Vorlesung Kommunikationsnetze Ethernet and FDDI

Similar documents
Fast Ethernet and Gigabit Ethernet. Networks: Fast Ethernet 1

Fast Ethernet and Gigabit Ethernet. Computer Networks: Fast and Gigabit Ethernet

Ethernet/IEEE evolution

Gigabit Ethernet: Architectural Design and Issues

Local Area Networks. Guest Instructor Elaine Wong. Elaine_06_I-1

Data Link Layer. Page 1. Ethernet

Ethernet. Ethernet Frame Structure. Ethernet Frame Structure (more) Ethernet: uses CSMA/CD

Network Categories. Network Types for the Local Range. Ethernet

INTRODUCTION TO 100BASE-T: FAST (AND FASTER) ETHERNET

2. What is the maximum value of each octet in an IP address? A. 128 B. 255 C. 256 D. None of the above

Unit of Learning # 2 The Physical Layer. Sergio Guíñez Molinos sguinez@utalca.cl

Network Categories. Network Types for the Local Range. Ethernet. Carrier Sense Multiple Access

Token Ring and. Fiber Distributed Data Interface (FDDI) Networks: Token Ring and FDDI 1

CSE331: Introduction to Networks and Security. Lecture 6 Fall 2006

Fiber Distributed Data Interface

Based on Computer Networking, 4 th Edition by Kurose and Ross

Introduction to Ethernet

RFC 2544 Testing of Ethernet Services in Telecom Networks

RTT 60.5 msec receiver window size: 32 KB

Data Link Protocols. TCP/IP Suite and OSI Reference Model

Local Area Networks transmission system private speedy and secure kilometres shared transmission medium hardware & software

High Speed Ethernet. Dr. Sanjay P. Ahuja, Ph.D. Professor School of Computing, UNF

11/22/

Mathatma Gandhi University

EECS 122: Introduction to Computer Networks Multiaccess Protocols. ISO OSI Reference Model for Layers

LAN / WAN Technologies

TCOM 370 NOTES LOCAL AREA NETWORKS AND THE ALOHA PROTOCOL

Gigabit Ethernet MAC. (1000 Mbps Ethernet MAC core with FIFO interface) PRODUCT BRIEF

Controlled Random Access Methods

Ring Local Area Network. Ring LANs

Candidates should attempt FOUR questions. All questions carry 25 marks.

CCNA R&S: Introduction to Networks. Chapter 5: Ethernet

How To Communicate With A Token Ring Network (Dihon)

Gigabit Ethernet. Abstract. 1. Introduction. 2. Benefits of Gigabit Ethernet

Lesson 2-3: Ethernet Basics

ESSENTIALS. Understanding Ethernet Switches and Routers. April 2011 VOLUME 3 ISSUE 1 A TECHNICAL SUPPLEMENT TO CONTROL NETWORK

Industrial Networks & Databases. Protocols and Networks - Device Bus - - Field Bus -

QUESTION 1 If one of the links to a computer on a physical star topology is served, what will be the result?

ETHERNET. The Technology and a Polemic History. Jim Jackson University of Leeds School of Computing

Network Design. Yiannos Mylonas

LAN Switching Computer Networking. Switched Network Advantages. Hubs (more) Hubs. Bridges/Switches, , PPP. Interconnecting LANs

Module 5. Broadcast Communication Networks. Version 2 CSE IIT, Kharagpur

Ethernet, VLAN, Ethernet Carrier Grade

Direct Link Networks. Introduction. Physical Properties. Lecture - Ethernet 1. Areas for Discussion. Ethernet (Section 2.6)

IEEE p1394c: 1394 with 1000BASE-T PHY Technology. Kevin Brown

CSMA/CA. Information Networks p. 1

LANs. Local Area Networks. via the Media Access Control (MAC) SubLayer. Networks: Local Area Networks

RETI DI TELECOMUNICAZIONI

Chapter 7 Low-Speed Wireless Local Area Networks

Gigabit Switching Ethernet Media Converters - Product User Guide

Real-Time (Paradigms) (51)

Copper to Fiber Stand-Alone Media Converter. Quick Installation Guide

COMPUTER NETWORKS HANDOUTS LECTURERS # PREPARED BY: HAMMAD KHALID KHAN. Copyright Virtual University of Pakistan

CCNA 1: Networking Basics. Cisco Networking Academy Program Version 3.0

1 Which network type is a specifically designed configuration of computers and other devices located within a confined area? A Peer-to-peer network

