ER Cardinality Examples

Similar documents
Conceptual Design Using the Entity-Relationship (ER) Model

Review: Participation Constraints

The Entity-Relationship Model

Databases Model the Real World. The Entity- Relationship Model. Conceptual Design. Steps in Database Design. ER Model Basics. ER Model Basics (Contd.

The Relational Model. Why Study the Relational Model? Relational Database: Definitions. Chapter 3

Lecture 6. SQL, Logical DB Design

The Entity-Relationship Model

The Relational Model. Ramakrishnan&Gehrke, Chapter 3 CS4320 1

Outline. Data Modeling. Conceptual Design. ER Model Basics: Entities. ER Model Basics: Relationships. Ternary Relationships. Yanlei Diao UMass Amherst

Database Design Overview. Conceptual Design ER Model. Entities and Entity Sets. Entity Set Representation. Keys

Winter Winter

2. Conceptual Modeling using the Entity-Relationship Model

Data Modeling. Database Systems: The Complete Book Ch ,

Chapter 2: Entity-Relationship Model. Entity Sets. " Example: specific person, company, event, plant

Lecture 12: Entity Relationship Modelling

Chapter 7 Data Modeling Using the Entity- Relationship (ER) Model

Database Design. Goal: specification of database schema Methodology: E-R Model is viewed as a set of

IV. The (Extended) Entity-Relationship Model

XV. The Entity-Relationship Model

CSC 742 Database Management Systems

Chapter 2: Entity-Relationship Model. E-R R Diagrams

CS 4604: Introduc0on to Database Management Systems. B. Aditya Prakash Lecture #5: En-ty/Rela-onal Models- - - Part 1

Database Design. Database Design I: The Entity-Relationship Model. Entity Type (con t) Chapter 4. Entity: an object that is involved in the enterprise

The Relational Model. Why Study the Relational Model? Relational Database: Definitions

Entity Relationship Diagram

COMP 378 Database Systems Notes for Chapter 7 of Database System Concepts Database Design and the Entity-Relationship Model

Introduction to Database Systems CS4320/CS5320. CS4320/4321: Introduction to Database Systems. CS4320/4321: Introduction to Database Systems

THE ENTITY- RELATIONSHIP (ER) MODEL CHAPTER 7 (6/E) CHAPTER 3 (5/E)

DATABASE DESIGN. - Developing database and information systems is performed using a development lifecycle, which consists of a series of steps.

The Entity-Relationship Model

Chapter 3. Data Modeling Using the Entity-Relationship (ER) Model

Entity-Relationship Model. Purpose of E/R Model. Entity Sets

Foundations of Information Management

Requirement Analysis & Conceptual Database Design. Problem analysis Entity Relationship notation Integrity constraints Generalization

Review Entity-Relationship Diagrams and the Relational Model. Data Models. Review. Why Study the Relational Model? Steps in Database Design

The Relational Data Model: Structure

Databases and BigData

ER modelling, Weak Entities, Class Hierarchies, Aggregation

Bridge from Entity Relationship modeling to creating SQL databases, tables, & relations

Why Is This Important? Schema Refinement and Normal Forms. The Evils of Redundancy. Functional Dependencies (FDs) Example (Contd.)

OVERVIEW 1.1 DATABASE MANAGEMENT SYSTEM (DBMS) DEFINITION:-

Entity-Relationship Model

not necessarily strictly sequential feedback loops exist, i.e. may need to revisit earlier stages during a later stage

Database Design. Marta Jakubowska-Sobczak IT/ADC based on slides prepared by Paula Figueiredo, IT/DB

Lesson 8: Introduction to Databases E-R Data Modeling

SQL DDL. DBS Database Systems Designing Relational Databases. Inclusion Constraints. Key Constraints

Chapter 2: Entity-Relationship Model

Unit 2.1. Data Analysis 1 - V Data Analysis 1. Dr Gordon Russell, Napier University

There are five fields or columns, with names and types as shown above.

