STUDENTS STRUCTURING OF RECTANGULAR ARRAYS

Similar documents
CASE STUDIES OF CHILDREN S DEVELOPMENT OF STRUCTURE IN EARLY MATHEMATICS: A TWO YEAR LONGITUDINAL STUDY

CCSS-M Critical Areas: Kindergarten

Planning Guide. Grade 6 Factors and Multiples. Number Specific Outcome 3

E XPLORING QUADRILATERALS

Current Standard: Mathematical Concepts and Applications Shape, Space, and Measurement- Primary

CODING THE NATURE OF THINKING DISPLAYED IN RESPONSES ON NETS OF SOLIDS

Such As Statements, Kindergarten Grade 8

1 BPS Math Year at a Glance (Adapted from A Story of Units Curriculum Maps in Mathematics P-5)

Grade 5 Common Core State Standard

Multiplication. Year 1 multiply with concrete objects, arrays and pictorial representations

Charlesworth School Year Group Maths Targets

ISAT Mathematics Performance Definitions Grade 4

The Crescent Primary School Calculation Policy

COMMON CORE STATE STANDARDS FOR MATHEMATICS 3-5 DOMAIN PROGRESSIONS

ALGEBRA. sequence, term, nth term, consecutive, rule, relationship, generate, predict, continue increase, decrease finite, infinite

Minnesota Academic Standards

Perimeter, Area and Volume What Do Units Tell You About What Is Being Measured? Overview

Overview. Essential Questions. Grade 8 Mathematics, Quarter 4, Unit 4.3 Finding Volume of Cones, Cylinders, and Spheres

FROM NUMERICAL EQUIVALENCE TO ALGEBRAIC EQUIVALENCE 1. Rolene Liebenberg, Marlene Sasman and Alwyn Olivier

Numeracy and mathematics Experiences and outcomes

THE STRUCTURE OF ELEMENTARY STUDENTS ABILITY IN GEOMETRIC TRANSFORMATIONS: THE CASE OF TRANSLATION

Freehand Sketching. Sections

Kindergarten Math Content 1

FIRST GRADE MATH Summer 2011

Volume of Right Prisms Objective To provide experiences with using a formula for the volume of right prisms.

Grade 5 Math Content 1

Glencoe. correlated to SOUTH CAROLINA MATH CURRICULUM STANDARDS GRADE 6 3-3, , , 4-9

Drawing 3-D Objects in Perspective

CCSS Mathematics Implementation Guide Grade First Nine Weeks

VOLUME MEASUREMENT AND CONSERVATION IN LATE PRIMARY SCHOOL CHILDREN IN CYPRUS

ALGEBRA. Find the nth term, justifying its form by referring to the context in which it was generated

Math Content by Strand 1

Solve addition and subtraction word problems, and add and subtract within 10, e.g., by using objects or drawings to represent the problem.

Vocabulary Cards and Word Walls Revised: June 29, 2011

Three daily lessons. Year 5

WORK SCHEDULE: MATHEMATICS 2007

Sample Fraction Addition and Subtraction Concepts Activities 1 3

Unit 8 Angles, 2D and 3D shapes, perimeter and area

EVERY DAY COUNTS CALENDAR MATH 2005 correlated to

DELAWARE MATHEMATICS CONTENT STANDARDS GRADES PAGE(S) WHERE TAUGHT (If submission is not a book, cite appropriate location(s))

3.1. Angle Pairs. What s Your Angle? Angle Pairs. ACTIVITY 3.1 Investigative. Activity Focus Measuring angles Angle pairs

Number Sense and Operations

Big Ideas in Mathematics

NCTM Curriculum Focal Points for Grade 5. Everyday Mathematics, Grade 5

How To Understand And Solve Algebraic Equations

Building a Bridge to Academic Vocabulary in Mathematics

Scope and Sequence KA KB 1A 1B 2A 2B 3A 3B 4A 4B 5A 5B 6A 6B

How we teach calculations in Maths A Parent s Guide

Session 6 Number Theory

Problem of the Month: William s Polygons

Mathematics Policy. Michael Sobell Sinai School

Prentice Hall Mathematics: Course Correlated to: Arizona Academic Standards for Mathematics (Grades 6)

Discovering Math: Exploring Geometry Teacher s Guide

Inv 1 5. Draw 2 different shapes, each with an area of 15 square units and perimeter of 16 units.