The installed base for Ethernet ranges from PCs and servers to printers,

HARTING mcon 1000 Introduction and features

Data Link Protocols. Link Layer Services. Framing, Addressing, link access: Error Detection:

Cisco CCNA Study Guide

IT4405 Computer Networks (Compulsory)

Gigabit Ethernet. Today a number of technologies, such as 10BaseT, Auto-Negotiation

Flow control on IEEE 802.3x switch

Network Design and Implementation

Troubleshooting and Auto-Negotiation Features for IMC Networks Media Conversion Products

IT Data Communication and Networks (Optional)

10/100 Mbps Ethernet MAC

Adhoc Contributors. Nader Vijeh

CMA5000 SPECIFICATIONS Gigabit Ethernet Module

Ethernet 102: The Physical Layer of Ethernet

DATA COMMUNICATION AND NETWORKS

Vorlesung Kommunikationsnetze Fieldbus Systems

(7+(51(7 Tutorial August 15, 2002

How To Test For 10 Gigabit Ethernet At 10 Gb/S

Understanding Ethernet and Fibre Channel Standard-Based Test Patterns An explanation of IEEE and NCITS standard test patterns By Todd Rapposelli

Written examination in Computer Networks

Gigabit Ethernet over fiber optic cable.

TCP/IPv4 and Ethernet 10BASE-T/ 100BASE-TX Debugging with the MSO/DPO4000B Series Oscilloscopes

Lecture 3: Signaling and Clock Recovery. CSE 123: Computer Networks Stefan Savage

Wired & Wireless LAN Connections

EE290C - Spring 2004 Advanced Topics in Circuit Design High-Speed Electrical Interfaces

Introduction to Optical Networks

100BASE-SX Fast Ethernet:

Cabling LANs and WANs

Process Control and Automation using Modbus Protocol


Overview of Network Hardware and Software. CS158a Chris Pollett Jan 29, 2007.

Lecture Computer Networks

10 Gigabit Ethernet (10GbE) and 10Base-T - RoadMap

Page 1 of 7. Computer Networking

Basics manual Local Area Network (LAN)

HARTING econ 3000 Introduction and features

The OSI and TCP/IP Models. Lesson 2

COMMUNICATION NETWORKS WITH LAYERED ARCHITECTURES. Gene Robinson E.A.Robinsson Consulting

Industrial 10/100/1000BASE-T to 100/1000BASE-X SFP Media Converter

Ajay Gummalla-July 2001

Quick Installation Guide 24-port PoE switch with 2 copper Gigabit ports and 2 Gigabit SFP ports (af Version 15.4W)

By: Mohsen Aminifar Fall 2014

Network Topologies. Network Topologies

Frame Burst Adjusting for Transmitting Video Conference in Gigabit Ethernet

Chapter 9A. Network Definition. The Uses of a Network. Network Basics

Transcription:

Picture 15 13 Vorlesung Kommunikationsnetze Ethernet and FDDI Prof. Dr. H. P. Großmann mit B. Wiegel sowie A. Schmeiser und M. Rabel Sommersemester 2009 Institut für Organisation und Management von Informationssystemen

Page 2 Ethernet and FDDI Ethernet History, Evolution, Overview OSI-Model Physical Layer: Coding Schemes MAC-Layer: CSMA/CD Ethernet Principles Versions and Parameters Topologies Communication Modes Collision Domain Framing Standards up to Gigabit Ethernet Gigabit Ethernet VLAN FDDI

Page 3 History - Ethernet and DIX Consortium Creation of Ethernet DEC-Intel-Xerox (DIX) Consortium by Dr. Robert Metcalfe at Xerox Corporation in Palo Alto, California, 1973 operated at 2.94Mbps goal was to improve the connection speed between computers and printers developed the standard for 10Mbps Ethernet, 1980 thick multi-drop coaxial cable IEEE 802 standards, 1980 IEEE 802.3 for Ethernet IEEE 802.4 for Token Bus IEEE 802.5 for Token Ring

Page 4 In the beginning 1976 R. Metcalfe presented Ethernet for the first time; he used this diagram

Page 5 Evolution Ethernet 10Mb/s 1973 1980 Fast Ethernet 100Mb/s Gigabit Ethernet 1000Mb/s 10 Gigabit Ethernet 10000Mb/s 1995 1998 2002

