in image recognition using IRF Neural Networks properties Philippe Smagghe, Jean-Luc Buessler, Jean-Philippe Urban Université de Haute-Alsace MIPS 4, rue des Frères Lumière, 68093 Mulhouse,
FLIX: Fast Relief for Performance-Hungry Embedded Applications
FLIX: Fast Relief for Performance-Hungry Embedded Applications Tensilica Inc. February 25 25 Tensilica, Inc. 25 Tensilica, Inc. ii Contents FLIX: Fast Relief for Performance-Hungry Embedded Applications...
Analecta Vol. 8, No. 2 ISSN 2064-7964
EXPERIMENTAL APPLICATIONS OF ARTIFICIAL NEURAL NETWORKS IN ENGINEERING PROCESSING SYSTEM S. Dadvandipour Institute of Information Engineering, University of Miskolc, Egyetemváros, 3515, Miskolc, Hungary,
A Simple Feature Extraction Technique of a Pattern By Hopfield Network
A Simple Feature Extraction Technique of a Pattern By Hopfield Network A.Nag!, S. Biswas *, D. Sarkar *, P.P. Sarkar *, B. Gupta **! Academy of Technology, Hoogly - 722 *USIC, University of Kalyani, Kalyani
A Computer Vision System on a Chip: a case study from the automotive domain
A Computer Vision System on a Chip: a case study from the automotive domain Gideon P. Stein Elchanan Rushinek Gaby Hayun Amnon Shashua Mobileye Vision Technologies Ltd. Hebrew University Jerusalem, Israel
Neural Network Design in Cloud Computing
International Journal of Computer Trends and Technology- volume4issue2-2013 ABSTRACT: Neural Network Design in Cloud Computing B.Rajkumar #1,T.Gopikiran #2,S.Satyanarayana *3 #1,#2Department of Computer
Modelling, Extraction and Description of Intrinsic Cues of High Resolution Satellite Images: Independent Component Analysis based approaches
Modelling, Extraction and Description of Intrinsic Cues of High Resolution Satellite Images: Independent Component Analysis based approaches PhD Thesis by Payam Birjandi Director: Prof. Mihai Datcu Problematic
Lecture 6: CNNs for Detection, Tracking, and Segmentation Object Detection
CSED703R: Deep Learning for Visual Recognition (206S) Lecture 6: CNNs for Detection, Tracking, and Segmentation Object Detection Bohyung Han Computer Vision Lab. [email protected] 2 3 Object detection
The Scientific Data Mining Process
Chapter 4 The Scientific Data Mining Process When I use a word, Humpty Dumpty said, in rather a scornful tone, it means just what I choose it to mean neither more nor less. Lewis Carroll [87, p. 214] In
CS 1699: Intro to Computer Vision. Deep Learning. Prof. Adriana Kovashka University of Pittsburgh December 1, 2015
CS 1699: Intro to Computer Vision Deep Learning Prof. Adriana Kovashka University of Pittsburgh December 1, 2015 Today: Deep neural networks Background Architectures and basic operations Applications Visualizing
Introduction to Pattern Recognition
Introduction to Pattern Recognition Selim Aksoy Department of Computer Engineering Bilkent University [email protected] CS 551, Spring 2009 CS 551, Spring 2009 c 2009, Selim Aksoy (Bilkent University)
Implementation of Canny Edge Detector of color images on CELL/B.E. Architecture.
