A technical overview of the Fuel3D system.

Similar documents
A technical overview of the Fuel3D system.

A Short Introduction to Computer Graphics

VERSATILE AND EASY-TO-USE 3D LASER SCANNERS > >

VERSATILE AND EASY-TO-USE 3D LASER SCANNERS > >

Graphic Design. Background: The part of an artwork that appears to be farthest from the viewer, or in the distance of the scene.

Scanners and How to Use Them

Glass coloured glass may pick up on scan. Top right of screen tabs: these tabs will relocate lost windows.

EPSON SCANNING TIPS AND TROUBLESHOOTING GUIDE Epson Perfection 3170 Scanner

How To Use Trackeye

Self-Positioning Handheld 3D Scanner

HIGH AND LOW RESOLUTION TEXTURED MODELS OF COMPLEX ARCHITECTURAL SURFACES

INTRODUCTION TO RENDERING TECHNIQUES

The Lighting Effects Filter

Creating Your Own 3D Models

Application Note #503 Comparing 3D Optical Microscopy Techniques for Metrology Applications

Digital Photography Composition. Kent Messamore 9/8/2013

Sense. 3D Scanner. User Guide

Introduction.

Ultra-High Resolution Digital Mosaics

Micro Cam Software. User Manual V1.3

What Resolution Should Your Images Be?

Digitization of Old Maps Using Deskan Express 5.0

How To Use Bodescan For 3D Imaging Of The Human Body

USER MANUAL SlimComputer

Digital Imaging and Image Editing

Introduction to Computer Graphics

Introduction. C 2009 John Wiley & Sons, Ltd

Digital Image Requirements for New Online US Visa Application

BCC Multi Stripe Wipe

3D Viewer. user's manual _2

Maxwell Render 1.5 complete list of new and enhanced features

Basic Manual Control of a DSLR Camera

Scanning in Windows XP: Basics Learning guide

Shutter & Aperture Research & Demonstrations

Color Balancing Techniques

DAVID SLS-1. Getting Started Guide

Magic Wand Portable Scanner

A Proposal for OpenEXR Color Management

SHOW MORE SELL MORE. Top tips for taking great photos

3D Scanner using Line Laser. 1. Introduction. 2. Theory

Image Processing and Computer Graphics. Rendering Pipeline. Matthias Teschner. Computer Science Department University of Freiburg

A Simple Guide To Understanding 3D Scanning Technologies

VRayPattern also allows to curve geometry on any surface

Sense. 3D Scanner. User Guide. See inside for use and safety information.

VECTORAL IMAGING THE NEW DIRECTION IN AUTOMATED OPTICAL INSPECTION

Pictorial User s Guide

Funky Forest. Setup Document. An interactive ecosystem

Rodenstock Photo Optics

3D Object Digitalization Project: Digital Langweil s model of Prague. Visual Connection, a.s

Understanding Line Scan Camera Applications

COMP175: Computer Graphics. Lecture 1 Introduction and Display Technologies

Handheld USB Digital Endoscope/Microscope

SLS-2. Structured Light 3D Scanning System Part No: Order No: DAVID-SLS-2. Structured Light Scanning

Chapter 5 Objectives. Chapter 5 Input

MassArt Studio Foundation: Visual Language Digital Media Cookbook, Fall 2013

Get the benefits of mobile document capture with Motorola s Advanced Document Imaging

Choosing a digital camera for your microscope John C. Russ, Materials Science and Engineering Dept., North Carolina State Univ.

Are Digital Workflows Difficult?

EquaLight. Version 3.1. Operating Manual

Concept Art. Maurice Beumers (Mo) About the author

MMGD0203 Multimedia Design MMGD0203 MULTIMEDIA DESIGN. Chapter 3 Graphics and Animations

ZEISS T-SCAN Automated / COMET Automated 3D Digitizing - Laserscanning / Fringe Projection Automated solutions for efficient 3D data capture

Adding Animation With Cinema 4D XL

CULTURAL HERITAGE USER GUIDE

JU7500 CURVED UHD TV NOT LISTED SHEET SPEC SHEET PRODUCT HIGHLIGHTS

3D SCANNING: A NEW APPROACH TOWARDS MODEL DEVELOPMENT IN ADVANCED MANUFACTURING SYSTEM

Lezione 4: Grafica 3D*(II)

PLAY VIDEO. Close- Closes the file you are working on and takes you back to MicroStation V8i Open File dialog.

