The Relational Model. Why Study the Relational Model? Relational Database: Definitions. Chapter 3
|
|
|
- Mark Benson
- 9 years ago
- Views:
Transcription
1 The Relational Model Chapter 3 Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 1 Why Study the Relational Model? Most widely used model. Vendors: IBM, Informix, Microsoft, Oracle, Sybase, etc. Legacy systems in older models E.G., IBM s IMS Recent competitor: object-oriented model ObjectStore, Versant, Ontos A synthesis emerging: object-relational model Informix Universal Server, UniSQL, O2, Oracle, DB2 Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 2 Relational Database: Definitions Relational database: a set of relations Relation: made up of 2 parts: Instance : a table, with rows and columns. # Rows = cardinality, # fields = degree / arity. Schema : specifies name of relation, plus name and type of each column. E.G. Students(sid: string, name: string, login: string, age: integer, gpa: real). Can think of a relation as a set of rows or tuples (i.e., all rows are distinct). Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 3
2 Example Instance of Students Relation sid name login age gpa Jones Smith Smith Cardinality = 3, degree = 5, all rows distinct Do all columns in a relation instance have to be distinct? Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 4 Relational Query Languages A major strength of the relational model: supports simple, powerful querying of data. Queries can be written intuitively, and the DBMS is responsible for efficient evaluation. The key: precise semantics for relational queries. Allows the optimizer to extensively re-order operations, and still ensure that the answer does not change. Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 5 The SQL Query Language Developed by IBM (system R) in the 1970s Need for a standard since it is used by many vendors Standards: SQL-86 SQL-89 (minor revision) SQL-92 (major revision) SQL-99 (major extensions, current standard) Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 6
3 The SQL Query Language To find all 18 year old students, we can write: SELECT * FROM Students S WHERE S.age=18 sid name login age gpa Jones jones@cs Smith smith@ee To find just names and logins, replace the first line: SELECT S.name, S.login Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 7 Querying Multiple Relations What does the following query compute? SELECT S.name, E.cid FROM Students S, Enrolled E WHERE S.sid=E.sid AND E.grade= A Given the following instance of Enrolled (is this possible if the DBMS ensures referential integrity?): sid cid grade Carnatic101 C Reggae203 B Topology112 A History105 B we get: S.name Smith E.cid Topology112 Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 8 Creating Relations in SQL Creates the Students relation. Observe that the type (domain) of each field is specified, and enforced by the DBMS whenever tuples are added or modified. As another example, the Enrolled table holds information about courses that students take. CREATE TABLE Students (sid: CHAR(20), name: CHAR(20), login: CHAR(10), age: INTEGER, gpa: REAL) CREATE TABLE Enrolled (sid: CHAR(20), cid: CHAR(20), grade: CHAR(2)) Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 9
4 Destroying and Altering Relations DROP TABLE Students Destroys the relation Students. The schema information and the tuples are deleted. ALTER TABLE Students ADD COLUMN firstyear: integer The schema of Students is altered by adding a new field; every tuple in the current instance is extended with a null value in the new field. Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 10 Adding and Deleting Tuples Can insert a single tuple using: INSERT INTO Students (sid, name, login, age, gpa) VALUES (53688, Smith, smith@ee, 18, 3.2) Can delete all tuples satisfying some condition (e.g., name = Smith): DELETE FROM Students S WHERE S.name = Smith * Powerful variants of these commands are available; more later! Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 11 Integrity Constraints (ICs) IC: condition that must be true for any instance of the database; e.g., domain constraints. ICs are specified when schema is defined. ICs are checked when relations are modified. A legal instance of a relation is one that satisfies all specified ICs. DBMS should not allow illegal instances. If the DBMS checks ICs, stored data is more faithful to real-world meaning. Avoids data entry errors, too! Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 12
5 Primary Key Constraints A set of fields is a key for a relation if : 1. No two distinct tuples can have same values in all key fields, and 2. This is not true for any subset of the key. Part 2 false? A superkey. If there s >1 key for a relation, one of the keys is chosen (by DBA) to be the primary key. E.g., sid is a key for Students. (What about name?) The set {sid, gpa} is a superkey. Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 13 Primary and Candidate Keys in SQL Possibly many candidate keys (specified using UNIQUE), one of which is chosen as the primary key. For a given student and course, there is a single grade. vs. Students can take only one course, and receive a single grade for that course; further, no two students in a course receive the same grade. Used carelessly, an IC can prevent the storage of database instances that arise in practice! CREATE TABLE Enrolled (sid CHAR(20) cid CHAR(20), grade CHAR(2), PRIMARY KEY (sid,cid) ) CREATE TABLE Enrolled (sid CHAR(20) cid CHAR(20), grade CHAR(2), PRIMARY KEY (sid), UNIQUE (cid, grade) ) Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 14 Foreign Keys, Referential Integrity Foreign key : Set of fields in one relation that is used to `refer to a tuple in another relation. (Must correspond to primary key of the second relation.) Like a `logical pointer. E.g. sid is a foreign key referring to Students: Enrolled(sid: string, cid: string, grade: string) If all foreign key constraints are enforced, referential integrity is achieved, i.e., no dangling references. Can you name a data model w/o referential integrity? Links in HTML! Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 15