Implementation of Canny Edge Detector of color images on CELL/B.E. Architecture. Chirag Gupta,Sumod Mohan K [email protected], [email protected] Abstract In this project we propose a method to improve
Vision based Vehicle Tracking using a high angle camera
Vision based Vehicle Tracking using a high angle camera Raúl Ignacio Ramos García Dule Shu [email protected] [email protected] Abstract A vehicle tracking and grouping algorithm is presented in this work
Choosing the Right DSP for High-Resolution Imaging in Mobile and Wearable Applications
Choosing the Right DSP for High-Resolution Imaging in Mobile and Wearable Applications By Pulin Desai, Cadence Design Systems From smartphones to smart watches, from advanced driver assistance systems
Introduction to Machine Learning CMU-10701
Introduction to Machine Learning CMU-10701 Deep Learning Barnabás Póczos & Aarti Singh Credits Many of the pictures, results, and other materials are taken from: Ruslan Salakhutdinov Joshua Bengio Geoffrey
Handwritten Digit Recognition with a Back-Propagation Network
396 Le Cun, Boser, Denker, Henderson, Howard, Hubbard and Jackel Handwritten Digit Recognition with a Back-Propagation Network Y. Le Cun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard,
MulticoreWare. Global Company, 250+ employees HQ = Sunnyvale, CA Other locations: US, China, India, Taiwan
1 MulticoreWare Global Company, 250+ employees HQ = Sunnyvale, CA Other locations: US, China, India, Taiwan Focused on Heterogeneous Computing Multiple verticals spawned from core competency Machine Learning
The Role of Size Normalization on the Recognition Rate of Handwritten Numerals
The Role of Size Normalization on the Recognition Rate of Handwritten Numerals Chun Lei He, Ping Zhang, Jianxiong Dong, Ching Y. Suen, Tien D. Bui Centre for Pattern Recognition and Machine Intelligence,
Digital Imaging and Multimedia. Filters. Ahmed Elgammal Dept. of Computer Science Rutgers University
Digital Imaging and Multimedia Filters Ahmed Elgammal Dept. of Computer Science Rutgers University Outlines What are Filters Linear Filters Convolution operation Properties of Linear Filters Application
Learning to Process Natural Language in Big Data Environment
CCF ADL 2015 Nanchang Oct 11, 2015 Learning to Process Natural Language in Big Data Environment Hang Li Noah s Ark Lab Huawei Technologies Part 1: Deep Learning - Present and Future Talk Outline Overview
Using MATLAB to Measure the Diameter of an Object within an Image
Using MATLAB to Measure the Diameter of an Object within an Image Keywords: MATLAB, Diameter, Image, Measure, Image Processing Toolbox Author: Matthew Wesolowski Date: November 14 th 2014 Executive Summary
Advanced analytics at your hands
2.3 Advanced analytics at your hands Neural Designer is the most powerful predictive analytics software. It uses innovative neural networks techniques to provide data scientists with results in a way previously
VALAR: A BENCHMARK SUITE TO STUDY THE DYNAMIC BEHAVIOR OF HETEROGENEOUS SYSTEMS
VALAR: A BENCHMARK SUITE TO STUDY THE DYNAMIC BEHAVIOR OF HETEROGENEOUS SYSTEMS Perhaad Mistry, Yash Ukidave, Dana Schaa, David Kaeli Department of Electrical and Computer Engineering Northeastern University,
Locating and Decoding EAN-13 Barcodes from Images Captured by Digital Cameras
Locating and Decoding EAN-13 Barcodes from Images Captured by Digital Cameras W3A.5 Douglas Chai and Florian Hock Visual Information Processing Research Group School of Engineering and Mathematics Edith
Data Storage 3.1. Foundations of Computer Science Cengage Learning
3 Data Storage 3.1 Foundations of Computer Science Cengage Learning Objectives After studying this chapter, the student should be able to: List five different data types used in a computer. Describe how
Pedestrian Detection with RCNN
Pedestrian Detection with RCNN Matthew Chen Department of Computer Science Stanford University [email protected] Abstract In this paper we evaluate the effectiveness of using a Region-based Convolutional
Introduction to Machine Learning and Data Mining. Prof. Dr. Igor Trajkovski [email protected]
Introduction to Machine Learning and Data Mining Prof. Dr. Igor Trakovski [email protected] Neural Networks 2 Neural Networks Analogy to biological neural systems, the most robust learning systems
Architectures and Platforms
Hardware/Software Codesign Arch&Platf. - 1 Architectures and Platforms 1. Architecture Selection: The Basic Trade-Offs 2. General Purpose vs. Application-Specific Processors 3. Processor Specialisation
Steven C.H. Hoi School of Information Systems Singapore Management University Email: [email protected]
Steven C.H. Hoi School of Information Systems Singapore Management University Email: [email protected] Introduction http://stevenhoi.org/ Finance Recommender Systems Cyber Security Machine Learning Visual
Supporting Online Material for
www.sciencemag.org/cgi/content/full/313/5786/504/dc1 Supporting Online Material for Reducing the Dimensionality of Data with Neural Networks G. E. Hinton* and R. R. Salakhutdinov *To whom correspondence
FPGA. AT6000 FPGAs. Application Note AT6000 FPGAs. 3x3 Convolver with Run-Time Reconfigurable Vector Multiplier in Atmel AT6000 FPGAs.