Page 6 IEEE Standards 802.2 Logical Link 802.10 Security 8 0 2.1 B r id g in g 802.1 Overview 802.3 Ethernet L A N 802.4 To k e n B u s 802.5 To k e n R i n g 802.7 802.6 D Q D B Broadband Ta g 8 0 2. 8 F i b e r O p t i c Ta g 802.9 Integrated Services 802.11 Wireless L A N

Page 7 Ethernet and FDDI Ethernet History, Evolution, Overview OSI-Model Physical Layer: Coding Schemes MAC-Layer: CSMA/CD Ethernet Principles Versions and Parameters Topologies Communication Modes Collision Domain Framing Standards up to Gigabit Ethernet Gigabit Ethernet VLAN FDDI

Page 8 OSI Layers Application Presentation Session Transport Network LLC Data Link MAC Physical PHY PMD

Page 9 Sub-Layers LLC MAC Logical Link Control LLC (de)multiplexing packets from the network layers MAC Media Access Control frame formats, addressing, sharing of the medium PHY physical medium independent layer encoding/decoding bits into pulses, synchronization of the transceiver clocks PMD Physical Medium Dependent Layer handling with electrical components PHY PMD

Page 10 Inter-Layer Connections F ra m e s M A C P H Y P M D 1101 1 1 0 1 1 M A C S y m b o l s P H Y Pulses P M D

Page 11 Physical Effects The basic problems of signal transmission are caused by Attenuation Dispersion EMI (Electro-Magnetic Interference) Power limitations Rise and fall times

Page 12 Physical Layer - Summery of Coding Purposes optimizing signal for transmission prevent from the loss of the clock signal reduce the required bandwidth get line control signals

Page 13 Pulse Coding - Schemes 0 c l o c k N R Z N R Z I M a n c h e s t e r 1 0 0 0 1 1

Page 14 MLT-3 Coding Scheme 0 clock M L T - 3 1 0 1 1 1 1

Page 15 NRZI-MLT-3 Bandwidth Gain 1 1 1 1 1 1 1 N R Z I 1 c y c le, 2 b its 100 MHz M L T - 3 1cycle, 4 bits 50 MHz

Page 16 4B/5B Coding data code bits 11110 01001 10100 10101 01010 01011 01110 01111 10010 10011 10110 10111 11010 11011 11100 11101 symbol 0 1 2 3 4 5 6 7 8 9 A B C D E F original 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 control invalid code bits symbol 11000 J 10001 K 101 L 1101 T 111 R 11001 S code bits 1 10 11 110 1000 1100 10000 line state code bits symbol 0 Q 11111 I 100 H

Page 17 Pulse Coding - Schemes 0 c l o c k N R Z N R Z I M a n c h e s t e r 1 0 0 0 1 1

Page 18 MLT-3 Coding Scheme 0 clock M L T - 3 1 0 1 1 1 1

Page 19 Bandwidth Sharing (Half Duplex Mode) For a bus or any other half duplex topology a method for bandwidth sharing is mandatory. In the development days of the Ethernet the following methods were tested: P u r e A lo h a Slotted Aloha C S M A C S M A / C D

Page 20 CSMA/CD Carrier Sense Multiple Access with Collision Detection wait until medium is available medium must be idle for the Interframe Gap (IFG) time before sending start transmission if a collision is detected while transmitting, transmit a jam signal wait for a random time and retry (up to 16 times) collision detection is done by comparing transmitted and received signals

Page 21 CSMA/CD

Page 22 Ethernet and FDDI Ethernet History, Evolution, Overview OSI-Model Physical Layer: Coding Schemes MAC-Layer: CSMA/CD Ethernet Principles Versions and Parameters Topologies Communication Modes Collision Domain Framing Standards up to Gigabit Ethernet Gigabit Ethernet VLAN FDDI

Page 23 Ethernet Versions Two incompatible versions: Ethernet II (DIX - consortium of the companies DEC, Intel and Xerox) Ethernet 802.3 (standard of IEEE) PMD, PHY, and MAC layers are covered in the standard IEEE 802.3 LLC - covered in the standard IEEE 802.2 (general standard, not only for Ethernet)

Page 24 Ethernet II Principles fixed 10Mbps Manchester coded signals CSMA/CD used for bandwidth sharing frame size range 64 to1518 bytes truncated binary back-off algorithm used for retransmission little-endian bit-order 64 bit preamble at front and 9.6μs delay between frames bus topology Ethernet is a passive network, only transmitting stations can be detected

Page 25 Example for a Bus Topology (obsolete) 1 0 M b /s

Page 26 Example for a Star/Tree Topology 100Mb/s 100Mb/s 100Mb/s 1 0 M b / s 1 0 M b / s 100Mb/s 1 0 0 M b /s 100Mb/s 1 0 M b / s 100Mb/s 100Mb/s