6 Foreign Keys in SQL Only students listed in the Students relation should be allowed to enroll for courses. CREATE TABLE Enrolled (sid CHAR(20), cid CHAR(20), grade CHAR(2), PRIMARY KEY (sid,cid), FOREIGN KEY (sid) REFERENCES Students ) Enrolled sid cid grade Carnatic101 C Reggae203 B Topology112 A History105 B Students sid name login age gpa Jones jones@cs Smith smith@eecs Smith smith@math Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 16 Enforcing Referential Integrity Consider Students and Enrolled; sid in Enrolled is a foreign key that references Students. What should be done if an Enrolled tuple with a non-existent student id is inserted? (Reject it!) What should be done if a Students tuple is deleted? Also delete all Enrolled tuples that refer to it. Disallow deletion of a Students tuple that is referred to. Set sid in Enrolled tuples that refer to it to a default sid. (In SQL, also: Set sid in Enrolled tuples that refer to it to a special value null, denoting `unknown or `inapplicable.) Similar if primary key of Students tuple is updated. Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 17 Referential Integrity in SQL SQL/92 and SQL:1999 support all 4 options on deletes and updates. Default is NO ACTION (delete/update is rejected) CASCADE (also delete all tuples that refer to deleted tuple) SET NULL / SET DEFAULT (sets foreign key value of referencing tuple) CREATE TABLE Enrolled (sid CHAR(20), cid CHAR(20), grade CHAR(2), PRIMARY KEY (sid,cid), FOREIGN KEY (sid) REFERENCES Students ON DELETE CASCADE ON UPDATE SET DEFAULT ) Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 18
7 Where do ICs Come From? ICs are based upon the semantics of the realworld enterprise that is being described in the database relations. We can check a database instance to see if an IC is violated, but we can NEVER infer that an IC is true by looking at an instance. An IC is a statement about all possible instances! From example, we know name is not a key, but the assertion that sid is a key is given to us. Key and foreign key ICs are the most common; more general ICs supported too. Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 19 Logical DB Design: ER to Relational Entity sets to tables: ssn name Employees lot CREATE TABLE Employees (ssn CHAR(11), name CHAR(20), lot INTEGER, PRIMARY KEY (ssn)) Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 20 Relationship Sets to Tables In translating a relationship set to a relation, attributes of the relation must include: Keys for each participating entity set (as foreign keys). This set of attributes forms a superkey for the relation. All descriptive attributes. CREATE TABLE Works_In( ssn CHAR(1), did INTEGER, since DATE, PRIMARY KEY (ssn, did), FOREIGN KEY (ssn) REFERENCES Employees, FOREIGN KEY (did) REFERENCES Departments) Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 21
8 Review: Key Constraints Each dept has at most one manager, according to the key constraint on Manages. name ssn lot Employees since Manages dname did budget Departments Translation to relational model? 1-to-1 1-to Many Many-to-1 Many-to-Many Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 22 Translating ER Diagrams with Key Constraints Map relationship to a table: Note that did is the key now! Separate tables for Employees and Departments. Since each department has a unique manager, we could instead combine Manages and Departments. CREATE TABLE Manages( ssn CHAR(11), did INTEGER, since DATE, PRIMARY KEY (did), FOREIGN KEY (ssn) REFERENCES Employees, FOREIGN KEY (did) REFERENCES Departments) CREATE TABLE Dept_Mgr( did INTEGER, dname CHAR(20), budget REAL, ssn CHAR(11), since DATE, PRIMARY KEY (did), FOREIGN KEY (ssn) REFERENCES Employees) Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 23 Review: Participation Constraints Does every department have a manager? If so, this is a participation constraint: the participation of Departments in Manages is said to be total (vs. partial). Every did value in Departments table must appear in a row of the Manages table (with a non-null ssn value!) ssn name lot since did dname budget Employees Manages Departments Works_In Database Management Systems 3ed, R. Ramakrishnan and since J. Gehrke 24
9 Participation Constraints in SQL We can capture participation constraints involving one entity set in a binary relationship, but little else (without resorting to CHECK constraints). CREATE TABLE Dept_Mgr( did INTEGER, dname CHAR(20), budget REAL, ssn CHAR(11) NOT NULL, since DATE, PRIMARY KEY (did), FOREIGN KEY (ssn) REFERENCES Employees, ON DELETE NO ACTION) Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 25 Review: Weak Entities A weak entity can be identified uniquely only by considering the primary key of another (owner) entity. Owner entity set and weak entity set must participate in a one-to-many relationship set (1 owner, many weak entities). Weak entity set must have total participation in this identifying relationship set. ssn name lot cost pname age Employees Policy Dependents Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 26 Translating Weak Entity Sets Weak entity set and identifying relationship set are translated into a single table. When the owner entity is deleted, all owned weak entities must also be deleted. CREATE TABLE Dep_Policy ( pname CHAR(20), age INTEGER, cost REAL, ssn CHAR(11) NOT NULL, PRIMARY KEY (pname, ssn), FOREIGN KEY (ssn) REFERENCES Employees, ON DELETE CASCADE) Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 27