3x3 Convolver with Run-Time Reconfigurable Vector Multiplier in Atmel AT6000 s Introduction Convolution is one of the basic and most common operations in both analog and digital domain signal processing.
Non-negative Matrix Factorization (NMF) in Semi-supervised Learning Reducing Dimension and Maintaining Meaning
Non-negative Matrix Factorization (NMF) in Semi-supervised Learning Reducing Dimension and Maintaining Meaning SAMSI 10 May 2013 Outline Introduction to NMF Applications Motivations NMF as a middle step
3D Object Recognition using Convolutional Neural Networks with Transfer Learning between Input Channels
3D Object Recognition using Convolutional Neural Networks with Transfer Learning between Input Channels Luís A. Alexandre Department of Informatics and Instituto de Telecomunicações Univ. Beira Interior,
THE HUMAN BRAIN. observations and foundations
THE HUMAN BRAIN observations and foundations brains versus computers a typical brain contains something like 100 billion miniscule cells called neurons estimates go from about 50 billion to as many as
Data Storage. Chapter 3. Objectives. 3-1 Data Types. Data Inside the Computer. After studying this chapter, students should be able to:
Chapter 3 Data Storage Objectives After studying this chapter, students should be able to: List five different data types used in a computer. Describe how integers are stored in a computer. Describe how
TRAFFIC sign recognition has direct real-world applications
Traffic Sign Recognition with Multi-Scale Convolutional Networks Pierre Sermanet and Yann LeCun Courant Institute of Mathematical Sciences, New York University {sermanet,yann}@cs.nyu.edu Abstract We apply
Applications of Deep Learning to the GEOINT mission. June 2015
Applications of Deep Learning to the GEOINT mission June 2015 Overview Motivation Deep Learning Recap GEOINT applications: Imagery exploitation OSINT exploitation Geospatial and activity based analytics
Medical Image Processing on the GPU. Past, Present and Future. Anders Eklund, PhD Virginia Tech Carilion Research Institute [email protected].
Medical Image Processing on the GPU Past, Present and Future Anders Eklund, PhD Virginia Tech Carilion Research Institute [email protected] Outline Motivation why do we need GPUs? Past - how was GPU programming
Sense Making in an IOT World: Sensor Data Analysis with Deep Learning
Sense Making in an IOT World: Sensor Data Analysis with Deep Learning Natalia Vassilieva, PhD Senior Research Manager GTC 2016 Deep learning proof points as of today Vision Speech Text Other Search & information
Automatic 3D Reconstruction via Object Detection and 3D Transformable Model Matching CS 269 Class Project Report
Automatic 3D Reconstruction via Object Detection and 3D Transformable Model Matching CS 69 Class Project Report Junhua Mao and Lunbo Xu University of California, Los Angeles [email protected] and lunbo
Efficient online learning of a non-negative sparse autoencoder
and Machine Learning. Bruges (Belgium), 28-30 April 2010, d-side publi., ISBN 2-93030-10-2. Efficient online learning of a non-negative sparse autoencoder Andre Lemme, R. Felix Reinhart and Jochen J. Steil
Image and Video Understanding
Image and Video Understanding 2VO 710.095 WS Christoph Feichtenhofer, Axel Pinz Slide credits: Many thanks to all the great computer vision researchers on which this presentation relies on. Most material
Mean-Shift Tracking with Random Sampling
1 Mean-Shift Tracking with Random Sampling Alex Po Leung, Shaogang Gong Department of Computer Science Queen Mary, University of London, London, E1 4NS Abstract In this work, boosting the efficiency of
Selecting Receptive Fields in Deep Networks
Selecting Receptive Fields in Deep Networks Adam Coates Department of Computer Science Stanford University Stanford, CA 94305 [email protected] Andrew Y. Ng Department of Computer Science Stanford
Template-based Eye and Mouth Detection for 3D Video Conferencing
Template-based Eye and Mouth Detection for 3D Video Conferencing Jürgen Rurainsky and Peter Eisert Fraunhofer Institute for Telecommunications - Heinrich-Hertz-Institute, Image Processing Department, Einsteinufer
Recognizing Cats and Dogs with Shape and Appearance based Models. Group Member: Chu Wang, Landu Jiang