BİL 354 Veritabanı Sistemleri. Entity-Relationship Model

Relational model. Relational model - practice. Relational Database Definitions 9/27/11. Relational model. Relational Database: Terminology

Foundations of Information Management

Database Design Process

Relational Database Concepts

DATABASE INTRODUCTION

Database Design Process. Databases - Entity-Relationship Modelling. Requirements Analysis. Database Design

Database Management Systems

Data Modeling: Part 1. Entity Relationship (ER) Model

IT2305 Database Systems I (Compulsory)

DATABASE MANAGEMENT SYSTEMS. Question Bank:

Databases What the Specification Says

LiTH, Tekniska högskolan vid Linköpings universitet 1(7) IDA, Institutionen för datavetenskap Juha Takkinen

Converting E-R Diagrams to Relational Model. Winter Lecture 17

three Entity-Relationship Modeling chapter OVERVIEW CHAPTER

Data Modeling Basics

Database Design Methodology

Database Design Process

CS 377 Database Systems. Database Design Theory and Normalization. Li Xiong Department of Mathematics and Computer Science Emory University

Exercise 1: Relational Model

CS2Bh: Current Technologies. Introduction to XML and Relational Databases. The Relational Model. The relational model

IT2304: Database Systems 1 (DBS 1)

Data Analysis 1. SET08104 Database Systems. Napier University

A brief overview of developing a conceptual data model as the first step in creating a relational database.

Designing a Database Schema

Schema Design and Normal Forms Sid Name Level Rating Wage Hours

Database IST400/600. Jian Qin. A collection of data? A computer system? Everything you collected for your group project?

Databasesystemer, forår 2005 IT Universitetet i København. Forelæsning 3: Business rules, constraints & triggers. 3. marts 2005

Chapter 8 The Enhanced Entity- Relationship (EER) Model

Chapter 1: Introduction. Database Management System (DBMS) University Database Example

A Tool for Generating Relational Database Schema from EER Diagram

CMU - SCS / Database Applications Spring 2013, C. Faloutsos Homework 1: E.R. + Formal Q.L. Deadline: 1:30pm on Tuesday, 2/5/2013

14 Databases. Source: Foundations of Computer Science Cengage Learning. Objectives After studying this chapter, the student should be able to:

Entity/Relationship Modelling. Database Systems Lecture 4 Natasha Alechina

CHAPTER 6 DATABASE MANAGEMENT SYSTEMS. Learning Objectives

Lecture Notes INFORMATION RESOURCES

CSCI-GA Database Systems Lecture 7: Schema Refinement and Normalization

Fundamentals of Database Design

Conceptual Design: Entity Relationship Models. Objectives. Overview

We know how to query a database using SQL. A set of tables and their schemas are given Data are properly loaded

Relational Schema Design

CPS352 Database Systems: Design Project

Database Design. Adrienne Watt. Port Moody

Database System Concepts

SQL NULL s, Constraints, Triggers

Database Design and the E-R Model

DataBase Management Systems Lecture Notes

Once the schema has been designed, it can be implemented in the RDBMS.

The E-R èentity-relationshipè data model views the real world as a set of basic objects èentitiesè and

2. Supports eæcient access to very large amounts

Transcription:

The Entity-Relationship Model Part II The Entity-Relationship Model -- 1 ER Cardinality Examples The Entity-Relationship Model -- 2 1

Textbook Notation for (1,1) cardinalities (key constraints) Person Residence City The Entity-Relationship Model -- 3 Examples of Keys (internal) single-attribute key (unary key) Slides Part 1 (UML inspired) notation AUTOMOBILE Registration Model Color Text notation The Entity-Relationship Model -- 4 2

Examples of Keys (Internal) multi-attribute (n-ary) key DateOfBirth PERSON Sur FirstName Address The Entity-Relationship Model -- 5 Examples of Keys foreign, multi-attribute key (aka weak entity set) Registration Name Year STUDENT ENROLMENT UNIVERSITY City Sur Address Arrow on line indicates max cardinality of 1 (key) Double (or thick) line indicates min cardinality of 1 aka participation constraint The Entity-Relationship Model -- 6 3

An Entity Hierarchy isa isa isa isa isa The Entity-Relationship Model -- 7 Aggregation Used when we have to model a relationship involving (entity sets and) and a relationship set. Aggregation allows us to treat a relationship set as an entity set for purposes of participation in other relationships. The Entity-Relationship Model -- 8 4

An Example Aggregation vs. ternary relationship? Monitors is a distinct relationship, with a descriptive attribute. Also, can say that each sponsorship is monitored by at most one employee. pid Monitors until (0,1) started_on since d pbudget did budget Projects Sponsors Departments The Entity-Relationship Model -- 9 Conceptual Design Using the ER Model Design choices: Should a concept be modeled as an entity or an attribute? Should a concept be modeled as an entity or a relationship? Identifying relationships: Binary or ternary? Aggregation? Note constraints of the ER Model: A of data semantics can (and should) be captured. But some constraints cannot be captured in ER diagrams. We ll refine things in our logical (relational) design The Entity-Relationship Model -- 10 5