10 Review: ISA Hierarchies ssn name Employees lot hourly_wages As in C++, or other PLs, attributes are inherited. If we declare A ISA B, every A entity is also considered to be a B entity. hours_worked Hourly_Emps ISA contractid Contract_Emps Overlap constraints: Can Joe be an Hourly_Emps as well as a Contract_Emps entity? (Allowed/disallowed) Covering constraints: Does every Employees entity also have to be an Hourly_Emps or a Contract_Emps entity? (Yes/no) Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 28 Translating ISA Hierarchies to Relations General approach: 3 relations: Employees, Hourly_Emps and Contract_Emps. Hourly_Emps: Every employee is recorded in Employees. For hourly emps, extra info recorded in Hourly_Emps (hourly_wages, hours_worked, ssn); must delete Hourly_Emps tuple if referenced Employees tuple is deleted). Queries involving all employees easy, those involving just Hourly_Emps require a join to get some attributes. Alternative: Just Hourly_Emps and Contract_Emps. Hourly_Emps: ssn, name, lot, hourly_wages, hours_worked. Each employee must be in one of these two subclasses. Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 29 Review: Binary vs. Ternary Relationships name ssn lot pname age What are the additional constraints in the 2nd diagram? Employees Covers Dependents Bad design name ssn lot Employees Policies policyid cost pname age Dependents Purchaser Better design Policies Beneficiary policyid cost Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 30
11 Binary vs. Ternary Relationships (Contd.) The key constraints allow us to combine Purchaser with Policies and Beneficiary with Dependents. Participation constraints lead to NOT NULL constraints. What if Policies is a weak entity set? CREATE TABLE Policies ( policyid INTEGER, cost REAL, ssn CHAR(11) NOT NULL, PRIMARY KEY (policyid). FOREIGN KEY (ssn) REFERENCES Employees, ON DELETE CASCADE) CREATE TABLE Dependents ( pname CHAR(20), age INTEGER, policyid INTEGER, PRIMARY KEY (pname, policyid). FOREIGN KEY (policyid) REFERENCES Policies, ON DELETE CASCADE) Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 31 Views A view is just a relation, but we store a definition, rather than a set of tuples. CREATE VIEW YoungActiveStudents (name, grade) AS SELECT S.name, E.grade FROM Students S, Enrolled E WHERE S.sid = E.sid and S.age<21 Views can be dropped using the DROP VIEW command. How to handle DROP TABLE if there s a view on the table? DROP TABLE command has options to let the user specify this. Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 32 Views and Security Views can be used to present necessary information (or a summary), while hiding details in underlying relation(s). Given YoungStudents, but not Students or Enrolled, we can find students s who have are enrolled, but not the cid s of the courses they are enrolled in. Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 33
12 Relational Model: Summary A tabular representation of data. Simple and intuitive, currently the most widely used. Integrity constraints can be specified by the DBA, based on application semantics. DBMS checks for violations. Two important ICs: primary and foreign keys In addition, we always have domain constraints. Powerful and natural query languages exist. Rules to translate ER to relational model Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 34
The Relational Model. Ramakrishnan&Gehrke, Chapter 3 CS4320 1
The Relational Model Ramakrishnan&Gehrke, Chapter 3 CS4320 1 Why Study the Relational Model? Most widely used model. Vendors: IBM, Informix, Microsoft, Oracle, Sybase, etc. Legacy systems in older models
Lecture 6. SQL, Logical DB Design
Lecture 6 SQL, Logical DB Design Relational Query Languages A major strength of the relational model: supports simple, powerful querying of data. Queries can be written intuitively, and the DBMS is responsible
The Relational Model. Why Study the Relational Model?
The Relational Model Chapter 3 Instructor: Vladimir Zadorozhny [email protected] Information Science Program School of Information Sciences, University of Pittsburgh 1 Why Study the Relational Model?
Review: Participation Constraints
Review: Participation Constraints Does every department have a manager? If so, this is a participation constraint: the participation of Departments in Manages is said to be total (vs. partial). Every did
The Relational Model. Why Study the Relational Model? Relational Database: Definitions
The Relational Model Database Management Systems, R. Ramakrishnan and J. Gehrke 1 Why Study the Relational Model? Most widely used model. Vendors: IBM, Microsoft, Oracle, Sybase, etc. Legacy systems in
Outline. Data Modeling. Conceptual Design. ER Model Basics: Entities. ER Model Basics: Relationships. Ternary Relationships. Yanlei Diao UMass Amherst
Outline Data Modeling Yanlei Diao UMass Amherst v Conceptual Design: ER Model v Relational Model v Logical Design: from ER to Relational Slides Courtesy of R. Ramakrishnan and J. Gehrke 1 2 Conceptual
Review Entity-Relationship Diagrams and the Relational Model. Data Models. Review. Why Study the Relational Model? Steps in Database Design
Review Entity-Relationship Diagrams and the Relational Model CS 186, Fall 2007, Lecture 2 R & G, Chaps. 2&3 Why use a DBMS? OS provides RAM and disk A relationship, I think, is like a shark, you know?