Recognizing Cats and Dogs with Shape and Appearance based Models Group Member: Chu Wang, Landu Jiang Abstract Recognizing cats and dogs from images is a challenging competition raised by Kaggle platform
Transfer Learning for Latin and Chinese Characters with Deep Neural Networks
Transfer Learning for Latin and Chinese Characters with Deep Neural Networks Dan C. Cireşan IDSIA USI-SUPSI Manno, Switzerland, 6928 Email: [email protected] Ueli Meier IDSIA USI-SUPSI Manno, Switzerland, 6928
Next Generation GPU Architecture Code-named Fermi
Next Generation GPU Architecture Code-named Fermi The Soul of a Supercomputer in the Body of a GPU Why is NVIDIA at Super Computing? Graphics is a throughput problem paint every pixel within frame time
Classifying Manipulation Primitives from Visual Data
Classifying Manipulation Primitives from Visual Data Sandy Huang and Dylan Hadfield-Menell Abstract One approach to learning from demonstrations in robotics is to make use of a classifier to predict if
High-Performance Signature Recognition Method using SVM
High-Performance Signature Recognition Method using SVM Saeid Fazli Research Institute of Modern Biological Techniques University of Zanjan Shima Pouyan Electrical Engineering Department University of
Artificial Neural Networks and Support Vector Machines. CS 486/686: Introduction to Artificial Intelligence
Artificial Neural Networks and Support Vector Machines CS 486/686: Introduction to Artificial Intelligence 1 Outline What is a Neural Network? - Perceptron learners - Multi-layer networks What is a Support
Face Recognition For Remote Database Backup System
Face Recognition For Remote Database Backup System Aniza Mohamed Din, Faudziah Ahmad, Mohamad Farhan Mohamad Mohsin, Ku Ruhana Ku-Mahamud, Mustafa Mufawak Theab 2 Graduate Department of Computer Science,UUM
Assessment. Presenter: Yupu Zhang, Guoliang Jin, Tuo Wang Computer Vision 2008 Fall
Automatic Photo Quality Assessment Presenter: Yupu Zhang, Guoliang Jin, Tuo Wang Computer Vision 2008 Fall Estimating i the photorealism of images: Distinguishing i i paintings from photographs h Florin
Compacting ConvNets for end to end Learning
Compacting ConvNets for end to end Learning Jose M. Alvarez Joint work with Lars Pertersson, Hao Zhou, Fatih Porikli. Success of CNN Image Classification Alex Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton,
Comparison of Supervised and Unsupervised Learning Classifiers for Travel Recommendations
Volume 3, No. 8, August 2012 Journal of Global Research in Computer Science REVIEW ARTICLE Available Online at www.jgrcs.info Comparison of Supervised and Unsupervised Learning Classifiers for Travel Recommendations
False alarm in outdoor environments
Accepted 1.0 Savantic letter 1(6) False alarm in outdoor environments Accepted 1.0 Savantic letter 2(6) Table of contents Revision history 3 References 3 1 Introduction 4 2 Pre-processing 4 3 Detection,
Simplified Machine Learning for CUDA. Umar Arshad @arshad_umar Arrayfire @arrayfire
Simplified Machine Learning for CUDA Umar Arshad @arshad_umar Arrayfire @arrayfire ArrayFire CUDA and OpenCL experts since 2007 Headquartered in Atlanta, GA In search for the best and the brightest Expert
3 An Illustrative Example
Objectives An Illustrative Example Objectives - Theory and Examples -2 Problem Statement -2 Perceptron - Two-Input Case -4 Pattern Recognition Example -5 Hamming Network -8 Feedforward Layer -8 Recurrent
Class-specific Sparse Coding for Learning of Object Representations
Class-specific Sparse Coding for Learning of Object Representations Stephan Hasler, Heiko Wersing, and Edgar Körner Honda Research Institute Europe GmbH Carl-Legien-Str. 30, 63073 Offenbach am Main, Germany
NAVIGATING SCIENTIFIC LITERATURE A HOLISTIC PERSPECTIVE. Venu Govindaraju
NAVIGATING SCIENTIFIC LITERATURE A HOLISTIC PERSPECTIVE Venu Govindaraju BIOMETRICS DOCUMENT ANALYSIS PATTERN RECOGNITION 8/24/2015 ICDAR- 2015 2 Towards a Globally Optimal Approach for Learning Deep Unsupervised
T O B C A T C A S E G E O V I S A T DETECTIE E N B L U R R I N G V A N P E R S O N E N IN P A N O R A MISCHE BEELDEN
