Build Your Own Michelson Interferometer

Similar documents
EXPERIMENT O-6. Michelson Interferometer. Abstract. References. Pre-Lab

Interference. Physics 102 Workshop #3. General Instructions

Mirror, mirror - Teacher Guide

FREEBIRD THE ORIGINAL D.I.Y. ORNITHOPTER! Tools and Glue. Required Materials


Build Your Own Solar Car Teach build learn renewable Energy! Page 1 of 1

Suggested Activities Processes that Shape the Earth: Earth s Structure and Plate Tectonics

Alignement of a ring cavity laser

Lesson 26: Reflection & Mirror Diagrams

Gear PEPSI CAN STOVE INSTRUCTIONS

AP Physics B Ch. 23 and Ch. 24 Geometric Optics and Wave Nature of Light

Interferometers. OBJECTIVES To examine the operation of several kinds of interferometers. d sin = n (1)

FRAMED & MOUNTED TILE MURAL

KAWAI VERTICAL PIANO REGULATION MANUAL

Features: Mounting the Optic

LIGHT SECTION 6-REFRACTION-BENDING LIGHT From Hands on Science by Linda Poore, 2003.

Name Class Date Laboratory Investigation 4B Chapter 4: Cell Structure

Procedure: Geometrical Optics. Theory Refer to your Lab Manual, pages Equipment Needed

b. In Laser View - click on wave. Pose an explanation that explains why the light bends when it enters the water.

Care and Use of the Compound Microscope

Speed-Mat Rectangle Cutter

EXPERIMENT 6 OPTICS: FOCAL LENGTH OF A LENS

Teaching Time: One 25-minute period. Lesson Summary Students use iron filings to observe the 2 and 3- D field lines around a magnet.

Written By: Walter Galan

Measuring index of refraction

Written By: Sam Lionheart

Written By: Walter Galan

BUILDINGA 1/10 SCALE FLATBED TRAILER

FRONT BUMPER INSTALLATION INSTRUCTIONS DODGE / MERCEDES SPRINTER

Light Energy. Countdown: Experiment 1: 1 tomato paste can (without top or bottom) table lamp white poster board, 7 x 9

Written By: Walter Galan

Electronics and Soldering Notes

Geometric Optics Converging Lenses and Mirrors Physics Lab IV

GARDEN WINDOW GLAZING AND DE-GLAZING INSTRUCTIONS

Rockets: Taking Off! Racing Balloon

Physics 41, Winter 1998 Lab 1 - The Current Balance. Theory

PHYS 222 Spring 2012 Final Exam. Closed books, notes, etc. No electronic device except a calculator.

Lesson 29: Lenses. Double Concave. Double Convex. Planoconcave. Planoconvex. Convex meniscus. Concave meniscus

P R E A M B L E. Facilitated workshop problems for class discussion (1.5 hours)

3D Printing LESSON PLAN PHYSICS 8,11: OPTICS

50 TO 60 INSTALLATION INSTRUCTIONS v1.0

Lab 9: The Acousto-Optic Effect

Hive Top Ventilation Shims

Making a reflector telescope

ENGINEERING METROLOGY

DIY CABINET REFACING INSTALLATION GUIDE

Interaction at a Distance

After a wave passes through a medium, how does the position of that medium compare to its original position?

3. Choose between an easy table (24 inches wide) and a hard table (20 inches wide).

Lecture 12: Cameras and Geometry. CAP 5415 Fall 2010

Picnic Table Plans. Made out of a single sheet of plywood, it s also portable! By Kevin Ayer. This children's picnic table would

BUILD A TABLETOP LOOM

What s so special about the laser?

Build a Junior Solar Sprint Model Car Kit Materials: 1 PITSCO Ray Catcher Sprint Kit or Solar Made Junior Solar Sprint Kit 1 White Sheet of Plastic

1 of 9 2/9/2010 3:38 PM

These instructions will show you how to install an internal door into a non-loadbearing partition wall. The instructions are split into three parts.

HALE PET DOOR INSTALLATION INSTRUCTIONS HALE STANDARD PANEL MODEL

How to Build a Poker Table

Guidelines for Earthquake Bracing Residential Water Heaters

DIFFRACTION AND INTERFERENCE

Guidelines for Earthquake Bracing of Residential Water Heaters

Science In Action 8 Unit C - Light and Optical Systems. 1.1 The Challenge of light

Handy Pinhole Camera (Latin Camera Obscura) to observe the transit of Venus, eclipses and other phenomena occurring on the Sun

SUPER SHED. Indoor shelter for your outdoor tools.