Mathematics Scope and Sequence, K-8

2016 national curriculum assessments. Key stage 1. Interim teacher assessment frameworks at the end of key stage 1. September 2015

TECHNIQUES OF DATA PRESENTATION, INTERPRETATION AND ANALYSIS

Toothpick Squares: An Introduction to Formulas

MD5-26 Stacking Blocks Pages

SCOPE & SEQUENCE. Kindergarten, First Grade, and Second Grade. Skills and Activities

Modeling in Geometry

Ministry of Education. The Ontario Curriculum. Mathematics. Mathematics Transfer Course, Grade 9, Applied to Academic

What You ll Learn. Why It s Important

Year 6 Mathematics - Student Portfolio Summary

Assessment Policy. 1 Introduction. 2 Background

5 th Grade Texas Mathematics: Unpacked Content

Common Core State Standards for Mathematics Accelerated 7th Grade

Self Organizing Maps: Fundamentals

Chapter 17. Geometric Thinking and Geometric Concepts. T he geometry curriculum in grades K 8 should provide an

Lesson 4: Surface Area

NEW MEXICO Grade 6 MATHEMATICS STANDARDS

Mathematics Cognitive Domains Framework: TIMSS 2003 Developmental Project Fourth and Eighth Grades

Planning Guide. Grade 6 Improper Fractions and Mixed Numbers. Number Specific Outcome 4

Area and Perimeter: The Mysterious Connection TEACHER EDITION

Classifying Lesson 1 Triangles

PERIMETER AND AREA. In this unit, we will develop and apply the formulas for the perimeter and area of various two-dimensional figures.

Developing Conceptual Understanding of Number. Set J: Perimeter and Area

BPS Math Year at a Glance (Adapted from A Story Of Units Curriculum Maps in Mathematics K-5) 1

Appendix B Data Quality Dimensions

LINEAR INEQUALITIES. Mathematics is the art of saying many things in many different ways. MAXWELL

Geometry Solve real life and mathematical problems involving angle measure, area, surface area and volume.

Which Shape? Student Task Core Idea 4 Geometry and Measurement

Hide the spies Teacher notes. Activity description. Suitability. Time. AMP resources. Equipment. Key mathematical language.

Making tessellations combines the creativity of an art project with the challenge of solving a puzzle.

Rational Number Project

What Is Singapore Math?

Mathematics Navigator. Misconceptions and Errors

Fourth Grade Math Standards and "I Can Statements"

Modeling Fraction Computation

INCOMPLETE OR INCORRECT UNDERSTANDING OF DECIMALS: AN IMPORTANT DEFICIT FOR STUDENT NURSES

Situation: Proving Quadrilaterals in the Coordinate Plane

Chapter 4: The Concept of Area

Indicator 2: Use a variety of algebraic concepts and methods to solve equations and inequalities.

% ! 3 40% % Percent Cards. This problem gives you the chance to: relate fractions, decimals and percents

CBA Fractions Student Sheet 1

STUDENTS DIFFICULTIES WITH APPLYING A FAMILIAR FORMULA IN AN UNFAMILIAR CONTEXT

Activity Set 4. Trainer Guide

Fractions as Numbers INTENSIVE INTERVENTION. National Center on. at American Institutes for Research

Open-Ended Problem-Solving Projections

Basic Theory of Intermedia Composing with Sounds and Images

Transcription:

STUDENTS STRUCTURING OF RECTANGULAR ARRAYS Lynne Outhred and Michael Mitchelmore Macquarie University, Australia This paper presents the results of a study of the structural development of young students drawings of arrays, and in particular, the significance of using lines instead of drawing individual squares. Students array drawings were classified on basis of numerical properties, and perceived structural similarities that reflected the spatial properties of arrays. The relationship between these two aspects was investigated and a sequence for the development of array structure is postulated. INTRODUCTION The rectangular array model is important for mathematics learning because of its use to model multiplication, to represent fractions and as the basis for the area formula. Although array models are used to show multiplicative relationships, students may not see structural similarities of discrete arrays and arrays as a grid of contiguous squares, thus they may not connect an array of squares with multiplication. Fundamental understandings of rectangular array structure would appear to be that the region must be covered by a number of congruent units without overlap or leaving gaps, and that a covering of units can be represented by an array in which rows (and columns) are aligned parallel to the sides of the rectangle, with equal numbers of units in each. The most efficient way of drawing an array is to draw equally-spaced lines parallel to the sides of the rectangle, constructing equal rows and columns. However, many young students cannot do this (Outhred & Mitchelmore, 1992). In this paper we make inferences as to how students understandings of array structure progress from a collection of individual units to (perpendicular) intersecting sets of parallel lines. The action of physically covering a rectangle with unit squares suggests a counting process whereas the array model is used to exemplify multiplication. To link the array model to multiplication, students need to perceive first that the rows are equal and correspond to equivalent groups. In theory, such a perception equates to a repeated addition model. The second perception, that the array is a composite of composites, equates to a multiplicative model. Steffe (1992) believes that students recognition and production of composite units are key understandings in learning about multiplication. However, students may not fully understand the relationship between multiplication and addition (Mulligan & Mitchelmore, 1997) and may persist in counting. Only gradually do students learn that the number of units in a rectangular array can be calculated from the number of units in each row and column (Battista, Clements, Arnoff, Battista, & Borrow, 1998). These authors classified Grade 2 students counting methods into levels of increasing sophistication. At the lowest level, students counted in a disorganised manner. Then there was what Battista et al. call a paradigm shift to treating the array in terms of rows. Some students were unsure of how to find the number of rows, while others were able to find the number of rows Proceedings of the 28th Conference of the International Group for the Psychology of Mathematics Education, 2004 Vol 3 pp 465 472

when the number of squares in the orthogonal direction was given but estimated this number otherwise. By contrast, at the highest strategy level students immediately used the numbers of units in each row and column to find the total by multiplication or repeated addition. In area measurement, emphasis on area as covering encourages counting (Hirstein, Lamb & Osborne, 1978; Outhred & Mitchelmore, 2000). Students may not see congruence as crucial to measurement; they may perceive individual pieces resulting from partitioning regions as counting units rather than fractional portions of a referent whole (Hirstein et al., 1978; Mack, 2001). Students who count units are also unlikely to link area measurement to multiplication, which is fundamental to understanding the area formula. Use of concrete materials also encourages counting and does nothing to promote multiplicative structure. The materials themselves can obscure structural features of unit coverings (Doig & Cheeseman, 1995; Dickson, 1989) and obviate the need for students to structure arrays. Student s drawings of arrays How do students develop mental representations of array structure by abstraction from physical or pictorial models? There is evidence that students drawings of array models can reveal their mental representations (Besur & Eliot; 1993). We shall assume that students difficulties in representing arrays are a consequence of limited conceptions of array structure, rather than of inadequate drawing skills. Several researchers (Battista et al., 1998; Outhred & Mitchelmore, 2000) have emphasized the relationship between array structure and either counting or measurement. Neither study focused on development of array representation, nor interpretation of students drawn constructions in terms of their understanding. No systematic study detailing the structural development of students array drawings, and in particular, the significance of using lines instead of individual squares, appears to have been reported in the literature. METHODOLOGY A large sample of 115 students, with approximately equal numbers of boys and girls from a range of cultural groups, was randomly selected from forty grade 1 to 4 classes (aged 6 to 9 years) in four schools in a medium-socioeconomic area of a large city. Individual interviews with the students were conducted early in the school year. The sequence of drawing, counting, and measuring tasks involved representing arrays of units given different perceptual cues, calculating the numbers of elements in arrays, and constructing arrays of the correct dimensions when no perceptual cues were given. These particular skills focus on linking the unit (in this case, a square), iteration of this unit to cover a rectangular figure, and the lengths of the sides of the figure. Information concerning the strategies that students used to solve array-based tasks was inferred from students strategies as they drew. In this paper only a subset of the tasks will be included. These tasks are summarised in Figure 1. 3 466 PME28 2004