T O B C A T C A S E G E O V I S A T DETECTIE E N B L U R R I N G V A N P E R S O N E N IN P A N O R A MISCHE BEELDEN Goal is to process 360 degree images and detect two object categories 1. Pedestrians,
High-speed image processing algorithms using MMX hardware
High-speed image processing algorithms using MMX hardware J. W. V. Miller and J. Wood The University of Michigan-Dearborn ABSTRACT Low-cost PC-based machine vision systems have become more common due to
Administrivia. Traditional Recognition Approach. Overview. CMPSCI 370: Intro. to Computer Vision Deep learning
: Intro. to Computer Vision Deep learning University of Massachusetts, Amherst April 19/21, 2016 Instructor: Subhransu Maji Finals (everyone) Thursday, May 5, 1-3pm, Hasbrouck 113 Final exam Tuesday, May
Understanding CIC Compensation Filters
Understanding CIC Compensation Filters April 2007, ver. 1.0 Application Note 455 Introduction f The cascaded integrator-comb (CIC) filter is a class of hardware-efficient linear phase finite impulse response
A Study on SURF Algorithm and Real-Time Tracking Objects Using Optical Flow
, pp.233-237 http://dx.doi.org/10.14257/astl.2014.51.53 A Study on SURF Algorithm and Real-Time Tracking Objects Using Optical Flow Giwoo Kim 1, Hye-Youn Lim 1 and Dae-Seong Kang 1, 1 Department of electronices
Computational Foundations of Cognitive Science
Computational Foundations of Cognitive Science Lecture 15: Convolutions and Kernels Frank Keller School of Informatics University of Edinburgh [email protected] February 23, 2010 Frank Keller Computational
what operations can it perform? how does it perform them? on what kind of data? where are instructions and data stored?
Inside the CPU how does the CPU work? what operations can it perform? how does it perform them? on what kind of data? where are instructions and data stored? some short, boring programs to illustrate the
Neural Networks in Data Mining
IOSR Journal of Engineering (IOSRJEN) ISSN (e): 2250-3021, ISSN (p): 2278-8719 Vol. 04, Issue 03 (March. 2014), V6 PP 01-06 www.iosrjen.org Neural Networks in Data Mining Ripundeep Singh Gill, Ashima Department
An Analysis of Single-Layer Networks in Unsupervised Feature Learning
An Analysis of Single-Layer Networks in Unsupervised Feature Learning Adam Coates 1, Honglak Lee 2, Andrew Y. Ng 1 1 Computer Science Department, Stanford University {acoates,ang}@cs.stanford.edu 2 Computer
Integer Computation of Image Orthorectification for High Speed Throughput
Integer Computation of Image Orthorectification for High Speed Throughput Paul Sundlie Joseph French Eric Balster Abstract This paper presents an integer-based approach to the orthorectification of aerial
Image Compression through DCT and Huffman Coding Technique
International Journal of Current Engineering and Technology E-ISSN 2277 4106, P-ISSN 2347 5161 2015 INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet Research Article Rahul
Face Recognition in Low-resolution Images by Using Local Zernike Moments
Proceedings of the International Conference on Machine Vision and Machine Learning Prague, Czech Republic, August14-15, 014 Paper No. 15 Face Recognition in Low-resolution Images by Using Local Zernie
Demo: Real-time Tracking of Round Object
Page 1 of 1 Demo: Real-time Tracking of Round Object by: Brianna Bikker and David Price, TAMU Course Instructor: Professor Deepa Kundur Introduction Our project is intended to track the motion of a round
Convolutional Feature Maps
Convolutional Feature Maps Elements of efficient (and accurate) CNN-based object detection Kaiming He Microsoft Research Asia (MSRA) ICCV 2015 Tutorial on Tools for Efficient Object Detection Overview
How To Use Neural Networks In Data Mining
International Journal of Electronics and Computer Science Engineering 1449 Available Online at www.ijecse.org ISSN- 2277-1956 Neural Networks in Data Mining Priyanka Gaur Department of Information and
Computational Intelligence Introduction
Computational Intelligence Introduction Farzaneh Abdollahi Department of Electrical Engineering Amirkabir University of Technology Fall 2011 Farzaneh Abdollahi Neural Networks 1/21 Fuzzy Systems What are
Example: Credit card default, we may be more interested in predicting the probabilty of a default than classifying individuals as default or not.