Winter 2003 1. Winter 2003 2
M Today s Lecture Database design through ER diagrams Creating and modifying relations, specifying integrity constraints using SQL Translate ER diagrams to relations A little on views Winter 2003 1 ai
Conceptual Design Using the Entity-Relationship (ER) Model
Conceptual Design Using the Entity-Relationship (ER) Model Module 5, Lectures 1 and 2 Database Management Systems, R. Ramakrishnan 1 Overview of Database Design Conceptual design: (ER Model is used at
EECS 647: Introduction to Database Systems
EECS 647: Introduction to Database Systems Instructor: Luke Huan Spring 2013 Administrative Take home background survey is due this coming Friday The grader of this course is Ms. Xiaoli Li and her email
There are five fields or columns, with names and types as shown above.
3 THE RELATIONAL MODEL Exercise 3.1 Define the following terms: relation schema, relational database schema, domain, attribute, attribute domain, relation instance, relation cardinality, andrelation degree.
Databases Model the Real World. The Entity- Relationship Model. Conceptual Design. Steps in Database Design. ER Model Basics. ER Model Basics (Contd.
The Entity- Relationship Model R &G - Chapter 2 A relationship, I think, is like a shark, you know? It has to constantly move forward or it dies. And I think what we got on our hands is a dead shark. Woody
CS2Bh: Current Technologies. Introduction to XML and Relational Databases. The Relational Model. The relational model
CS2Bh: Current Technologies Introduction to XML and Relational Databases Spring 2005 The Relational Model CS2 Spring 2005 (LN6) 1 The relational model Proposed by Codd in 1970. It is the dominant data
Data Modeling. Database Systems: The Complete Book Ch. 4.1-4.5, 7.1-7.4
Data Modeling Database Systems: The Complete Book Ch. 4.1-4.5, 7.1-7.4 Data Modeling Schema: The structure of the data Structured Data: Relational, XML-DTD, etc Unstructured Data: CSV, JSON But where does
The Entity-Relationship Model
The Entity-Relationship Model Chapter 2 Slides modified by Rasmus Pagh for Database Systems, Fall 2006 IT University of Copenhagen Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 1 Today
Database Design Overview. Conceptual Design ER Model. Entities and Entity Sets. Entity Set Representation. Keys
Database Design Overview Conceptual Design. The Entity-Relationship (ER) Model CS430/630 Lecture 12 Conceptual design The Entity-Relationship (ER) Model, UML High-level, close to human thinking Semantic
Database Management Systems. Chapter 1
Database Management Systems Chapter 1 Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 2 What Is a Database/DBMS? A very large, integrated collection of data. Models real-world scenarios
The Entity-Relationship Model
The Entity-Relationship Model Overview of Database Design Requirements analysis Conceptual design data model Logical design Schema refinement: Normalization Physical tuning Conceptual Design Entities Conceptual
SQL NULL s, Constraints, Triggers
CS145 Lecture Notes #9 SQL NULL s, Constraints, Triggers Example schema: CREATE TABLE Student (SID INTEGER PRIMARY KEY, name CHAR(30), age INTEGER, GPA FLOAT); CREATE TABLE Take (SID INTEGER, CID CHAR(10),
2. Conceptual Modeling using the Entity-Relationship Model
ECS-165A WQ 11 15 Contents 2. Conceptual Modeling using the Entity-Relationship Model Basic concepts: entities and entity types, attributes and keys, relationships and relationship types Entity-Relationship
CS2Bh: Current Technologies. Introduction to XML and Relational Databases. Introduction to Databases. Why databases? Why not use XML?
CS2Bh: Current Technologies Introduction to XML and Relational Databases Spring 2005 Introduction to Databases CS2 Spring 2005 (LN5) 1 Why databases? Why not use XML? What is missing from XML: Consistency
Database Systems. Lecture 1: Introduction
Database Systems Lecture 1: Introduction General Information Professor: Leonid Libkin Contact: [email protected] Lectures: Tuesday, 11:10am 1 pm, AT LT4 Website: http://homepages.inf.ed.ac.uk/libkin/teach/dbs09/index.html
Relational model. Relational model - practice. Relational Database Definitions 9/27/11. Relational model. Relational Database: Terminology
COS 597A: Principles of Database and Information Systems elational model elational model A formal (mathematical) model to represent objects (data/information), relationships between objects Constraints
Overview. Introduction to Database Systems. Motivation... Motivation: how do we store lots of data?