Page 27 Example for a Star Topology

Page 28 Half-duplex Mode Stations share a single Ethernet channel by using a medium access control protocol (see CSMA/CD) Only one station can send data over the channel at any given time Disadvantage: segment length is limited by timing requirement caused by requirements of collision detection mechanism

Page 29 Full-duplex Mode Point-to-point links over twisted pair or fiber optic media Both devices may send data at any time Disable the carrier sense function Disable collision detect Disable the looping back of transmitted data onto the receiver input Advantages: Segment length is limited by the signal-carrying capabilities of the segment media The multiple access algorithm (CSMA/CD) is unnecessary Standard IEEE 802.3x

Page 30 Physical Extension Ethernet cards detect collisions only while transmitting. A collision that occurs at the far end of the medium must reach the sender before it stops transmitting.

Page 31 Collision Domain Repeater R e p e a te r

Page 32 Separate Collision Domains Switch R e p e a te r Repeater Repeater

Page 33 Framing Layer 2 encapsulation Breaking the stream into fields Start and stop indicator fields Naming or addressing fields Data fields Quality control fields

Page 34 IEEE MAC Address I/G 1 Bit U / L 1 Bit O U I 22 Bits 24 Bits by OUI assigned Owner I/G Individual/Group U/L Universal/Local OUI Organizationally Unique Identifier specifies the manufacturer of the Ethernet card

Page 35 Ethernet II Frame F ra m e H e a d e r Pream ble (8 Byte) Destination Address S o u r c e Address (6 Byte) (6 Byte) T y p e D a t a F C S (2 Byte) (46-1500 Byte) (4 B y te ) Preamble for synchronization of the stations Type specifies Layer 3 Protocol FCS Frame Check Sequence

Page 36 Ethernet 802.3 Frame F ra m e H e a d e r P r e a m b l e S F D (7 Byte) ( 1 B ) Destination A d d r e s s (6 Byte) S o u r c e A d d r e s s (6 D S A P S S A P D e s tin a tio n S A P (1 Byte) Source SAP (1 Byte) 802.2 LLC L e n g t h / Type Byte) (2 Byte) Control Field (1-2 Byte) D a t a (46-1500 Byte) F C S (4 Byte) D a t a (42-1497 Byte) Header Length/Type SFD Length of data or Type Start Frame Delimiter shows the start of a Frame LLC Header: SAP Control Field Service Access Point for the Layer 3 Protocol determination for the indication of supervisory, information, unnumbered frames

Page 37 802.2 SNAP Header Destination Address Source Address (6 Byte) Length Data FCS (6 Byte) (2 Byte) (46-1500 Byte) (4 Byte) DSAP SSAP Destination SAP (1 Byte) Source SAP (1 Byte) Control Field (1 Byte) SNAP Data (5 Byte) (<= 1492 Byte) OUI Protocol Type (3 Byte) (2 Byte)

Page 38 Ethernet and FDDI Ethernet History, Evolution, Overview OSI-Model Physical Layer: Coding Schemes MAC-Layer: CSMA/CD Ethernet Principles Versions and Parameters Topologies Communication Modes Collision Domain Framing Standards up to Gigabit Ethernet Gigabit Ethernet VLAN FDDI

Page 39 Some of the Standards for 10Mbit/s StandardTopology Medium first released 10Base5 DIX-1980 802.3-1983 10Base2 802.3a-1985 Bus 10Base-T 802.3i-1990 Star 10Base-F 802.3j-1993 Star 10 stands for 10Mbit/s Base stands for Baseband Bus single 50 Ohm coaxial cable (10mm thick) - thicknet single 50 Ohm RG 58 coaxial cable (5mm thick) - thinnet two pairs of 100 Ohm Cat3 or better UTP cable two optical fibres Max Cable Segment [m] halfduplex full-duplex 500 not supported 185 not supported 100 100 2000 > 2000

Page 40 Standards for 100Mbit/s StandardTop. first released 100Base-TX 802.3u-1995 Star 100Base-FX 802.3u-1995 Star 100Base-T4 802.3u-1995 Star 100Base-T2 802.3y-1997 Star Medium Max Cable Segment [m] halfduplex full-duplex two pairs of 100 Ohm Cat5 UTP cable two optical fibres 100 100 412 2000 four pairs of 100 Ohm Cat3 or better UTP cable two pairs of 100 Ohm Cat3 or better UTP cable 100 not supported 100 100

