Application Note. YASKAWA AC Drive Products Ethernet Network Configuration Recommendations

Similar documents
1000 Hz High Frequency Custom Software

EVALUATING INDUSTRIAL ETHERNET

Operator Mounting Kit

Networks - EtherNet IP Course (Version 5.1)

Square D Model 6 Motor Control Centers

Installation guide H A. HSI hardwired system interface

PROFINET Diagnostics Software and Tools

YASKAWA AC Drive 1000-Series Option EtherNet/IP. Technical Manual

USB 3.0* Radio Frequency Interference Impact on 2.4 GHz Wireless Devices

Using ODVA Common Industrial Protocol to Enhance Performance White Paper

FIBER OPTIC APPLICATION IN A PROFIBUS NETWORK

Aura SSD. for the 2013 Apple Mac Pro INSTALLATION GUIDE

Network Design. Yiannos Mylonas

Networks. The two main network types are: Peer networks

ProSAFE 8-Port and 16-Port Gigabit Click Switch

NETWORKING TECHNOLOGIES

Leveraging the Industrial Internet of Things (IOT) to Optimize Renewable Energy

SoftRAID 5 QUICK START GUIDE. for OWC ThunderBay

Configuring PROFINET

Short Range Wireless Switch System Handheld 8 Installation and Operations Guide

FriendlyNet Hub 5-Port or 8-Port Ethernet Hub User s Manual

Security & Surveillance Cabling Systems

CCNA 1: Networking Basics. Cisco Networking Academy Program Version 3.0

Industrial Communication Whitepaper. Principles of EtherNet/IP Communication

Understanding Device Level Connection Topologies

8-Port PoE Network Switch

EMBEDDED ACCESS CONTROL Hardware Installation Guide

IP Office Technical Tip

Whale 3. User Manual and Installation Guide. DC Servo drive. Contents. 1. Safety, policy and warranty Safety notes Policy Warranty.

Optimizing Enterprise Network Bandwidth For Security Applications. Improving Performance Using Antaira s Management Features

Ten top problems network techs encounter

ProSafe Plus Switch Utility

Using installed Fieldbus Wiring to carry Ethernet Communications

User Guide TL-SG1016/ TL-SG /24-port Gigabit Ethernet Switch

Monitoring the Switch

Cisco TelePresence VCR MSE 8220

Grounding Demystified

Best Practices Guide for Obvius Data Acquisition Products

Ha-VIS FTS 3000 Introduction and features

Management Software. Web Browser User s Guide AT-S106. For the AT-GS950/48 Gigabit Ethernet Smart Switch. Version Rev.

IT Data Communication and Networks (Optional)

Wireless LAN g USB Adapter

User Guide TL-SG1016D 16-Port Gigabit Switch TL-SG1024D 24-Port Gigabit Switch

Quick Installation Guide 24-port PoE switch with 2 copper Gigabit ports and 2 Gigabit SFP ports (af Version 15.4W)

Hirschmann Networking Interoperability in a

TELECOM HF VHF UHF over IP

Wireless-N. User Guide. PCI Adapter WMP300N (EU) WIRELESS. Model No.

Mercury Helios 2 ASSEMBLY MANUAL & USER GUIDE

L5354 ControlNet Communications Interface

RouteFinder SOHO. Quick Start Guide. SOHO Security Appliance. EDGE Models RF825-E, RF825-E-AP CDMA Models RF825-C-Nx, RF825-C-Nx-AP

Technical Note. Monitoring Ethernet Traffic with Tolomatic ACS & Managed Switch. Contents

IRIS Touch 600 Range Dialler Installation Manual. Version 1.3

ProCurve Networking. Troubleshooting WLAN Connectivity. Technical White paper

TP-LINK TECHNOLOGIES CO.,LTD. Website ADD FI.3,Bldg.R1-B.High-Tech Industrial Park,Shenzhen

SIMATIC S It s the Interplay that makes the difference. Siemens AG All Rights Reserved.