The drawing items (D1, D2, and D3) all required the students to draw arrays of units, but did not require measurement skills. Responses to Task D1 should indicate students perceptions of the essential features of an array because no drawing cues were given and to copy a figure students require some knowledge of its properties. Tasks D2 and D3 were presented to elucidate students abilities to construct arrays given different cues, which required that students imagine increasingly more of each array in order to draw it. The responses to the tasks provide information about the skills involved in representing arrays and the order in which these skills are learnt. Task Unit Requirements D1 D2 D3 Cardboard tile 4cm square Drawing of a 1cm square Drawing of a 1cm square Cover a 12cm x 16cm rectangle (enclosed by a raised border) with 4 cm cardboard unit squares, work out how many units, and draw the squares. Draw array given units along two adjacent sides of a 4 cm x 6 cm rectangle. Draw array given marks to indicate the units on each side of a 5 cm x 8 cm rectangle. Figure 1 The array drawing tasks (D1, D2, D3) RESULTS AND DISCUSSION The students drawings were sorted in two ways, based on analysis of the drawings, supplemented by the interview notes. First, the drawings were classified on the numerical properties of arrays, and second, on the basis of perceived structural similarities that reflected the spatial properties of arrays. The numerical classification was based whether students drew equal rows (columns) and whether the dimensions corresponded to the array that had been indicated. The spatial classification was based on covering the region without leaving gaps and the degree of abstraction shown in the drawings, that is whether students drew individual squares or lines. All three tasks showed the same three levels for numerical properties and five levels for spatial properties. However, students often produced drawings at different levels for different tasks, so the levels are not a classification of students. The three final numerical levels are shown in Figure 2. Level 1. Unequal rows (columns): There may be an incorrect number of columns with an unequal number of units in each (1a) or a correct number of rows with an unequal number of units in each row (1b). Level 2. Equal rows (columns) incorrect dimensions: Rows and/or columns have an equal, but incorrect, number of units. There may be an incorrect number of rows with an equal, but incorrect, number of units in each (2a) or a correct number of rows with an equal, but incorrect, number of units in each (2b). PME28 2004 3 467

Level 3. Numerically correct array: Rows and columns have an equal and correct numbers of units. However, the array is not always spatially sophisticated. 1(a) incorrect number of columns, each with unequal numbers of units 1(b) correct number of rows with an unequal number of units in each. 2(a) incorrect number of rows with an equal, but incorrect, number of units in each row 2(b) correct number of rows with an equal, but incorrect, number of units in each row 3 correct number of columns, equal and correct number of units in each Figure 2 Examples of each numerical level for Tasks D1 and D2 Spatial structuring levels The most important skill in representing an array, partitioning into rows and columns, seems to be based on an understanding of a fundamental property of rectangular arrays: the elements of an array are collinear in two directions. The five level classification of spatial structure (see Figure 3 for examples from Task D3) describes students increasing level of knowledge of array structure from Level 1 to Level 5. Level 1 Incomplete covering: The units do not cover the whole rectangle. They are drawn individually and may be: (a) unorganised elements; or (b) arranged in one dimension but not connected. Level 2 Primitive covering: An attempt is made to align units (drawn individually) in two dimensions. Units cover the rectangle without overlap but their organisation is unsystematic. 3 468 PME28 2004