WINDOW CHANNEL, WEATHERSTRIP & WHISKER STRIP REPLACEMENT FOR 2-DOOR SEDANS

Micro. Pitts Special for the RFFS-100 by Chris O Riley

Air Hockey Training Camp Care and repair of your Air Hockey Playfield

Convex Mirrors. Ray Diagram for Convex Mirror

Physical Science Study Guide Unit 7 Wave properties and behaviors, electromagnetic spectrum, Doppler Effect

majestic install ation guide barcelona three sided enclosure 24mm surface mounted wall channels and underframe to base

OPERATING P L AYA B I L I T Y P R E C I S I O N D E S I G N

Reflection and Refraction

A Guide to Acousto-Optic Modulators

PRECISION INTERFEROMETER

Mini Wire Jewelry Tutorials for Beginners Created by XQ Designs

4) Read and study the steps and illustrations first to get an overall picture of the project. Then come back and commence practice.

Diffraction of a Circular Aperture

Polarization of Light

Getting Started in Tinkercad

GOING FOR A SPIN: Making a Model Steam Turbine

Thin Lenses Drawing Ray Diagrams

GAERTNER SCIENTIFIC CORPORATION 3650 Jarvis Ave. Skokie, Illinois U.S.A. tel: fax: @gaertnerscientific.

Quest for Speed. Discover Engineering. Youth Handouts

BODY-12, Door Handle - Removal, Installation, and Adjustment

Lunette 2 Series. Curved Fixed Frame Projection Screen. User s Guide

Alfa Romeo 147 On board instruments installation guide

Black Wolf POCKET BILLIARD TABLE INSTALLATION MANUAL. SERVICE DEPARTMENT P.O. BOX 68 BRISTOL, WI 53104

Basic Optics System OS-8515C

Chapter 17: Light and Image Formation

Making A Mirror Grinding Tool By Allen Malsburry

1 Laboratory #5: Grating Spectrometer

Integrated Physics & Chemistry Supply List (2010)

Stair Railing. Installation Guide

Building an Off-Center Fixture for Turning Pendants

SE05: Getting Started with Cognex DataMan Bar Code Readers - Hands On Lab Werner Solution Expo April 8 & 9

The Basics of Scanning Electron Microscopy

STEADYfast Stabilizer Installation Notes Fifth Wheel and Travel Trailers 11/23/13

Reasons for reissue are in Section 6, REVISION SUMMARY.

FIFTH GRADE WORKBOOK

This document fully describes the 30 Day Flexibility Challenge and allows you to keep a record of your improvements in flexibility.

Transcription:

Build Your Own Michelson Interferometer Subject Area: Scientific processes and physical science Grade Level: 9-12 OVERVIEW Build your own Michelson interferometer for under $150. The Michelson interferometer works by splitting a light beam into two separate beams that travel different light paths along two arms. Mirrors at the ends of the arms reflect the beams back to the beam splitter, where they interfere upon being recombined. The interference pattern - typically a set of alternating bright and dark stripes, called fringes - displays subtle differences between the two arms. For instance you can see the fringe pattern shift by one fringe when one arm is stretched relative to the other by 1/3000th of a millimeter! (You can easily bend the metal mirror mounts enough with a plastic coffee stirrer or a soda straw to view this deformation.) OBJECTIVES Students will demonstrate the manual skill that is required to build a precision device Students will explain light interference using the basic model of wave behavior Students will describe the relationship between the movement of an interferometer mirror and the resulting movement of the pattern of fringes CONNECTIONS TO STANDARDS Wave behavior and properties including the nature of light, development of scientific investigations, the use of technology in investigations, formulating and revising scientific explanations and models, safe practices in investigations. SAFETY AWARENESS Use a laser pointer that is Class IIIa or lower. Avoid eye contact with the laser beam when building or using the interferometer. Yes, epoxy is capable of gluing a person's fingers together. Sliced metal will often have sharp edges or will have small shards or splinters. Consider sanding rough surfaces on the aluminum mounts.

THE PROCEDURE FOR BUILDING THE INTERFEROMETER This is a picture of the demo in action: The secret to keeping costs down for this interferometer are: use a cheap laser; keep the number of precision mechanical mounts to a minimum; keep the spots small on the beam splitter and mirrors and then blow the beam up for viewing at the end. We use a laser pointer because you get a surprisingly good and reliable light source for under $25. By keeping the distances between the end mirrors and the beam splitter nearly equal, we mitigate problems caused by multimode behavior of the laser. There are only two critical alignment angles in a Michelson interferometer and we use a single precision mount to make these adjustments. The rest of the mounts are simple and cheap. To get good-looking fringes, you need the laser wave front and the surfaces of the two end mirrors and the beam splitter to be flat to within a small fraction of an optical wavelength. This can be accomplished by expensive extremely high quality optics for large-diameter laser beams or, as we do, by keeping the laser beam small inside the interferometer and only expanding the beam for viewing after the interference occurs at the beam splitter. Relatively cheap optics with flatness of 4-6 waves/inch are actually very flat (lambda/4 or better) over the small size of our laser beam (typically 1mm on a side).