Page 41 Standards for 1Gbit/s Standard Top. Medium -first released 1000Base-LX 802.3z1998 Star 1000Base-SX 802.3z1998 Star 1000Base-CX 802.3z1998 Star 1000Base-T 802.3ab- Star 1999 long wavelength laser: - 62.5μm multi-mode fiber - 50μm multi-mode fiber - 10μm single-mode fiber short wavelength laser: - 62.5μm multi-mode fiber - 50μm multi-mode fiber specialty shielded balanced copper jumper cable assemblies ( twinax ) four pairs of 100 Ohm Cat5 or better cable Max Cable Segment [m] halfduplex fullduplex 316 316 316 550 550 5000 275 316 275 550 25 25 100 100

Page 42 Encoding of the IEEE Standards Ethernet Manchester coding Fast Ethernet 100Base-FX NRZI and 4B/5B encoding 100Base-TX MLT-3 (or NRZI-3) and 4B/ 5B encoding 100Base-T4 8B/6T encoding 1000Base-LX 8B/10B encoding Gigabit Ethernet 1000Base-SX 8B/10B encoding 1000Base-CX 8B/10B encoding 1000Base-T PAM5

Page 43 Parameters 10MBit/s 100MBit/s 1GBit/s nominal Bit Time 0,1 μs 0,01 μs 0,001 μs Slot Time [Bit Times] 512 512 4096 Interframe Gap 9,6 μs 0,96 μs 0,096 μs Max Frame Size 1518 Byte 1518 Byte 1518 Byte Min Frame Size 64 Byte 64 Byte 64 Byte Extended Size 0 Bit 0 Bit Burst Limit no no Slot-TimeMinFrameSize 65536 Bit

Page 44 Ethernet and FDDI Ethernet History, Evolution, Overview OSI-Model Physical Layer: Coding Schemes MAC-Layer: CSMA/CD Ethernet Principles Versions and Parameters Topologies Communication Modes Collision Domain Framing Standards up to Gigabit Ethernet Gigabit Ethernet VLAN FDDI

Page 45 Gigabit Ethernet Standards Media Access Control(MAC) full duplex / half duplex Gigabit Media Independent Interface (GMII) optional 8B/10B encoding/decoding 1000BASE-LX LWL Fiber Optic 1000BASE-SX SWL Fiber Optic 1000BASE-CX Shielded Balanced Copper 802.3z physical layer 1000BASE-T encoder/decoder 1000BASE-T UTP Category 5 802.3ab physical layer

Page 46 Migration to Gigabit Ethernet Gigabit Ethernet looks identical to Ethernet from data link layer upwards Changes are made to physical interface Gigabit Ethernet Physical Media Attachment (PMA) is identical to Fiber Channel PMA Standard takes advantage of High speed physical interface of fiber channel IEEE 802.3 Ethernet frame format Full or half duplex CSMA/CD

Page 47 IEEE 802.3z Gigabit Ethernet Upper Layers Logical Link Control (LLC) MAC Reconciliation MII GMII: Gigabit Media Independent Interface PMA: Physical Media Attachment PMD: Physical Media Dependent Reconciliation: Mapping between: Physical layer signaling primitives & Signals on GMII Reconciliation GMII PCS PCS PMA PMA PMD PMD Medium Medium 100Mbps 1000Mbps

Frame Formats IEEE 802.3 frame format 7 octets 7 octets Preamble 1 octet Start-of-Frame Delimiter 6 octets Destination Address Source Address 2 octets Length/Type Start-of-Frame Delimiter Destination Address 6 octets Source Address 2 octets Length/Type 46-1500 octets 4 octets Data... Frame Check Sequence Preamble......... 4 octets Data 1 octet 6 octets 6 octets 46-1500 octets Gigabit Ethernet frame format Data Link Layer Encapsulation Page 48 Frame Check Sequence 1 octet.. Extension.. 0-448 octets

Page 49 Problems with Gigabit Ethernet In half-duplex mode, the physical extension would - without further measures - be less than 20 meters reason: dependence between minimum sized frames, speed and physical extension The minimum CSMA/CD carrier time and the Ethernet slot time have been extended to 512 bytes. Packets 512 bytes are not modified Packets < 512 bytes have a carrier extension field following the CRC field