Fast Z-stacking 3D Microscopy Extended Depth of Field Autofocus Z Depth Measurement 3D Surface Analysis

CAD / CAM Dr. P. V. Madhusuthan Rao Department of Mechanical Engineering Indian Institute of Technology, Delhi Lecture No. # 12 Reverse Engineering

One Week to Better Photography

AirWatch by VMware. Partner Brand Guide

Filters for Digital Photography

Working with the BCC Clouds Generator

KIP 720 CIS SCANNING SYSTEM WITH ADVANCED KIP REAL TIME THRESHOLDING TECHNOLOGY

A System for Capturing High Resolution Images

Welcome to CorelDRAW, a comprehensive vector-based drawing and graphic-design program for the graphics professional.

Copyright Kinoma Inc. All rights reserved.

Calibrating Computer Monitors for Accurate Image Rendering

Beyond Built-in: Why a Better Webcam Matters

1 Laboratory #5: Grating Spectrometer

Types of 3D Scanners and 3D Scanning Technologies.

Geometric Transformations Grade Four

WHITE PAPER. Source Modeling for Illumination Design. Zemax A Radiant Zemax Company

WHITE PAPER. P-Iris. New iris control improves image quality in megapixel and HDTV network cameras.

Users Manual Model # English

Step 2: Paint Your Model

Pro/ENGINEER Wildfire 4.0 Basic Design

Twelve. Figure 12.1: 3D Curved MPR Viewer Window

WHITE PAPER DECEMBER 2010 CREATING QUALITY BAR CODES FOR YOUR MOBILE APPLICATION

Physics 441/2: Transmission Electron Microscope

2D & 3D TelePresence

Understanding Resolution and the meaning of DPI, PPI, SPI, & LPI

ROCKS AND MINERALS. Richard L. Yepez and Kathleen E. Yepez. An Art Skills Tutorial

EPSON Perfection 2450 PHOTO. Scanner Parts. Scanner Specifications. Basic Specifications. US letter or A4 size ( inches [ mm])

VISUAL ARTS VOCABULARY

Monochrome Print Features: True 600 dpi print resolution Produces 3,3 A0 size prints or copies per minute 100% efficient No waste toner

Understanding Exposure for Better Photos Now

Transcription:

A technical overview of the Fuel3D system.

Contents Introduction 3 How does Fuel3D actually work? 4 Photometric imaging for high-resolution surface detail 4 Optical localization to track movement during acquisition 4 Geometric imaging for accurate underlying shape 5 Data fusion to combining geometric and photometric data 5 How accurate is the data from Fuel3D? 5 What kinds of things can be imaged with Fuel3D? 6 Some examples of subjects which work well with Fuel3D 6 Examples of subjects which are more challenging 6 Key points to note: 6 Using Fuel3D 7 Getting the best out of Fuel3D 8 2

Introduction The Fuel3D scanner brings handheld 3D imaging technology, originally developed for high-end medical applications, into the professional and consumer marketplace at a dramatically lower cost than comparable solutions. Whether you are a 3D printing enthusiast, game developer, designer, artist or maker, the Fuel3D scanner can help you easily capture, archive and manipulate detailed, full color 3D images. Fuel3D has three components: A handheld camera unit which connects to your PC or Mac via a USB connection and a separate power source Fuel3D Studio software, which runs which runs on your PC or Mac and works in conjunction with the scanner Optical targets, which are used to allow the scanner to track its motion during image capture Working together, these components allow rapid capture of color 3D images, which can then be edited and exported into a number of different 3D formats, including.stl,.obj and.ply to enable 3D printing, importing textured images into games and full color onscreen rendering. So how did we manage to achieve this? Well, it wasn t easy and took a lot of sweat and some long days. So read on to find out more about how the Fuel3D scanner has been developed to help you fire up your creativity! Integrated image showing different scan views 3