The Base plate You will need a flat piece of particleboard (or other material) on which to mount the parts. A 1-ft diameter particleboard "round" was used purchased from a local hardware store for this demo. The base plate needs to be smooth and flat to make mounting and adjusting parts easy. We painted our base plate with a thin coat of flat black paint for purely cosmetic reasons. (Do not spoil the flatness with a thick, crummy paint job!) The Laser Pointer This is the light source for the interferometer. Almost any over-the-counter laser pointer will work for this demo. For safety reasons, make sure that the pointer is Class III-a or lower power as indicated on the labeling. You need to invent a way to hold down the "on" button easily. We have successfully used clothespins, paper clips and even the broken tine from a plastic fork, held down by tape.

Mirror on Adjustable Mount The adjustable mirror mount is the most expensive, but necessary, part of the demo. It allows you to make the fine alignment adjustments needed to get a nice fringe pattern. We purchased our mirror mount from www.optosigma.com (part number 112-0250) for under $50. We purchased our two mirrors from www.edmundoptics.com. We used "firstsurface" mirrors with an optical quality of 4-6 waves/inch. For reference, our mirrors were 26 mm diameter, which makes handling easy. Since the laser beam uses only a small fraction of this area, one could experiment with smaller mirrors. We used Scotch "double-stick" tape on the back of the mirror to hold it to the mount. Aluminum Angle for Fixed Mounts This part can be found at most hardware stores. It is one-inch aluminum angle. (Costs about $1.25 a foot.) Cut it into 1-inch pieces for mounting the other optics. Use a hacksaw or something of that nature to cut it. (Filing the edges after cutting is necessary for safety, but also will keep the optics from rocking on rough edges or cutting into the base plate. The beauty of aluminum angle is that it is made by an extrusion process that holds pretty close to a 90-degree angle. So, be sure not to bend the metal when cutting! You need to preserve the 90-degree angle to keep the beams aligned well enough (within a degree or so). If you do bend it, you can use shims to work around poor alignment, or just cut new pieces more carefully.

Mirror on Fixed Mount The second of the two mirrors gets mounted to the piece cut from the aluminum angle as shown, using Scotch "double stick" tape. For the 26-mm diameter mirrors, we let about one third of the mirror overlap the mount. If you use smaller mirrors, you need to experiment a bit. The advantage of double stick tape is that mistakes are easily corrected by using a razor blade to get the mount dismounted. Beam Splitter on Fixed Mount The beam splitter splits the laser into two separate beams and also recombines the beams after they strike the mirrors. We used a 12.5x17.5 mm 50:50 beam splitter. (Beam splitters are sometimes called "two-way" mirrors.) The term 50:50 means that 50% of incident light is reflected and the beam-splitter coating transmits 50%. You want a non-polarizing beam splitter. Optical quality of 4-6 waves/inch is sufficient, just as for the mirrors. Our beam splitter had an antireflection coating on the side opposite the beam-splitter coating.

Small diverging lens This lens spreads the laser interference pattern out for easy viewing on a screen. We used a planoconcave (PCV) lens from http://www.emundoptics.com/ with diameter of 12 mm and a focal length of -12 mm. (The minus indicates that the lens causes parallel light rays to diverge.) Our lens had an antireflection coating on both sides. Post-It Notes These are used to prop the laser up to the correct height for the mirrors. We used this method because it allows nearly infinitely height variation, by adding or removing sheets. You can also use the post-its along one edge of a mount as a shim to make up for alignment difficulties in case your fixed mounts are out of whack. You will need 2 to 3 packs depending on your exact set up.