Introduction to Database Systems UVic C SC 370 Overview What is a DBMS? what is a relational DBMS? Why do we need them? How do we represent and store data in a DBMS? How does it support concurrent access
The Entity-Relationship Model
The Entity-Relationship Model 221 After completing this chapter, you should be able to explain the three phases of database design, Why are multiple phases useful? evaluate the significance of the Entity-Relationship
The Relational Data Model and Relational Database Constraints
The Relational Data Model and Relational Database Constraints Chapter Outline Relational Model Concepts Relational Model Constraints and Relational Database Schemas Update Operations and Dealing with Constraint
Database Design. Marta Jakubowska-Sobczak IT/ADC based on slides prepared by Paula Figueiredo, IT/DB
Marta Jakubowska-Sobczak IT/ADC based on slides prepared by Paula Figueiredo, IT/DB Outline Database concepts Conceptual Design Logical Design Communicating with the RDBMS 2 Some concepts Database: an
The SQL Query Language. Creating Relations in SQL. Referential Integrity in SQL. Basic SQL Query. Primary and Candidate Keys in SQL
COS 597A: Principles of Database and Information Systems SQL: Overview and highlights The SQL Query Language Structured Query Language Developed by IBM (system R) in the 1970s Need for a standard since
SQL: Queries, Programming, Triggers
SQL: Queries, Programming, Triggers Chapter 5 Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 1 R1 Example Instances We will use these instances of the Sailors and Reserves relations in
Example Instances. SQL: Queries, Programming, Triggers. Conceptual Evaluation Strategy. Basic SQL Query. A Note on Range Variables
SQL: Queries, Programming, Triggers Chapter 5 Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 1 Example Instances We will use these instances of the Sailors and Reserves relations in our
CS143 Notes: Views & Authorization
CS143 Notes: Views & Authorization Book Chapters (4th) Chapter 4.7, 6.5-6 (5th) Chapter 4.2, 8.6 (6th) Chapter 4.4, 5.3 Views What is a view? A virtual table created on top of other real tables Almost
Databases and BigData
Eduardo Cunha de Almeida [email protected] Outline of the course Introduction Database Systems (E. Almeida) Distributed Hash Tables and P2P (C. Cassagnes) NewSQL (D. Kim and J. Meira) NoSQL (D. Kim)
3. Relational Model and Relational Algebra
ECS-165A WQ 11 36 3. Relational Model and Relational Algebra Contents Fundamental Concepts of the Relational Model Integrity Constraints Translation ER schema Relational Database Schema Relational Algebra
Topics. Introduction to Database Management System. What Is a DBMS? DBMS Types
Introduction to Database Management System Linda Wu (CMPT 354 2004-2) Topics What is DBMS DBMS types Files system vs. DBMS Advantages of DBMS Data model Levels of abstraction Transaction management DBMS
Database Design. Database Design I: The Entity-Relationship Model. Entity Type (con t) Chapter 4. Entity: an object that is involved in the enterprise
Database Design Database Design I: The Entity-Relationship Model Chapter 4 Goal: specification of database schema Methodology: Use E-R R model to get a high-level graphical view of essential components
Database Security. Chapter 21
Database Security Chapter 21 Introduction to DB Security Secrecy: Users should not be able to see things they are not supposed to. E.g., A student can t see other students grades. Integrity: Users should
COMP 378 Database Systems Notes for Chapter 7 of Database System Concepts Database Design and the Entity-Relationship Model
COMP 378 Database Systems Notes for Chapter 7 of Database System Concepts Database Design and the Entity-Relationship Model The entity-relationship (E-R) model is a a data model in which information stored
CSC 443 Data Base Management Systems. Basic SQL
CSC 443 Data Base Management Systems Lecture 6 SQL As A Data Definition Language Basic SQL SQL language Considered one of the major reasons for the commercial success of relational databases SQL Structured
SQL Simple Queries. Chapter 3.1 V3.0. Copyright @ Napier University Dr Gordon Russell
SQL Simple Queries Chapter 3.1 V3.0 Copyright @ Napier University Dr Gordon Russell Introduction SQL is the Structured Query Language It is used to interact with the DBMS SQL can Create Schemas in the
The Relational Data Model: Structure
The Relational Data Model: Structure 1 Overview By far the most likely data model in which you ll implement a database application today. Of historical interest: the relational model is not the first implementation
SQL: Queries, Programming, Triggers
SQL: Queries, Programming, Triggers CSC343 Introduction to Databases - A. Vaisman 1 R1 Example Instances We will use these instances of the Sailors and Reserves relations in our examples. If the key for
Bridge from Entity Relationship modeling to creating SQL databases, tables, & relations
1 Topics for this week: 1. Good Design 2. Functional Dependencies 3. Normalization Readings for this week: 1. E&N, Ch. 10.1-10.6; 12.2 2. Quickstart, Ch. 3 3. Complete the tutorial at http://sqlcourse2.com/
Fundamentals of Database Design
Fundamentals of Database Design Zornitsa Zaharieva CERN Data Management Section - Controls Group Accelerators and Beams Department /AB-CO-DM/ 23-FEB-2005 Contents : Introduction to Databases : Main Database
Chapter 5. SQL: Queries, Constraints, Triggers
Chapter 5 SQL: Queries, Constraints, Triggers 1 Overview: aspects of SQL DML: Data Management Language. Pose queries (Ch. 5) and insert, delete, modify rows (Ch. 3) DDL: Data Definition Language. Creation,
DATABASE MANAGEMENT SYSTEMS. Question Bank:
DATABASE MANAGEMENT SYSTEMS Question Bank: UNIT 1 1. Define Database? 2. What is a DBMS? 3. What is the need for database systems? 4. Define tupule? 5. What are the responsibilities of DBA? 6. Define schema?