Kvaser Mini PCI Express User s Guide

UPS Network Interface. Quick InstallationGuide

CCT vs. CCENT Skill Set Comparison

5-port 10/100Base-TX Industrial Switch (314500) User s Guide

AVerMedia AVerKey imicro User s Manual

TCP/IP MODULE CA-ETHR-A INSTALLATION MANUAL

HARTING mcon 1000 Introduction and features

Planning BACnet networks

Ethernet 5-Port Workgroup Hub

PROFINET IRT: Getting Started with The Siemens CPU 315 PLC

What You Will Learn About. Computers Are Your Future. Chapter 8. Networks: Communicating and Sharing Resources. Network Fundamentals

CCNA R&S: Introduction to Networks. Chapter 5: Ethernet

A network is a group of devices (Nodes) connected by media links. A node can be a computer, printer or any other device capable of sending and

Redundancy in enterprise storage networks using dual-domain SAS configurations

Troubleshooting and Auto-Negotiation Features for IMC Networks Media Conversion Products

HIGH RELIABILITY POWER SUPPLY TESTING

iseries Ethernet cabling and configuration requirements

Pan Dacom. Nets work together. SPEED-DSL 2.3 Ethernet connection over 2-wires up to 2.3 Mbit/s ( A, A) Manual

FCC COMPLIANCE STATEMENT

YASKAWA AC Drive-A1000

A Division of Cisco Systems, Inc. GHz g. Wireless-G. PCI Adapter with RangeBooster. User Guide WIRELESS WMP54GR. Model No.

Overview. Alarm console supports simultaneous viewing of both live and recorded video when alarm events are selected

connecdim Gateway G1 Ethernet TCP/IP to DALI

Power Over Ethernet Adapters POE101

Common Mode Choke Filtering Improves CMRR in Ethernet Transformer Applications. Application Note. June 2011

Easy Smart Configuration Utility

ENET-710. ENET Ethernet Module ENET-710 JAN / 06 FOUNDATION

Application Note Connect to a Rockwell PLC over Netbiter Remote Access

Read Me First for the HP ProCurve Routing Switch 9304M and Routing Switch 9308M

Networked AV Systems Pretest

White Paper Creating a Video Matrix over IP

What communication protocols are used to discover Tesira servers on a network?

16-Port and 24-Port 10/100 Switches

Data Bulletin. Communications Wiring for POWERLINK G3 Systems Class 1210 ABOUT THIS BULLETIN APPLICATION INTRODUCTION.

CUSTOMIZED ASSESSMENT BLUEPRINT COMPUTER SYSTEMS NETWORKING PA. Test Code: 8148 Version: 01

Chapter 1 Connecting the Router to the Internet

2. What is the maximum value of each octet in an IP address? A. 128 B. 255 C. 256 D. None of the above

Disclaimers. Important Notice

Wireless LAN Outdoor Bridge Solution

Keeper Care System Data Manager Version 1.0

GEU Port Gigabit Switch

Network Interface Panel User s Guide NPD EN

Setting Up the Cisco Unified IP Phone

Quick Installation Guide. 16-Port 10/100Mbps Fast Ethernet Switch

AT-S105 Version Management Software Release Notes AT-FS750/24POE and AT-FS750/48 Fast Ethernet WebSmart Switches

Transcription:

YASKAWA AC Drive Products Ethernet Network Configuration Recommendations Application Note Applicable Products: CM090, CM091, CM092, CM093, SI-EM3, SI-EM3/V, SI-EN3, SI-EN3/V, SI-EP3, SI-EP3/V DOCUMENT NO. AN.AFD.24

This Page Intentionally Blank Copyright 2011 YASKAWA AMERICA, INC. All rights reserved. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, mechanical, electronic, photocopying, recording, or otherwise, without the prior written permission of Yaskawa. No patent liability is assumed with respect to the use of the information contained herein. Moreover, because Yaskawa is constantly striving to improve its high-quality products, the information contained in this manual is subject to change without notice. Every precaution has been taken in the preparation of this manual. Yaskawa assumes no responsibility for errors or omissions. Neither is any liability assumed for damages resulting from the use of the information contained in this publication. 2 YASKAWA AN.AFD.24 Ethernet Network Configuration Recommendations Application Note

