The Straight Line I. INTRODUCTORY

Similar documents
Incenter Circumcenter

Intermediate Math Circles October 10, 2012 Geometry I: Angles

Selected practice exam solutions (part 5, item 2) (MAT 360)

CHAPTER 8 QUADRILATERALS. 8.1 Introduction

Chapter 3.1 Angles. Geometry. Objectives: Define what an angle is. Define the parts of an angle.

Mathematics Spring 2015 Dr. Alexandra Shlapentokh Guide #3

3.1 Triangles, Congruence Relations, SAS Hypothesis

Section 9-1. Basic Terms: Tangents, Arcs and Chords Homework Pages : 1-18

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Tuesday, August 13, :30 to 11:30 a.m., only.

QUADRILATERALS CHAPTER 8. (A) Main Concepts and Results

A summary of definitions, postulates, algebra rules, and theorems that are often used in geometry proofs:

INTRODUCTION TO EUCLID S GEOMETRY

5.1 Midsegment Theorem and Coordinate Proof

CHAPTER 6 LINES AND ANGLES. 6.1 Introduction

Definitions, Postulates and Theorems

Final Review Geometry A Fall Semester

The Triangle and its Properties

DEFINITIONS. Perpendicular Two lines are called perpendicular if they form a right angle.

Geometry: Unit 1 Vocabulary TERM DEFINITION GEOMETRIC FIGURE. Cannot be defined by using other figures.

Lesson 13: Angle Sum of a Triangle

Geometry Chapter Point (pt) 1.1 Coplanar (1.1) 1.1 Space (1.1) 1.2 Line Segment (seg) 1.2 Measure of a Segment

1. A student followed the given steps below to complete a construction. Which type of construction is best represented by the steps given above?

12. Parallels. Then there exists a line through P parallel to l.

GEOMETRY. Constructions OBJECTIVE #: G.CO.12

Page 1

Geometry - Semester 2. Mrs. Day-Blattner 1/20/2016

MATHEMATICS Grade 12 EUCLIDEAN GEOMETRY: CIRCLES 02 JULY 2014

Invention of the plane geometrical formulae - Part II

IMO Geomety Problems. (IMO 1999/1) Determine all finite sets S of at least three points in the plane which satisfy the following condition:

INCIDENCE-BETWEENNESS GEOMETRY

Test on Circle Geometry (Chapter 15)


Algebraic Properties and Proofs

Angles in a Circle and Cyclic Quadrilateral

1 Solution of Homework

San Jose Math Circle April 25 - May 2, 2009 ANGLE BISECTORS

POTENTIAL REASONS: Definition of Congruence:

GEOMETRY. Chapter 1: Foundations for Geometry. Name: Teacher: Pd:

Visualizing Triangle Centers Using Geogebra

Geometry Regents Review

TIgeometry.com. Geometry. Angle Bisectors in a Triangle

The Use of Dynamic Geometry Software in the Teaching and Learning of Geometry through Transformations

Chapters 6 and 7 Notes: Circles, Locus and Concurrence

Solutions to Practice Problems

Angles that are between parallel lines, but on opposite sides of a transversal.

Geometry Module 4 Unit 2 Practice Exam

CSU Fresno Problem Solving Session. Geometry, 17 March 2012

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Student Name:

Chapter 6 Notes: Circles

Unit 2 - Triangles. Equilateral Triangles

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Thursday, August 13, :30 to 11:30 a.m., only.

Class-10 th (X) Mathematics Chapter: Tangents to Circles

GEOMETRY CONCEPT MAP. Suggested Sequence:

/27 Intro to Geometry Review

SIMSON S THEOREM MARY RIEGEL

Chapter 5.1 and 5.2 Triangles

Session 5 Dissections and Proof

Conjectures. Chapter 2. Chapter 3

Additional Topics in Math

Geometry 1. Unit 3: Perpendicular and Parallel Lines

Terminology: When one line intersects each of two given lines, we call that line a transversal.

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Thursday, August 16, :30 to 11:30 a.m.

This is a tentative schedule, date may change. Please be sure to write down homework assignments daily.

1.1 Identify Points, Lines, and Planes

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Student Name:

Triangle Congruence and Similarity A Common-Core-Compatible Approach

Duplicating Segments and Angles

The common ratio in (ii) is called the scaled-factor. An example of two similar triangles is shown in Figure Figure 47.1

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Wednesday, January 28, :15 a.m. to 12:15 p.m.

Mathematics Geometry Unit 1 (SAMPLE)

Geometry Handout 2 ~ Page 1

39 Symmetry of Plane Figures

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Wednesday, January 29, :15 a.m. to 12:15 p.m.

Curriculum Map by Block Geometry Mapping for Math Block Testing August 20 to August 24 Review concepts from previous grades.

Name: Chapter 4 Guided Notes: Congruent Triangles. Chapter Start Date: Chapter End Date: Test Day/Date: Geometry Fall Semester

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Thursday, January 24, :15 a.m. to 12:15 p.m.