Page 50 Frame with Extension Field Packets smaller than 512 Byte will be extended with an additional field: Destination A d d r e s s (6 Byte) S o u r c e A d d r e s s (6 Byte) T y p e / L e n g t h (2 D a t a F C S (4 B y te ) Byte) 512 Byte E x te n s io n

Page 51 Packet Bursting Mechanism to improve the performance of the small sized packets: Packet Bursting the devices are allowed to send some small packets together but a burst limit is defined too: one transmission of a station must not be longer than 65,536 bit times Frame Inter-Frame-Gaps 1 Extension 5 1 2 B y te Frame 2 Frame 3 Frame n

Page 52 Ethernet and FDDI Ethernet History, Evolution, Overview OSI-Model Physical Layer: Coding Schemes MAC-Layer: CSMA/CD Ethernet Principles Versions and Parameters Topologies Communication Modes Collision Domain Framing Standards up to Gigabit Ethernet Gigabit Ethernet VLAN FDDI

Page 53 VLANs (Virtual Local Area Network) R o u te r Switch H Switch H H H Switch H H H H H H: H H H VLAN A VLAN B VLAN C Host

Page 54 Benefits of VLANs facilitating network administration allowing formation of work groups enhancing network security providing a means of limiting broadcast domains

Page 55 VLAN Standards IEEE 802.3ac (1998) defines frame format extensions to support Virtual Local Area Network (VLAN) Tagging on Ethernet networks. IEEE 802.1Q defines the general VLAN protocol.

Page 56 VLAN Tag The VLAN protocol permits the insertion of an identifier, or "tag", into the Ethernet frame format to identify the VLAN to which the frame belongs. It allows frames from stations to be assigned to logical groups. Destination A d d r e s s (6 Byte) S o u r c e A d d r e s s (6 Byte) Length/ T y p e 8 0 2. 1 Q Ta g Type (2 Byte) 0x8100 Ta g Control Information (2 Byte) Length/ T y p e (2 Byte) D a t a F C S (46-1500 Byte) (4 B y te )

Page 57 Ethernet and FDDI Ethernet History, Evolution, Overview OSI-Model Physical Layer: Coding Schemes MAC-Layer: CSMA/CD Ethernet Principles Versions and Parameters Topologies Communication Modes Collision Domain Framing Standards up to Gigabit Ethernet Gigabit Ethernet VLAN FDDI

Page 58 FDDI (Fiber Distributed Data Interface) 100Mbps bandwidth up to 500 stations in one network up to 60km between two stations total length 200km guaranteed waiting time Redundancy in topology

Page 59 FDDI Summary fixed 125Mbps 4b/5b coded signals timed token rotation used for bandwidth sharing frame size 3...4500 bytes topology: dual ring of trees big-endian bit order offers synchronous and asynchronous transmissions stations have station-management duties

Page 60 FDDI Topology tre e D u a l R in g Ring with Trees

FDDI Stations D A S D A S p r im a r y r in g B r in g A da ry B A se co n Page 61 A B M M D A C S S A S S S A S DAS: DAC: SAS: A: B: M: S: Dual Attachment Station Dual Attachment Concentrator Single Attachment Station Primary Port Secondary Port Master Port Slave Port

Page 62 Wrapped Ring primary ring secondary ring Dual Ring Wrapped Ring

Page 63 FDDI Frame S ta r tin g Delimiter F r a m e Control ( 2 s y m b o ls ) (2 symbols) C L F F Destination Address (12 Z Type symbols) Z of Frame Length of Address 0=16bits, 1=48bits Class of Service 0=asynchronous, Z 1=synchronous Source Address (12 Z symbols) Information (<= 8956) Ending Delimiter F r a m e Status (1 symbol) (3 symbols) Error Detected Address Recognized F r a m e Copied (1 symbol) (1 symbol) (1 symbol)

Page 64 Access Method

Page 65 FDDI Access Method There are 2 types of transfers: synchronous and asynchronous Synchronous transfers can be done whenever the station gets the token; was never really used Asynchronous traffic can be started whenever the station gets a token that is not late The last frame is always allowed to complete The token is immediately released after transmission The transmitting station removes its own data

Page 66 Token Release Methods S F r a m e To k e n S To k e n Wasted Immediate Release Time Delayed Release F r a m e

Page 67 FDDI Error Detection a station suspects a fault in the ring it starts sending beacon frames every station that receives a beacon frame stops sending beacons if a station receives its own beacon everything is OK else the ring is broken right before the station the SMT takes action

Page 68 FDDI Ring Wrapping and Hold A B C F E D wrapping results in partitions A B C F E D global hold maintains primary ring