Statistical Learning: Chapter 4 Classification 4.1 Introduction Supervised learning with a categorical (Qualitative) response Notation: - Feature vector X, - qualitative response Y, taking values in C
Deep Learning For Text Processing
Deep Learning For Text Processing Jeffrey A. Bilmes Professor Departments of Electrical Engineering & Computer Science and Engineering University of Washington, Seattle http://melodi.ee.washington.edu/~bilmes
Blind Deconvolution of Barcodes via Dictionary Analysis and Wiener Filter of Barcode Subsections
Blind Deconvolution of Barcodes via Dictionary Analysis and Wiener Filter of Barcode Subsections Maximilian Hung, Bohyun B. Kim, Xiling Zhang August 17, 2013 Abstract While current systems already provide
Prediction Model for Crude Oil Price Using Artificial Neural Networks
Applied Mathematical Sciences, Vol. 8, 2014, no. 80, 3953-3965 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2014.43193 Prediction Model for Crude Oil Price Using Artificial Neural Networks
ECE 533 Project Report Ashish Dhawan Aditi R. Ganesan
Handwritten Signature Verification ECE 533 Project Report by Ashish Dhawan Aditi R. Ganesan Contents 1. Abstract 3. 2. Introduction 4. 3. Approach 6. 4. Pre-processing 8. 5. Feature Extraction 9. 6. Verification
Fast R-CNN. Author: Ross Girshick Speaker: Charlie Liu Date: Oct, 13 th. Girshick, R. (2015). Fast R-CNN. arxiv preprint arxiv:1504.08083.
Fast R-CNN Author: Ross Girshick Speaker: Charlie Liu Date: Oct, 13 th Girshick, R. (2015). Fast R-CNN. arxiv preprint arxiv:1504.08083. ECS 289G 001 Paper Presentation, Prof. Lee Result 1 67% Accuracy
An Introduction to Neural Networks
An Introduction to Vincent Cheung Kevin Cannons Signal & Data Compression Laboratory Electrical & Computer Engineering University of Manitoba Winnipeg, Manitoba, Canada Advisor: Dr. W. Kinsner May 27,
GLOVE-BASED GESTURE RECOGNITION SYSTEM
CLAWAR 2012 Proceedings of the Fifteenth International Conference on Climbing and Walking Robots and the Support Technologies for Mobile Machines, Baltimore, MD, USA, 23 26 July 2012 747 GLOVE-BASED GESTURE
Instruction Set Design
Instruction Set Design Instruction Set Architecture: to what purpose? ISA provides the level of abstraction between the software and the hardware One of the most important abstraction in CS It s narrow,
How To Fix Out Of Focus And Blur Images With A Dynamic Template Matching Algorithm
IJSTE - International Journal of Science Technology & Engineering Volume 1 Issue 10 April 2015 ISSN (online): 2349-784X Image Estimation Algorithm for Out of Focus and Blur Images to Retrieve the Barcode
COMPARISON OF OBJECT BASED AND PIXEL BASED CLASSIFICATION OF HIGH RESOLUTION SATELLITE IMAGES USING ARTIFICIAL NEURAL NETWORKS
COMPARISON OF OBJECT BASED AND PIXEL BASED CLASSIFICATION OF HIGH RESOLUTION SATELLITE IMAGES USING ARTIFICIAL NEURAL NETWORKS B.K. Mohan and S. N. Ladha Centre for Studies in Resources Engineering IIT
Bildverarbeitung und Mustererkennung Image Processing and Pattern Recognition
Bildverarbeitung und Mustererkennung Image Processing and Pattern Recognition 1. Image Pre-Processing - Pixel Brightness Transformation - Geometric Transformation - Image Denoising 1 1. Image Pre-Processing
Operation Count; Numerical Linear Algebra
10 Operation Count; Numerical Linear Algebra 10.1 Introduction Many computations are limited simply by the sheer number of required additions, multiplications, or function evaluations. If floating-point
PASSENGER/PEDESTRIAN ANALYSIS BY NEUROMORPHIC VISUAL INFORMATION PROCESSING
PASSENGER/PEDESTRIAN ANALYSIS BY NEUROMORPHIC VISUAL INFORMATION PROCESSING Woo Joon Han Il Song Han Korea Advanced Science and Technology Republic of Korea Paper Number 13-0407 ABSTRACT The physiological