Level 3 Array covering Individual units: Units are drawn individually, are approximately equal in size, and are aligned both vertically and horizontally. Drawings show correct structure equal numbers of approximately rectangular units in each row and column. The array is not constructed by iterating rows. Level 4 Array covering Some lines: Students realise that units in rows (or columns) can be connected and use some lines to draw the array. Level 5 Array covering All lines: The array is drawn as two (perpendicular) sets of parallel lines. Row iteration is therefore fully exploited. 1(a)unorganised elements 1(b) individual units arranged in one dimension but not connected 1(c) connections in one dimension 2 an attempt to connect units, drawn individually, in two dimensions 3 individually drawn units aligned in both dimensions 4 some lines (one dimension only, or a combination of units and lines). 5 two perpendicular sets of parallel lines Figure 3 Examples of each spatial level for Task D3 The above sequence is developmental in the sense that each level is more sophisticated than the previous ones and the levels show a clear grade progression. This is not to say that students necessarily progress through each level in turn. At Level 1, no discernible strategy is used to cover the rectangle. Young students frequently draw individual units with large gaps between them but as they realise the importance of alignment, their drawings increase in regularity and the row/column structure becomes correspondingly apparent. As student knowledge increases the units become connected first in one, then in two dimensions (that is, students PME28 2004 3 469

gradually seem to understand the importance of covering the region). Until students attempt to join the units in two dimensions, the rows and columns are not usually aligned. The strategies used to construct coverings at Levels 1, 2 and 3 might be termed local rather than global (Battista & Clements, 1996). The students focus on parts of the structure for example, iterating rows or joining adjacent squares but they have no global scheme for coordinating an array. Level 4 indicates the emergence of a coordinated scheme for showing units as composites in one or two dimensions. There are various transition stages between drawing individual units and an array. For instance, lines may be drawn across the width of the rectangle to indicate rows with units in each row marked off individually, or some individual units (usually the top row and the left column) is drawn as a guide to drawing the array (see Figure 3, Level 4). The most abstract method of drawing an array is as two (perpendicular) sets of parallel lines (Level 5), because this method is furthest removed from the physical action of covering a rectangle with individual units. By Level 5 students appear to have internalized the row and column structure. The relationship between numerical and spatial levels The relationship between numerical and spatial levels for Task D3 showed that few students (7%) drew a numerically correct arrangement without using some lines (Levels 4 or 5). The converse was also true, all students drawings classified as spatial Levels 1 and 2 were numerically incorrect. The distribution of numerical and spatial levels with grade for Task D3 is quite different from Task D1 where, in most of the drawings that did not show a systematic array covering (Levels 1 and 2), rows and columns usually contained unequal numbers of units. Nevertheless, quite a large proportion (37%) of these drawings were numerically correct. Once students began to use lines to draw the array (Levels 4 and 5), they always drew equal numbers of units in each row but,21% of students did not show the correct number of units in each row. However, Task D1, in which numerical structure had to be deduced, would have been far more difficult if the model had had equivalent dimensions to Task D3 (5x8). CONCLUSION In summary, the results of this study show students drawings of rectangular arrays develop between Grades 1 and 4 from single squares to an accurate array with a concomitant understanding of alignment and composite units. Analysis of students drawings indicated that representing an array of units using two perpendicular sets of parallel lines is more difficult than might be expected, indicating that the structure of a square tessellation is not obvious to students but must be learned. In initial representations of arrays, many Grade 1 students did not see the importance of joining the units so that there were no gaps, and drew units individually. As they attempted to align squares, their drawings became increasingly regular and the structure became correspondingly apparent. Until students began to join the units in two dimensions, they did not usually align rows and columns. Before drawing arrays 3 470 PME28 2004