5-minute Epoxy This is used to bond most of the parts onto the base plate. It can be found at any hardware store. The directions to use it should be on the back. Get this almost anywhere. Do not use the epoxy between two flat surfaces or you will never get them apart without breakage. We position our parts until we get them in the right places and then we mix a very small amount of epoxy, place a small dab (a few cubic millimeters) on each edge of the joint and let it cure. The photos above show the epoxy bonds on one edge holding the fixed and adjustable mirror mounts to the base plate. How to Build the Device Note: Throughout these instructions it is very helpful to take a look at the pictures to get an exact idea of what we are talking about. Take an especially good look at the "In action" photo. Click on the links provided to jump up to the appropriate picture. 1. After you have the base plate, laser, mirrors and lens and you have cut 4 similar 1 inch wide pieces from your aluminum angle, then you are ready to begin. Take one of the pieces of angle and tape the piece of beam-splitting glass down the way we have shown in the picture above. Make sure that most of it is exposed over the top. Do the same with the round mirror. Then, take one of the two remaining pieces of angle and tape a piece of cardboard onto the inner wall of one side. Make sure that most of it is exposed over the top (see picture above). Then punch a hole that is a little smaller than the lens into the exposed cardboard. Then mount the lens to the hole with some double sided tape or epoxy. Make sure that the tape or epoxy barely touches the lens. Once you have all three pieces made, look closely to make sure they look the way that they do in the pictures above. Move on to step two.

2. Set the base plate on a table in front of you. Measure approximately 1 inch in from a quadrant of the circle. Use double stick tape to down the adjustable mirror mount to that spot making sure that it is facing the center of the circle. Later, you will epoxy this mount down. Using double stick now allows you to make small adjustments until you get it all right. Look at the picture above and see how we mounted our mirrors. You will want to mount your mirrors in the same arrangement, using double stick tape to hold them in place. You need to make sure that both of the mirrors are about the same distance away from the beam splitter at the point where the laser light is split. We used a wooden ruler to verify the distances were the same to within 1/16 inch. The actual size of your base plate will affect how far apart the mirrors will be. 3. Get your laser out and use a clip or tape a small piece of plastic or a screw over the switch to hold it "on". BE CAREFUL NOT TO SHINE THE LASER INTO ANYONE'S EYES! Set the operating laser onto the post-it notes. Remove or add post-it notes to get the laser light to shine straight at the black mirror mount. You should be able to see the laser beam reflected from the mirror, so that it almost goes back into the laser. Ideally, it should hit the laser next to where the laser beam originates. 4. Take the mounted beam splitter and place it in between the laser pointer and the adjustable mirror mount. You should now be able to see a spot reflected from the beam splitter. Align the beam splitter so that this reflected beam travels at roughly 90 degrees to the transmitted beam. Use a pencil to outline the mount onto the base plate. Now place double stick tape on the bottom of the beam splitter mount and place it back down within your marks. 5. The double stick tape will hold the beam splitter in place while you measure the distance between the adjustable mirror and the laser spot on the beam splitter. Now place the fixed mirror mount at the same distance from the laser spot on the beam splitter. Align the fixed mount so that you can see the mirror reflect the laser light back to the beam splitter. You should be able to get this return beam to go through the beam splitter close to where it originated. Mark the outline of the mount on the base plate, apply double stick tape and tape the mount down to the base plate.

6. You will now see that the laser light from the two mirrors returns to the beam splitter so that some light is directed back toward the laser and some light goes off into space. Put up a screen to stop the beams going off into space. Adjust the adjustable mirror so that the two beams on the screen overlap. Now place the mounted lens between the beam(s) and the screen, but keep the lens close to the beam splitter. You will now see one or two big red splotches on the paper. Typically there will be two splotches, slightly misaligned. Adjust the knobs slowly on the mirror mount to line up the two splotches on the screen better and better. Once you get them very well lined up you should notice black lines running through the splotches. These are your fringes. 7. Now with the fringes visible, epoxy the mounts down to the base plate using a small amount (bead) of epoxy on two opposite sides of the mount. You can see an example of one of these epoxy beads in this picture.

A HANDOUT FOR STUDENTS The Michelson Interferometer Name: If you have not done so already, spend some time observing the behavior of the interferometer (please don't touch the optical components). Gently turn the adjustment screw on the adjustable mirror and watch what happens to the interference pattern. With the interferometer completely focused, loop a string around the stand that supports the fixed mirror and gently pull on the loop. There are a variety of other experiments to do with the instrument, such as placing a sample of very hot water near one of the beam paths, halfway between the beam splitter and the end mirror. Those who built the device will just ask that you BE CAREFUL! Use your observations and outside resources (such as a physics book) to help you answer these questions 1. What do we mean by 'light interference'? 2. Is light the only type of wave that can undergo interference? 3. Describe the two types of wave interference. 4. Use the concept of interference to explain how the interferometer works.

5. If you move the interferometer's adjustable mirror by the slightest amount, the pattern of fringes changes, and eventually it goes away. 6. Why is the instrument so sensitive to the position of the mirror? 7. Interferometers can be used to measure movements that are much, much smaller that you would measure with tools such as rulers. Using your experience of pulling on the mirror, explain how this is possible. 8. Do some quick research (perhaps on the Internet) and see if you can find some ways that interferometers are used in the 'real world'.