How does the Fuel3D scanner actually work? When taking an image, the Fuel3D scanner rapidly acquires a series of stereoscopic 2D photographs with several lighting directions. These are then processed by software to resolve a single 3D image. Under the hood, the scanner combines a number of image processing technologies to allow on-the-spot acquisition of high quality 3D images: Photometric imaging is used to acquire color and high-frequency 3D detail from the subject Optical localization is used to determine the position of the imaging device during the acquisition process Geometric imaging is used to acquire accurate underlying 3D shape information from the subject Data fusion is performed to combine the data output of the photometric and geometric processes to produce a single 3D image Photometric imaging for high-resolution surface detail Photometry is the science of the measurement of light. The principle behind photometric imaging is that the image of a subject observed by a camera depends on both the shape and material properties of the subject, and the lighting conditions under which it is illuminated. When carrying out photometric imaging, several images are taken of the subject illuminated by a single dominant light source from a number of different directions. Image processing techniques examine how the observed illumination levels across the subject vary with the change in lighting direction, calculating the direction of the normal to the surface of the subject for each pixel in the image, alongside maps of reflectivity, such as color. The resulting normal map is then integrated to provide a highly detailed 3D range map of the surface. Traditional photometric systems are bulky, requiring many light sources and careful calibration. They are not portable and are generally regarded as inappropriate for capture of live subjects. A key component of the Fuel3D technology is the optical target. Optical localization to track movement during acquisition The Fuel3D system is handheld, and so moves during acquisition of the subject. By placing a simple optical target next to or (in the case of live subjects) onto the subject, parameters relating to this movement can be resolved (see diagram 1 on page 7). The principle behind this is that the system knows the size and layout of the optical target, and by looking for the target in the image, the scanner can accurately estimate the relative position and orientation of the scanner with respect to the target. The target allows the Fuel3D software to calculate the position of the camera and the light for each image. This eliminates the need for many of the functions of traditional system calibration and allows a practical hand-held system to be produced, which can compensate for small movements during photometric imaging. The optical target allows accurate measurements (within limitations of resolution and noise) to be recovered in the X and Y dimensions of the 3D data output from photometric imaging. Z data will be subject to a degree of low-frequency distortion, and thus is not highly accurate. This is a fundamental limitation of photometric imaging techniques, which is overcome by incorporating geometric 3D imaging. Geometric imaging for accurate underlying shape Geometric 3D imaging resolves depth using optical triangulation, which involves resolving distance from parallax. With the Fuel3D system this is achieved by using stereoscopic imaging (two cameras and lenses) to acquire a matched pair of images of the subject, then identifying and correlating the location of features between the two images to sub-pixel accuracy. For this to be possible the subject must have a degree of random surface texture, either from variation in color, or from having a rough or wrinkled surface. The output from the geometric imaging technique is a 2D range map analogous to that provided by photometric imaging, with better underlying accuracy but lower resolution. Geometric 3D imaging gives accurate measurements of bulk shape in all three dimensions. 4

Data fusion to combine geometric and photometric data The Fuel3D software incorporates proprietary algorithms to combine the data from its photometric and geometric 3D imaging systems to produce a single 3D model that is both accurate and has high resolution of surface detail. In essence, the high-accuracy, lowresolution geometric 3D data is used as a skeleton on which the higher resolution photometric 3D data is overlaid. The resulting 3D images consist of a large number (several hundred thousand) of samples, each having XYZ geometry (surface location in millimeters) and material properties (color) in 8 bit RGB. What is the resolution of the Fuel3D scanner? Output resolution from the Fuel3D scanner varies with the distance of the system to the subject. On average, the scanner has an average resolution of approximately 350 microns, with approximately 375,000 vertices and 750,000 polygons captured on a flat surface in a single scan image. Original of a plaster portrait reproduction Stitched 360 3D scan of a sculpture Showing details and color Display of full 3D wireframe 5