SQL DATA DEFINITION: KEY CONSTRAINTS. CS121: Introduction to Relational Database Systems Fall 2015 Lecture 7
SQL DATA DEFINITION: KEY CONSTRAINTS CS121: Introduction to Relational Database Systems Fall 2015 Lecture 7 Data Definition 2 Covered most of SQL data manipulation operations Continue exploration of SQL
The core theory of relational databases. Bibliography
The core theory of relational databases Slide 1 La meilleure pratique... c est une bonne théorie Bibliography M.Levene, G.Loizou, Guided Tour of Relational Databases and Beyond, Springer, 625 pages,1999.
LiTH, Tekniska högskolan vid Linköpings universitet 1(7) IDA, Institutionen för datavetenskap Juha Takkinen 2007-05-24
LiTH, Tekniska högskolan vid Linköpings universitet 1(7) IDA, Institutionen för datavetenskap Juha Takkinen 2007-05-24 1. A database schema is a. the state of the db b. a description of the db using a
COMP 5138 Relational Database Management Systems. Week 5 : Basic SQL. Today s Agenda. Overview. Basic SQL Queries. Joins Queries
COMP 5138 Relational Database Management Systems Week 5 : Basic COMP5138 "Relational Database Managment Systems" J. Davis 2006 5-1 Today s Agenda Overview Basic Queries Joins Queries Aggregate Functions
Schema Evolution in SQL-99 and Commercial (Object-)Relational DBMS
Schema Evolution in SQL-99 and Commercial (Object-)Relational DBMS Can Türker Swiss Federal Institute of Technology (ETH) Zurich Institute of Information Systems, ETH Zentrum CH 8092 Zurich, Switzerland
Why Is This Important? Schema Refinement and Normal Forms. The Evils of Redundancy. Functional Dependencies (FDs) Example (Contd.)
Why Is This Important? Schema Refinement and Normal Forms Chapter 19 Many ways to model a given scenario in a database How do we find the best one? We will discuss objective criteria for evaluating database
Databasesystemer, forår 2005 IT Universitetet i København. Forelæsning 3: Business rules, constraints & triggers. 3. marts 2005
Databasesystemer, forår 2005 IT Universitetet i København Forelæsning 3: Business rules, constraints & triggers. 3. marts 2005 Forelæser: Rasmus Pagh Today s lecture Constraints and triggers Uniqueness
Relational Algebra and SQL
Relational Algebra and SQL Johannes Gehrke [email protected] http://www.cs.cornell.edu/johannes Slides from Database Management Systems, 3 rd Edition, Ramakrishnan and Gehrke. Database Management
Chapter 6: Integrity Constraints
Chapter 6: Integrity Constraints Domain Constraints Referential Integrity Assertions Triggers Functional Dependencies Database Systems Concepts 6.1 Silberschatz, Korth and Sudarshan c 1997 Domain Constraints
Database Design. Goal: specification of database schema Methodology: E-R Model is viewed as a set of
Database Design Goal: specification of database schema Methodology: Use E-R model to get a high-level graphical view of essential components of the model and how they are related Convert E-R diagram to
Basic Concepts of Database Systems
CS2501 Topic 1: Basic Concepts 1.1 Basic Concepts of Database Systems Example Uses of Database Systems - account maintenance & access in banking - lending library systems - airline reservation systems
How To Create A Table In Sql 2.5.2.2 (Ahem)
Database Systems Unit 5 Database Implementation: SQL Data Definition Language Learning Goals In this unit you will learn how to transfer a logical data model into a physical database, how to extend or
Exercise 1: Relational Model
Exercise 1: Relational Model 1. Consider the relational database of next relational schema with 3 relations. What are the best possible primary keys in each relation? employ(person_name, street, city)
SQL Data Definition. Database Systems Lecture 5 Natasha Alechina
Database Systems Lecture 5 Natasha Alechina In This Lecture SQL The SQL language SQL, the relational model, and E/R diagrams CREATE TABLE Columns Primary Keys Foreign Keys For more information Connolly
Foundations of Information Management
Foundations of Information Management - WS 2012/13 - Juniorprofessor Alexander Markowetz Bonn Aachen International Center for Information Technology (B-IT) Data & Databases Data: Simple information Database:
In This Lecture. SQL Data Definition SQL SQL. Notes. Non-Procedural Programming. Database Systems Lecture 5 Natasha Alechina
This Lecture Database Systems Lecture 5 Natasha Alechina The language, the relational model, and E/R diagrams CREATE TABLE Columns Primary Keys Foreign Keys For more information Connolly and Begg chapter
Lesson 8: Introduction to Databases E-R Data Modeling
Lesson 8: Introduction to Databases E-R Data Modeling Contents Introduction to Databases Abstraction, Schemas, and Views Data Models Database Management System (DBMS) Components Entity Relationship Data
Chapter 2: Entity-Relationship Model. Entity Sets. " Example: specific person, company, event, plant