Table of Contents 1 PREFACE...4 2 PRODUCT OVERVIEW...5 3 YASKAWA RECOMMENDED BEST PRACTICES...6 4 REFERENCES...10 YASKAWA AN.AFD.24 Ethernet Network Configuration Recommendations Application Note 3

1 Preface 1 Preface Yaskawa manufactures products used as components in a wide variety of industrial systems and equipment. The selection and application of Yaskawa products remain the responsibility of the equipment manufacturer or end user. Yaskawa accepts no responsibility for the way its products are incorporated into the final system design. Under no circumstances should any Yaskawa product be incorporated into any product or design as the exclusive or sole safety control. Without exception, all controls should be designed to detect faults dynamically and fail safely under all circumstances. All systems or equipment designed to incorporate a product manufactured by Yaskawa must be supplied to the end user with appropriate warnings and instructions as to the safe use and operation of that part. Any warnings provided by Yaskawa must be promptly provided to the end user. Yaskawa offers an express warranty only as to the quality of its products in conforming to standards and specifications published in the Yaskawa manual. NO OTHER WARRANTY, EXPRESS OR IMPLIED, IS OFFERED. Yaskawa assumes no liability for any personal injury, property damage, losses, or claims arising from misapplication of its products. 4 YASKAWA AN.AFD.24 Ethernet Network Configuration Recommendations Application Note

2 Product Overview 2 Product Overview u Introduction Yaskawa AC drives can be placed on Ethernet networks and support various protocols including EtherNet/IP and Modbus/ TCP. There are many good resources for Ethernet network configuration recommendations, which this document does not address. This document describes certain recommended methods for setup of Ethernet networks to achieve the best performance from Yaskawa products. u Intended Audience This document assumes that the reader is familiar with Ethernet network configurations. Refer to References on page 10 for a list of resources about these recommendations. u Applicable Products This document is applicable to the Yaskawa products listed in Table 1. Option Number CM090 CM091 CM092 CM093 SI-EM3 SI-EM3/V SI-EN3 SI-EN3/V SI-EP3 SI-EP3/V Table 1 Applicable Products Modbus TCP/IP 7-Series Option Kit Modbus TCP/IP V7 Drive Option Kit EtherNet/IP 7-Series Option Kit EtherNet/IP V7 Drive Option Kit Modbus TCP/IP 1000-Series Drive Option Modbus TCP/IP V1000 Drive Option EtherNet/IP 1000-Series Drive Option EtherNet/IP V1000 Drive Option PROFINET 1000-Series Drive Option PROFINET V1000 Drive Option Description YASKAWA AN.AFD.24 Ethernet Network Configuration Recommendations Application Note 5

3 Yaskawa Recommended Best Practices 3 Yaskawa Recommended Best Practices u Electrical Noise Overview Electrical noise can cause abnormal operation of Yaskawa AC drives and equipment if proper installation practices are not followed. In the worst cases, it can cause false inputs, offsets to analog signals, interrupted communications, and equipment malfunctions or even equipment failure. There are two types of noise: conducted noise and radiated noise. Conductive noise flows through electrical conductors, while radiated noise flows through the air. A simple example is shown in Figure 1. In this example, a controller is communicating to a laptop PC over an Ethernet network. The system is subjected to various noise sources, such as a motor, a 2-way radio, and a power supply. Conductive noise from the motor flows through power wires to the input power and then to the controller. Conductive noise from the power supply of the PC flows through the Ethernet cable to the controller and radiated noise flows through the air from the motor and from a 2-way radio. MOTOR INPUT POWER CONTROLLER ETHERNET NETWORK 2-WAY RADIO Figure 1 Electrical Noise Example There are three elements necessary to produce a noise problem: the noise source, the coupling channel, and the receptor. This series of elements is called the noise path. NOISE SOURCE COUPLING CHANNEL RECEPTOR Figure 2 Noise Path The noise source is the item that creates the electrical noise. Examples of noise sources include a contactor making or breaking a current, a power supply, a transient on the AC line from a starting motor or welding equipment, and variable frequency drives. 6 YASKAWA AN.AFD.24 Ethernet Network Configuration Recommendations Application Note