What kinds of things can be imaged with Fuel3D? The Fuel3D scanner is a combination of hardware and software which can resolve 3D information from subjects, whether people or inanimate objects. It is important to understand that there are some scenarios in which the system will resolve data better than in others, and also some ways to maximize the effectiveness of the system. Ideal characteristics of objects that will scan well: Gently contoured surface with soft curves Varying color Matte, non-shiny surface Opaque For example: Artwork Fabric Plants and trees Skin Stone Objects with the following characteristics may not be suitable for scanning, or may require technical workarounds to capture successfully: Cavities or protrusions The scanner can only image what it sees from its view point and cannot capture part of an object that is hidden behind another. Very dark The object will absorb light from the flashes which lowers the amount of detail. Mono-color with no texture Objects without variation in color do not provide surface information for the scanner to work effectively. Reflective or shiny Objects where light reflects off the surface prevent accurate surface measurement. Transparent Objects where light transmits through the surface prevent accurate surface measurement. Sharp edges and corners The scanner will trend to smooth objects with geometric features with flat surface and sharp corners. Key points to note: The Fuel3D scanner has fixed focus. It resolves a maximum size of about 40cm/16inches diagonal in a single image, approximately the size of a sheet of letter sized/a4 paper. Textured objects are better, ideally randomly. This is because the system has to correlate pixels between stereoscopic views of the subject. Textured can mean one or both of having varying color, or surface roughness meaning illumination from an angle (as with the Fuel3D scanner) results in surface detail being visible. The scanner can only resolve what it can see from a single viewpoint. Acquiring, for example, a statue's head, will require multiple shots to be stitched together using the Fuel3D Studio software. Full color 3D scan of a sunflower Hybrid 3D scan of a soft toy (color image, relief and wireframe) 3D wireframe of a face 6

Using the Fuel3D scanner Taking images with the Fuel3D scanner is straightforward. You will need a Fuel3D scanner, a computer running Fuel3D Studio software, a Fuel3D target, a power source, and, of course, something to image! 1 Fuel3D Studio can be installed on both Mac and PC. The recommended specifications are: Mac, Windows 7 or Windows 8 Pro 2GB RAM, 1GB hard disk space Dual-core processor To start taking 3D images, here s all you need to know: 1. Prepare the subject to be imaged. This means that the Fuel3D target needs to be placed near to or on the subject, so that it appears within the viewfinder. The target needs to be placed so that it is approximately facing the scanner when you will be taking the image, not facing away. 2. Connect the power cable, attach the Fuel3D scanner to your computer, and start Fuel3D Studio. 3. Line up the Fuel3D scanner using the viewfinder on your computer screen, so that you can see both the subject and the target in the viewfinder. The viewfinder will indicate with a green light when you are the right distance to take the shot. 4. Press the button to take the shot. The scanner will rapidly flash several times and acquire the image. A preview of the image will appear on your screen for you to approve before processing. 5. After clicking "save", the image will be transferred to your computer and will enter the inbox for processing. The scanner will automatically recharge its flash units and the viewfinder will indicate when the scanner is ready to take another shot. 6. Depending on the speed of your computer, the image should pass through the inbox in about 30 seconds. Once processing is complete you can then view the image in the 3D viewer. 7. The 3D viewer allows you to interactively view and manipulate the image, cropping out the region of interest, stitching images together (if required) and then exporting to common 3D file formats. 2 3 4 7

Getting the best out of the Fuel3D scanner Minimize background clutter. When imaging people, try to isolate the body in space, away from walls or the floor. When imaging objects, place against a textured background e.g. carpet or fabric. Avoid overexposure. Highly reflective (e.g. bright white) subjects may result in overexposure. The Fuel3D scanner has an operating distance of about 40cm/16inches. If your images appear overexposed, try adjusting the lighting or move the scanner further away from the subject when imaging. Avoid direct sunlight, or very bright overhead lighting. Again this may result in overexposure. The Fuel3D system is best used in normal home or office conditions. Copyright 2014 Fuel3D Technologies Ltd. All rights reserved. Fuel3D and its associated logo are trademarks of Fuel3D Inc. and are the subject of trademark applications or registrations in various countries around the world. All other trademarks are the property of their respective owners. All Fuel3D Inc. products and services are subject to continuous development. We reserve the right to alter technical specifications without prior notice. * Please note that the front cover image is a graphic render of the proposed Fuel3D product design. 8