using only lines, some students drew lines across the width of the rectangle to indicate rows and marked off the units in each row individually while others drew some individual units (usually the top row and the left column) as a guide to drawing the array. By Grade 4 most students had learnt that the physical action of covering a rectangular area with units was equivalent to an abstract representation using lines. For some students the lines shown in an array may be only a visual feature unrelated to numerical structure. However, drawing lines in one dimension appeared to be a precursor to recognising rows as composite units. Such recognition helped students to perceive that squares could be constructed by joining lines in the other direction, and hence realise the two-dimensional structure of an array. The comparison between numerical and spatial structure across the three tasks shows that drawing correctly aligned units is necessary, but not sufficient for correct numerical structure when drawing arrays of large dimensions (as in Task D3). Although it might be argued that the relationship is a consequence of the strong correlation between knowledge of array structure and age, students in Grades 2, 3, and 4 solved measurement tasks when the units were not indicated (Outhred & Mitchelmore, 2000), so the more salient discriminator would appear to be array structure. Moreover, for the indicated grid task, numerical level was a stronger predictor of spatial level than grade. The results of this study, combined with a teaching experiment (see Outhred, 1993) suggest the following sequence (see Figure 4) for the development of array structure. Attempt to align in 2D Alignment Equality of rows Use of lines Subdivision Correct numerical structure Figure 4 The hypothesised development of array structure Understanding of array structure (as demonstrated by ability to complete an indicated grid) has been shown to be a prerequisite for students to progress from array-based activities with concrete or pictorial support to more abstract tasks, involving multiplication and measurement. Only students who drew an array using at least some lines successfully solved a measurement task in which students had to construct an array of the correct dimensions (5x6) by accurate estimation or by measuring the side lengths of the rectangle with a ruler (Outhred & Mitchelmore, 2000). The results of the measurement tasks reported in the above study reinforced the significance of the formation of an iterable row as the foundation of an understanding of array structure. In addition, an understanding of subdivision was found to be crucial when cues to the array structure were not given. Students have to clearly identify the significance of the relationship between the size of the unit and the dimensions of the rectangle. Although it may seem self-evident to adults that the number of units in the array must depend on the measurements of the sides, it was clearly not obvious to students. Thus, teaching about array structure must include activities that provide students with experience of partitioning a length into equal parts. Subdividing a PME28 2004 3 471

rectangular region into equal parts depends on students being able to partition a length into a required number of parts, as well as knowing that an array can be represented using lines. REFERENCES Battista, M. T., Clements, D. H., Arnoff, J., Battista, K., & Borrow, C. V. A. (1998). Students spatial structuring of 2D arrays of squares. Journal for Research in Mathematics Education, 29, 503-532. Battista, M., & Clements, D. (1996). Students' understanding of three-dimensional rectangular arrays of cubes. Journal for Research in Mathematics Education, 27(3), 258-292. Bensur, B., & Eliot, J. (1993). Case's developmental model and children's drawings. Perceptual and Motor Skills, 76, 371-375. Dickson, L. (1989). The area of a rectangle. In K. Hart, D. Johnson, M. Brown, L. Dickson, & R. Clarkson (Eds.), Students Mathematical Frameworks 8-13: A Study of Classroom Teaching. London: NFER - Nelson. Doig, B., Cheeseman, J., & Lindsay, J. (1995). The medium is the message: Measuring area with different media. In B. Atweh & S. Flavel (Ed.), Galtha (Proceedings of the 18th annual conference of the Mathematics Education Group of Australasia, Vol. 1 (pp. 229-240). Darwin, NT: Mathematics Education Group of Australasia. Hirstein, J., Lamb, C., & Osborne, A. (1978). Student misconceptions about area measure. The Arithmetic Teacher, 25(6), 10-16. Mack, (2001). Building on informal knowledge through instruction in a complex content domain: Partitioning, units, and understanding of multiplication of fractions. Journal for Research in Mathematics Education, Vol. 32(3), 267-295. Mulligan, J, & Mitchelmore, M. (1997). Young children s intuitive models of multiplication and division. Journal for Research in Mathematics Education, 28, 309-330. Outhred, L., & Mitchelmore, M. (1992). Representation of area: A pictorial perspective. In W. Geeslin & K. Graham (Eds.), Proceedings of the 16 th international conference of the International Group for the Psychology of Mathematics Education (Vol. 3, pp. 3-11). Durham, NH: Program Committee. Outhred, L. (1993). The development in young students of concepts of rectangular area measurement. Unpublished PhD dissertation, Macquarie University, Australia. Outhred, L. & Mitchelmore, M. (2000). Young students intuitive understanding of area measurement. Journal for Research in Mathematics Education, Vol 31(2), 144-167. Steffe, L. (1992). Schemes of action and operation involving composite units. Learning and Individual Differences, 4(3), 259-309. 3 472 PME28 2004