The coupling channel transmits the noise from the noise source to the receptor. Examples of coupling channels include wires, panels, metal enclosures, cables, and the air. The receptor is the equipment that is affected by the noise. Examples of receptors include programmable logic controllers, personal computers, and variable frequency drives. The effects of electrical noise can be minimized by breaking the noise path. The first step in breaking the noise path is to analyze the system to identify the noise source, the affected equipment (receptor), and how the noise is transmitted from the source to the affected equipment (receptor). After identifying these factors, take one of three courses of action to break the noise path: The first option is to suppress the noise at the source. The second option is to make the receptor equipment less sensitive to the noise. The last option is to configure the coupling channel to minimize the noise transmission. u Guidelines to Mitigate Electrical Noise 3 Yaskawa Recommended Best Practices Yaskawa products go through an extensive set of environmental tests prior to releasing for production, including many tests that subject the products to electrical noise. This testing helps identify guidelines under which Yaskawa products will achieve optimum performance. Following these guidelines will help achieve the most trouble-free operation possible. Ground the Variable Frequency Drive (VFD) Properly ground equipment to earth ground to minimize noise currents from interrupting the controllers and communications. Normally, equipment will have internal circuits referenced to earth ground. The equipment chassis ground must be solidly terminated to building ground using the lowest impedance conductor possible. For Yaskawa drives, the incoming 3-phase power should include a ground conductor from the AC power source that is terminated to the drive terminal identified in the drive Technical Manual. The 3-phase motor conductors should also include a ground conductor from the motor that is terminated to the drive terminal identified in the drive Technical Manual. Mount the drive to a metal panel that is connected to the building ground, where the mounting screws help conduct ground currents from the drive to the building ground. Noise currents will attempt to find a path back to the source, and if there are poorly connected ground wires, the noise currents may flow in the Ethernet cable and interrupt communications. INPUT POWER L1 L2 L3 VFD T1 T2 T3 MOTOR Figure 3 Grounding Ground the Ethernet Option Properly ground the Ethernet option board to minimize noise currents and noise radiation from interrupting communications. Typically there is a chassis ground wire on the Ethernet option card that must be connected to the proper drive terminal for best noise immunity operation. Follow the guidelines as instructed in the Ethernet option installation guide and technical manual. Ground the Switches and Other Equipment Properly ground the Ethernet switches and other equipment to minimize noise currents and noise radiation from interrupting communications. Typically there is a chassis ground point that should be connected to earth ground. Follow the grounding guidelines in the technical manuals for those equipments. YASKAWA AN.AFD.24 Ethernet Network Configuration Recommendations Application Note 7

3 Yaskawa Recommended Best Practices Use Shielded CAT5e or Better Ethernet Cable It is strongly recommended that shielded CAT-5e or better patch cable is used for all network cables connected to Yaskawa equipment. The shield will protect the signals from any radiated noise sources. In general, the shield is connected to the case of the Ethernet connector, which is connected to the chassis ground of the drive or switch. It is important to follow the grounding recommendations mentioned above so that any radiated or conducted noise on the shield can be channeled to earth ground to minimize their effects from corrupting the data on the Ethernet signal wires. Route the Ethernet Cable It is strongly recommended to separate Ethernet cabling from power and control wiring. Route the cables as far away as possible from sources of RF radiation; 5 feet minimum is recommended. If a cable must cross power lines, it should do so at right angles. A good reference for cable routing is PUB00148 available at www.odva.org. u Managed Ethernet Switches with IGMP Snooping Yaskawa products support the star network topology. Star networks require a hub or a switch. An Ethernet patch cable is connected from each piece of equipment to the hub or switch. A hub retransmits any data packets received from one port to all of the other ports, while a switch retransmits data packets from one port to only those ports with a device that is intended to receive the data packet. Therefore, a switch can help reduce the amount of data packets that a device must process. If network traffic is high, the use of a hub can flood the connected devices with data packets, some of which were not intended for all devices. This unintended flow of data may reach the point where some equipment does not receive data packets of which it was the intended recipient. \ PLC VFD VFD SWITCH VFD VFD VFD Figure 4 Star Network Topology 8 YASKAWA AN.AFD.24 Ethernet Network Configuration Recommendations Application Note