Chapter 2: Entity-Relationship Model! Entity Sets! Relationship Sets! Design Issues! Mapping Constraints! Keys! E-R Diagram! Extended E-R Features! Design of an E-R Database Schema! Reduction of an E-R
CSC 742 Database Management Systems
CSC 742 Database Management Systems Topic #4: Data Modeling Spring 2002 CSC 742: DBMS by Dr. Peng Ning 1 Phases of Database Design Requirement Collection/Analysis Functional Requirements Functional Analysis
INFO/CS 330: Applied Database Systems
INFO/CS 330: Applied Database Systems Introduction to Database Security Johannes Gehrke [email protected] http://www.cs.cornell.edu/johannes Introduction to DB Security Secrecy:Users should not be
Schema Design and Normal Forms Sid Name Level Rating Wage Hours
Entity-Relationship Diagram Schema Design and Sid Name Level Rating Wage Hours Database Management Systems, 2 nd Edition. R. Ramakrishnan and J. Gehrke 1 Database Management Systems, 2 nd Edition. R. Ramakrishnan
AVOIDANCE OF CYCLICAL REFERENCE OF FOREIGN KEYS IN DATA MODELING USING THE ENTITY-RELATIONSHIP MODEL
AVOIDANCE OF CYCLICAL REFERENCE OF FOREIGN KEYS IN DATA MODELING USING THE ENTITY-RELATIONSHIP MODEL Ben B. Kim, Seattle University, [email protected] ABSTRACT The entity-relationship (ER model is clearly
DATABASE MANAGEMENT SYSTEMS SOLUTIONS MANUAL THIRD EDITION
DATABASE MANAGEMENT SYSTEMS SOLUTIONS MANUAL THIRD EDITION Raghu Ramakrishnan University of Wisconsin Madison, WI, USA Johannes Gehrke Cornell University Ithaca, NY, USA Jeff Derstadt, Scott Selikoff,
DataBase Management Systems Lecture Notes
1 SHRI VISHNU ENGINEERING COLLEGE FOR WOMEN::BHIMAVARAM DEPARTMENT OF INFORMATION TECHNOLOGY DataBase Management Systems Lecture Notes UNIT-1 Data: It is a collection of information. The facts that can
Oracle Database 10g Express
Oracle Database 10g Express This tutorial prepares the Oracle Database 10g Express Edition Developer to perform common development and administrative tasks of Oracle Database 10g Express Edition. Objectives
Ch.5 Database Security. Ch.5 Database Security Review
User Authentication Access Control Database Security Ch.5 Database Security Hw_Ch3, due today Hw_Ch4, due on 2/23 Review Questions: 4.1, 4.3, 4.6, 4.10 Problems: 4.5, 4.7, 4.8 How about the pace of the
Chapter 1: Introduction. Database Management System (DBMS) University Database Example
This image cannot currently be displayed. Chapter 1: Introduction Database System Concepts, 6 th Ed. See www.db-book.com for conditions on re-use Database Management System (DBMS) DBMS contains information
Security and Authorization. Introduction to DB Security. Access Controls. Chapter 21
Security and Authorization Chapter 21 Database Management Systems, 3ed, R. Ramakrishnan and J. Gehrke 1 Introduction to DB Security Secrecy: Users should not be able to see things they are not supposed
Relational Database Concepts
Relational Database Concepts IBM Information Management Cloud Computing Center of Competence IBM Canada Labs 1 2011 IBM Corporation Agenda Overview Information and Data Models The relational model Entity-Relationship
Entity Relationship Diagram
Yufei Tao Department of Computer Science and Engineering Chinese University of Hong Kong A primary goal of database design is to decide what tables to create. Usually, there are two principles: 1 Capture
Query-by-Example (QBE)
Query-by-Example (QBE) Module 3, Lecture 6 Example is the school of mankind, and they will learn at no other. -- Edmund Burke (1729-1797) Database Management Systems, R. Ramakrishnan 1 QBE: Intro A GUI
Database Design Process. Databases - Entity-Relationship Modelling. Requirements Analysis. Database Design
Process Databases - Entity-Relationship Modelling Ramakrishnan & Gehrke identify six main steps in designing a database Requirements Analysis Conceptual Design Logical Design Schema Refinement Physical
Foundations of Information Management
Foundations of Information Management - WS 2009/10 Juniorprofessor Alexander Markowetz Bonn Aachen International Center for Information Technology (B-IT) Alexander Markowetz Born 1976 in Brussels, Belgium
CMU - SCS 15-415/15-615 Database Applications Spring 2013, C. Faloutsos Homework 1: E.R. + Formal Q.L. Deadline: 1:30pm on Tuesday, 2/5/2013
CMU - SCS 15-415/15-615 Database Applications Spring 2013, C. Faloutsos Homework 1: E.R. + Formal Q.L. Deadline: 1:30pm on Tuesday, 2/5/2013 Reminders - IMPORTANT: Like all homeworks, it has to be done
IT2305 Database Systems I (Compulsory)
Database Systems I (Compulsory) INTRODUCTION This is one of the 4 modules designed for Semester 2 of Bachelor of Information Technology Degree program. CREDITS: 04 LEARNING OUTCOMES On completion of this
A basic create statement for a simple student table would look like the following.