Entity vs. Attribute Should address be an attribute of or an entity (related to )? Depends upon how we want to use address information, and the semantics of the data: If we have several addresses per employee, address must be an entity (since attributes cannot be set-valued). If the structure (city, street, etc.) is important, address must be modeled as an entity (since attribute values are atomic). The Entity-Relationship Model -- 11 Entity vs. Attribute (Cont.) Works_In2 does not allow an employee to work in a department for two or more periods. Similar to the problem of wanting to record several addresses for an employee: we want to record several values of the descriptive attributes for each instance of this relationship. from to Works_In2 Works_In3 from Duration did did d budget Departments to d budget Departments The Entity-Relationship Model -- 12 6

Entity vs. Relationship OK as long as a manager gets a separate discretionary budget (dbudget) for each dept. What if manager s dbudget covers all managed depts? (can repeat value, but such redundancy is problematic) since dbudget did Manages2 did d budget Departments d budget Departments is_manager managed_by since apptnum Mgr_Appts dbudget The Entity-Relationship Model -- 13 Now you try it Courses database: Courses, Students, Professors Courses have ids, titles, credits. The id is unique. Courses have multiple sections that have time, a room and exactly one teacher Professors have a unique Students take courses and receive a grade Students may repeat a course Must track students course schedules and transcripts including grades, semester taken, etc. Must track which classes a professor has taught Database should work over multiple semesters The Entity-Relationship Model -- 14 7

Summary of Conceptual Design Conceptual design follows requirements analysis, Yields a high-level description of data to be stored ER model popular for conceptual design Constructs are expressive, close to the way people think about their applications. Note: There are many variations on ER model Both graphically and conceptually Basic constructs: entities, relationships, and attributes (of entities and relationships). Some additional constructs: weak entities, ISA hierarchies, and aggregation. The Entity-Relationship Model -- 15 Summary of ER (Cont.) Several kinds of integrity constraints: key constraints (max cardinality 1) participation constraints (min cardinality 1) overlap/covering for ISA hierarchies. Some foreign key constraints are also implicit in the definition of a relationship set. Many other constraints (notably, functional dependencies) cannot be expressed. Constraints play an important role in determining the best database design for an enterprise. The Entity-Relationship Model -- 16 8

Summary of ER (Cont.) ER design is subjective. There are often many ways to model a given scenario! Analyzing alternatives can be tricky, especially for a large enterprise. Common choices include: Entity vs. attribute, entity vs. relationship, binary or n-ary relationship, whether or not to use ISA hierarchies, aggregation. Ensuring good database design: resulting relational schema should be analyzed and refined further. Check for redundancy (see upcoming lectures) The Entity-Relationship Model -- 17 ER to Relational Mapping The Entity-Relationship Model -- 18 9

Logical DB Design: ER to Relational Entity sets to tables. 123-22-3666 Attishoo 48 231-31-5368 Smiley 22 131-24-3650 Smethurst 35 CREATE TABLE ( CHAR(11), CHAR(20), INTEGER, PRIMARY KEY ()) The Entity-Relationship Model -- 19 Relationship Sets to Tables In translating a many-to-many relationship set to a relation, attributes of the relation must include: Keys for each participating entity set (as foreign keys). This set of attributes forms a superkey for the relation. All descriptive attributes. CREATE TABLE Works_In( CHAR(1), did INTEGER, since DATE, PRIMARY KEY (, did), FOREIGN KEY () REFERENCES, FOREIGN KEY (did) REFERENCES Departments) did since 123-22-3666 51 1/1/91 123-22-3666 56 3/3/93 231-31-5368 51 2/2/92 The Entity-Relationship Model -- 20 10

Review: Key Constraints Each dept has at most one manager, according to the key constraint on Manages. since Manages d did budget Departments 1-to-1 1-to-Many Many-to-1 Many-to-Many Alternative notation: (0,N) left, (0, 1) right Translation to relational model? The Entity-Relationship Model -- 21 Translating ER Diagrams with Key Constraints Map relationship set to a table: Note that did is the key now! Separate tables for and Departments. Since each department has a unique manager, we could instead combine Manages and Departments. CREATE TABLE Manages( CHAR(11), did INTEGER, since DATE, PRIMARY KEY (did), FOREIGN KEY () REFERENCES, FOREIGN KEY (did) REFERENCES Departments) CREATE TABLE Dept_Mgr( did INTEGER, d CHAR(20), budget REAL, CHAR(11), since DATE, PRIMARY KEY (did), FOREIGN KEY () REFERENCES ) The Entity-Relationship Model -- 22 11