Yaskawa recommends the use of managed switches with the capabilities outlined in Table 2: 3 Yaskawa Recommended Best Practices Switch Type IGMP Snooping 100 Mbps Full Duplex Port Mirroring Auto-Negotiation Table 2 Recommended Properties of Managed Switches Properties Switches implementing IGMP snooping are strongly recommended. When IGMP snooping is used, devices will only receive the multicast packets in which they are interested. EtherNet/IP is one protocol that makes use of multicast messages. Without IGMP snooping, all the devices on the network will be flooded with multicast messages that may not be intended for them. Processing an abundance of unintended messages may cause the devices to miss the reception of some messages due to high network traffic. Yaskawa products support both 10 Mbps and 100 Mbps speeds, but 100 Mbps speeds allow more data to be passed in a given amount of time to improve network throughput. Yaskawa products support both half and full duplex. Half duplex uses the same wires to transmit and receive, which will result in collisions and the devices having to resend data. Full duplex is a more efficient means of communications because it allows simultaneous transmit and receive with no collisions. Port mirroring allows one network switch port to watch the signals from another switch port. This allows a device to be attached a port to log network traffic from the mirrored port, which can assist with any possible troubleshooting. The connection made between the switch and the device connected to each port will go through a process to determine the network speed (10 Mbps or 100 Mbps) and the duplex (half or full) for that port. Auto-Negotiation All devices (e.g., switches, PLC Ethernet ports, Yaskawa options) should be set to auto-negotiate. In auto-negotiation, the connection made between two devices connected directly by an Ethernet cable will go through a process to determine the network speed (10 Mbps or 100 Mbps) and the duplex setting (half or full) for that connection. If one side is in auto-negotiate and the other side is not, the auto-negotiate side will only do half-duplex since it can only negotiate duplex if both sides are in auto-negotiate. Scanning Rates Consideration should be given on the amount of network traffic being created based upon the I/O scan rate setting of the Programmable Logic Controller. The lower the value for the scan rate (i.e., RPI for EtherNet/IP), the more often packets of data will be sent by the PLC and the devices to which it is communicating. Decreasing values for scan rates will result in more traffic, eventually to the point at which a device can no longer keep up with the data and will start to miss packets. Each protocol has differences on the types of messages and the delivery methods over Ethernet; however, in general, it is advisable to use the highest value for scan rate that the control system can tolerate. For example, a typical setting for a scan rate (i.e., RPI in EtherNet/IP terms) is 20 ms. If the system or machine can tolerate a higher value such as 50 ms, then the higher value should be used. Yaskawa recommends using a scan rate of no less than 10 ms. Separating Business Networks from Industrial Networks Industrial networks normally process relatively small amounts of data, but cannot tolerate delayed data. Whereas business networks will normally process large amounts of data, but can tolerate delays. It is important to keep these two networks separate to prevent flooding the industrial network with the data from the business network. If business packet data gets onto the industrial network, then the industrial data packets may not be sent when desired. Furthermore, the packets of data from the business network may flood the industrial network, resulting in some or all of the industrial devices to process this data. The delayed industrial packets on a flooded network can result in decreased performance or even shutdown of the automation system or machine. However, there are benefits to connecting the business network to the industrial network. Two such benefits are the gathering of statistics and the ability to perform remote maintenance. When connecting the business network and the industrial network, take care to separate different parts of the network to keep the traffic separate. In these cases, consider the use of VLANs and subnets. To allow remote personnel to access the industrial network, use a tool such as a VPN client to keep any outside traffic away from the control network. YASKAWA AN.AFD.24 Ethernet Network Configuration Recommendations Application Note 9