Creating Tables A basic create statement for a simple student table would look like the following. create table Student (SID varchar(10), FirstName varchar(30), LastName varchar(30), EmailAddress varchar(30));
Introduction to Database Systems CS4320/CS5320. CS4320/4321: Introduction to Database Systems. CS4320/4321: Introduction to Database Systems
Introduction to Database Systems CS4320/CS5320 Instructor: Johannes Gehrke http://www.cs.cornell.edu/johannes [email protected] CS4320/CS5320, Fall 2012 1 CS4320/4321: Introduction to Database Systems
How To Manage Data In A Database System
Database Systems Session 2 Main Theme Relational Data Model & Relational Database Constraints Dr. Jean-Claude Franchitti New York University Computer Science Department Courant Institute of Mathematical
History of SQL. Relational Database Languages. Tuple relational calculus ALPHA (Codd, 1970s) QUEL (based on ALPHA) Datalog (rule-based, like PROLOG)
Relational Database Languages Tuple relational calculus ALPHA (Codd, 1970s) QUEL (based on ALPHA) Datalog (rule-based, like PROLOG) Domain relational calculus QBE (used in Access) History of SQL Standards:
Object Oriented Databases. OOAD Fall 2012 Arjun Gopalakrishna Bhavya Udayashankar
Object Oriented Databases OOAD Fall 2012 Arjun Gopalakrishna Bhavya Udayashankar Executive Summary The presentation on Object Oriented Databases gives a basic introduction to the concepts governing OODBs
Schema Refinement and Normalization
Schema Refinement and Normalization Module 5, Lectures 3 and 4 Database Management Systems, R. Ramakrishnan 1 The Evils of Redundancy Redundancy is at the root of several problems associated with relational
CSE 530A Database Management Systems. Introduction. Washington University Fall 2013
CSE 530A Database Management Systems Introduction Washington University Fall 2013 Overview Time: Mon/Wed 7:00-8:30 PM Location: Crow 206 Instructor: Michael Plezbert TA: Gene Lee Websites: http://classes.engineering.wustl.edu/cse530/
Section of DBMS Selection & Evaluation Questionnaire
Section of DBMS Selection & Evaluation Questionnaire Whitemarsh Information Systems Corporation 2008 Althea Lane Bowie, Maryland 20716 Tele: 301-249-1142 Email: [email protected] Web: www.wiscorp.com
IT2304: Database Systems 1 (DBS 1)
: Database Systems 1 (DBS 1) (Compulsory) 1. OUTLINE OF SYLLABUS Topic Minimum number of hours Introduction to DBMS 07 Relational Data Model 03 Data manipulation using Relational Algebra 06 Data manipulation
www.gr8ambitionz.com
Data Base Management Systems (DBMS) Study Material (Objective Type questions with Answers) Shared by Akhil Arora Powered by www. your A to Z competitive exam guide Database Objective type questions Q.1
Chapter 5 More SQL: Complex Queries, Triggers, Views, and Schema Modification
Chapter 5 More SQL: Complex Queries, Triggers, Views, and Schema Modification Copyright 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Chapter 5 Outline More Complex SQL Retrieval Queries
Data Modeling: Part 1. Entity Relationship (ER) Model
Data Modeling: Part 1 Entity Relationship (ER) Model MBA 8473 1 Cognitive Objectives (Module 2) 32. Explain the three-step process of data-driven information system (IS) development 33. Examine the purpose
Introduction to Triggers using SQL
Introduction to Triggers using SQL Kristian Torp Department of Computer Science Aalborg University www.cs.aau.dk/ torp [email protected] November 24, 2011 daisy.aau.dk Kristian Torp (Aalborg University) Introduction
The Structured Query Language. De facto standard used to interact with relational DB management systems Two major branches
CSI 2132 Tutorial 6 The Structured Query Language (SQL) The Structured Query Language De facto standard used to interact with relational DB management systems Two major branches DDL (Data Definition Language)
- Suresh Khanal. http://mcqsets.com. http://www.psexam.com Microsoft Excel Short Questions and Answers 1
- Suresh Khanal http://mcqsets.com http://www.psexam.com Microsoft Excel Short Questions and Answers 1 Microsoft Access Short Questions and Answers with Illustrations Part I Suresh Khanal Kalanki, Kathmandu
Graham Kemp (telephone 772 54 11, room 6475 EDIT) The examiner will visit the exam room at 15:00 and 17:00.
CHALMERS UNIVERSITY OF TECHNOLOGY Department of Computer Science and Engineering Examination in Databases, TDA357/DIT620 Tuesday 17 December 2013, 14:00-18:00 Examiner: Results: Exam review: Grades: Graham
OBJECT ORIENTED EXTENSIONS TO SQL
OBJECT ORIENTED EXTENSIONS TO SQL Thomas B. Gendreau Computer Science Department University Wisconsin La Crosse La Crosse, WI 54601 [email protected] Abstract Object oriented technology is influencing
Introduction to Computing. Lectured by: Dr. Pham Tran Vu [email protected]
Introduction to Computing Lectured by: Dr. Pham Tran Vu [email protected] Databases The Hierarchy of Data Keys and Attributes The Traditional Approach To Data Management Database A collection of
Lecture 12: Entity Relationship Modelling
Lecture 12: Entity Relationship Modelling The Entity-Relationship Model Entities Relationships Attributes Constraining the instances Cardinalities Identifiers Generalization 2004-5 Steve Easterbrook. This