Review: Participation Constraints Does every department have a manager? If so, this is a participation constraint: the participation of Departments in Manages is said to be total (vs. partial). Every did value in Departments table must appear in a row of the Manages table (with a non-null value!) since did d budget Manages Departments Works_In since The Entity-Relationship Model -- 23 Review: Participation Constraints Does every department have a manager? If so, this is a participation constraint: the participation of Departments in Manages is said to be total (vs. partial). Every did value in Departments table must appear in a row of the Manages table (with a non-null value!) since did d budget (0,N) Manages (1,1) Departments (1,N) Works_In (1,N) since The Entity-Relationship Model -- 24 12

Participation Constraints in SQL We can capture participation constraints involving one entity set in a binary relationship, but little else (without resorting to CHECK constraints). CREATE TABLE Dept_Mgr( did INTEGER, d CHAR(20), budget REAL, CHAR(11) NOT NULL, since DATE, PRIMARY KEY (did), FOREIGN KEY () REFERENCES, ) The Entity-Relationship Model -- 25 Review: Weak Entities A weak entity can be identified uniquely only by considering the primary key of another (owner) entity. Owner entity set and weak entity set must participate in a one-tomany relationship set (1 owner, many weak entities). Weak entity set must have total participation in this identifying relationship set. cost p age Policy Dependents The Entity-Relationship Model -- 26 13

Translating Weak Entity Sets Weak entity set and identifying relationship set are translated into a single table. When the owner entity is deleted, all owned weak entities must also be deleted. CREATE TABLE Dep_Policy ( p CHAR(20), age INTEGER, cost REAL, CHAR(11) NOT NULL, PRIMARY KEY (p, ), FOREIGN KEY () REFERENCES, ON DELETE CASCADE) The Entity-Relationship Model -- 27 Review: ISA Hierarchies Attributes are inherited From superclass hourly_wages hours_worked ISA contractid Hourly_Emps Contract_Emps Overlap constraints: Can Joe be an Hourly_Emps as well as a Contract_Emps entity? (Allowed/disallowed) Covering constraints: Does every entity also have to be an Hourly_Emps or a Contract_Emps entity? (Yes/no) The Entity-Relationship Model -- 28 14

Translating ISA Hierarchies to Relations General approach: 3 relations:, Hourly_Emps and Contract_Emps. Hourly_Emps: Every employee is recorded in. For hourly emps, extra info recorded in Hourly_Emps (hourly_wages, hours_worked, ); must delete Hourly_Emps tuple if referenced tuple is deleted). Queries involving all employees easy, those involving just Hourly_Emps require a join to get some attributes. Alternative: Just Hourly_Emps and Contract_Emps. Hourly_Emps:,,, hourly_wages, hours_worked. Each employee must be in one of these two subclasses. The Entity-Relationship Model -- 29 Review: Binary vs. Ternary Rel nships If each policy is owned by just 1 employee: K e y constraint on P o l i c i e s would mean policy can only cover 1 dependent! p age Covers Dependents Policies policyid cost Bad design Purchaser Better design p age Dependents Beneficiary Policies policyid cost The Entity-Relationship Model -- 30 15

Binary vs. Ternary Relationships (Contd.) CREATE TABLE Policies ( policyid INTEGER, The key constraints allow cost REAL, us to combine CHAR(11) NOT NULL, Purchaser with PRIMARY KEY (policyid). Policies and Beneficiary with Dependents. CREATE TABLE Dependents ( P a r t i c i p a t i o n constraints lead to NOT NULL constraints. FOREIGN KEY () REFERENCES, ON DELETE CASCADE) p CHAR(20), age INTEGER, policyid INTEGER, PRIMARY KEY (p, policyid). FOREIGN KEY (policyid) REFERENCES Policies, ON DELETE CASCADE) The Entity-Relationship Model -- 31 ER Model Summary Usually easier to understand than Relational Expresses relationships clearly Rules to convert ER-diagrams to Relational Schema Some systems use ER-model for schema design Some people use ER-model as step before creating relational tables The Entity-Relationship Model -- 32 16