4 References 4 References The documents and websites listed in Table 3 can be used as supplemental information to this Application Note. Yaskawa manuals can be downloaded from www.yaskawa.com. Table 3 References Item Description Type IG.AFD.25 IG.AFD.26 IG.V7.25 IG.V7.26 SIEPYEACOM01 SIEPYEACOM02 SIEPYEACOM04 SIEPYEACOM05 SIEPYEACOM06 SIEPYEACOM07 TM.AFD.26 TM.V7.26 TOEPYEACOM01 TOEPYEACOM02 TOEPYEACOM04 TOEPYEACOM05 TOEPYEACOM06 TOEPYEACOM07 www.industrialethernetu.com www.odva.org www.yaskawa.com Ott, Henry W. Noise Reduction Techniques in Electronic Systems - 2nd Edition. Canada: John Wiley & Sons, Inc., 1988. ISBN 0-471-85068-3 Installation Guide for CM090 Modbus TCP/IP 7-Series Option Kit Installation Guide for CM092 EtherNet/IP 7-Series Option Kit Installation Guide for CM091 Modbus TCP/IP V7 Drive Option Kit Installation Guide for CM093 EtherNet/IP V7 Drive Option Kit Technical Manual for SI-EN3/V EtherNet/IP V1000 Drive Option Technical Manual for SI-EM3/V Modbus TCP/IP V1000 Drive Option Technical Manual for SI-EN3 EtherNet/IP 1000-Series Drive Option Technical Manual for SI-EM3 Modbus TCP/IP 1000-Series Drive Option Technical Manual for SI-EP3/V PROFINET V1000 Drive Option Technical Manual for SI-EP3 PROFINET 1000-Series Drive Option Technical Manual for CM092 EtherNet/IP 7-Series Option Kit Technical Manual for CM093 EtherNet/IP V7 Drive Option Kit Installation Manual for SI-EN3/V EtherNet/IP V1000 Drive Option Installation Manual for SI-EM3/V Modbus TCP/IP V1000 Drive Option Installation Manual for SI-EN3 EtherNet/IP 1000-Series Drive Option Installation Manual for SI-EM3 Modbus TCP/IP 1000-Series Drive Option Installation Manual for SI-EP3/V PROFINET V1000 Drive Option Installation Manual for SI-EP3 PROFINET 1000-Series Drive Option Website with Ethernet training modules. Website for the organization that supports network technologies bilt on the Common Industrical Protocol (CIP), including EtherNet/IP. EtherNet/IP and CIP references are here, including the EtherNet/IP specification. Also of interest is PUB00148, EtherNet/IP Media Planning and Installation Manual. Website of Yaskawa America, Inc. Information on products can be found here, including technical manuals, training material, and other application notes. Reference book covering the practical aspects of noise suppression and control in electronic circuits. Yaskawa manual Other 10 YASKAWA AN.AFD.24 Ethernet Network Configuration Recommendations Application Note

Revision History The revision dates and the numbers of the revised manuals appear on the bottom of the back cover. Date of Publication Revision Number Section September 2011 - - First Edition September 2011 1 Section 3 Revised Content Switched section headings Ground the Ethernet Option and Ground the Switches and Other Equipment. 12 YASKAWA AN.AFD.24 Ethernet Network Configuration Recommendations Application Note

This Page Intentionally Blank YASKAWA AN.AFD.24 Ethernet Network Configuration Recommendations Application Note 13

YASKAWA AC Drive Products Ethernet Network Configuration Recommendations Application Note YASKAWA AMERICA, INC. 2121 Norman Drive South, Waukegan, IL 60085, U.S.A. Phone: (800) YASKAWA (927-5292) or 1-847-887-7000 Fax: 1-847-887-7310 http://www.yaskawa.com YASKAWA AMERICA, INC. In the event that the end user of this product is to be the military and said product is to be employed in any weapons systems or the manufacture thereof, the export will fall under the relevant regulations as stipulated in the Foreign Exchange and Foreign Trade Regulations. Therefore, be sure to follow all procedures and submit all relevant documentation according to any and all rules, regulations and laws that may apply. Specifications are subject to change without notice for ongoing product modifications and improvements. 2011 YASKAWA AMERICA. All rights reserved. DOCUMENT NO. AN.AFD.24 Published in U.S.A. September 2011 11-9 1