6.1 Basic Right Triangle Trigonometry

2.1. Inductive Reasoning EXAMPLE A

2. If C is the midpoint of AB and B is the midpoint of AE, can you say that the measure of AC is 1/4 the measure of AE?

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Thursday, August 13, :30 to 11:30 a.m., only.

Most popular response to

Algebra III. Lesson 33. Quadrilaterals Properties of Parallelograms Types of Parallelograms Conditions for Parallelograms - Trapezoids

Unit 8: Congruent and Similar Triangles Lesson 8.1 Apply Congruence and Triangles Lesson 4.2 from textbook

Proposition 4: SAS Triangle Congruence

Lesson 18: Looking More Carefully at Parallel Lines

Math 531, Exam 1 Information.

Quadrilateral Geometry. Varignon s Theorem I. Proof 10/21/2011 S C. MA 341 Topics in Geometry Lecture 19

Testing for Congruent Triangles Examples

Pythagoras Theorem. Page I can identify and label right-angled triangles explain Pythagoras Theorem calculate the hypotenuse


Elements of Plane Geometry by LK

Circle Theorems. This circle shown is described an OT. As always, when we introduce a new topic we have to define the things we wish to talk about.

C relative to O being abc,, respectively, then b a c.

Chapter 4.1 Parallel Lines and Planes

Blue Pelican Geometry Theorem Proofs

Chapter 8 Geometry We will discuss following concepts in this chapter.

Geo, Chap 4 Practice Test, EV Ver 1

Geometry Unit 5: Circles Part 1 Chords, Secants, and Tangents

Heron s Formula. Key Words: Triangle, area, Heron s formula, angle bisectors, incenter

POTENTIAL REASONS: Definition of Congruence: Definition of Midpoint: Definition of Angle Bisector:

Transcription:

UNIT 1 The Straight Line I. INTRODUCTORY Geometry is the science of space and deals with the shapes, sizes and positions of things. Euclid was a Greek mathematician of the third century B.C. who wrote a remarkable book called The Elements. For 2000 years, the first six books of this work have been used as an introduction to Geometry. Modern textbooks contain in a modified form the subject matter of Books I IV, VI and XI of Euclid s work. Axioms. All reasoning is based on certain elementary statements, the truth of which is admitted without discussion: such statements are called axioms. Euclid gave a list of twelve axioms: of these, the following relate to magnitudes of all kinds*: axioms relating to geometrical magnitudes will be stated later. 1. Things which are equal to the same thing are equal to one another. 2. If equals are added to equals, the wholes are equal. 3. If equals are taken from equals, the remainders are equal. 4. Doubles of equal things are equal. 5. Halves of equal things are equal. 6. The whole is greater than its part. 7. If equals are added to unequals, the wholes are unequal. 8. If equals are taken from unequals, the remainders are unequal. Surface, Line, Point. The space occupied by any object (say a brick) is limited by boundaries which separate it from surrounding space. These boundaries are called surfaces. DEFINITION. A surface has length and breadth but no thickness. Surfaces meet (or intersect) in lines. For example, a wall of a room meets the floor in a straight line. DEF. A line has length but no breadth. Lines meet (or intersect) in points. * The student should read these through in order to get a clear idea of what kinds of truths are assumed as axiomatic. It is quite unnecessary to commit them to memory. 1

2 NEW AGE CLASSICAL MATH SERIES ELEMENTS OF GEOMETRY DEF. A point has position but no magnitude. In practice, the mark traced by a pencil-point on a sheet of paper is called a line. But it is not a line according to the definition: for, however thin it may be, it has some breadth. Again, if we make a dot on the paper as a mark of position, the dot is not a geometrical point, for it has some magnitude. Straight Lines. Lines are either straight or curved. Everyone knows what is meant by a straight line, but it is difficult to put the exact meaning into words. Euclid s definition was as follows: DEF. A straight line is that which lies evenly between its extreme points. To this he added the following: AXIOM. Two straight lines cannot enclose a space. POSTULATE* 1. Let it be granted that a straight line may be drawn from any one point to any other point. POSTULATE 2. Let it be granted that a straight line may be produced to any length in a straight line. Hence it follows that (i) Two straight lines cannot intersect in more than one point. For, if they met in two points, they would enclose a space. (ii) One and only one straight line can be drawn between two given points. When we draw this straight line, we are said to join the points. In order to compare two straight lines, we may suppose one of them to be taken up and placed on the other. If the lines fit exactly, they are said to coincide. DEF. Equal straight lines are those which can be made to coincide. Equal straight lines are said to have the same length. The distance between two points is the length of the straight line joining them. If O is a point in a straight line AB, lengths measured from O towards B are said to be measured in the opposite sense to those measured from O towards A. DEF. Any part of a straight line is called a segment of that straight line. The Plane. In order to find out whether the surface of a board is what is called plane or not, a carpenter applies a straight edge (the straight edge of his plane for instance) to the board, in all directions; i.e. he practically joins any two points in the surface with a straight line and sees whether this straight line is in contact with the board throughout its length. *A postulate is a demand.

THE STRAIGHT LINE 3 DEF. A plane is a surface in which any two points being taken the straight line between them lies wholly in that surface. A plane is often called a plane surface. Angles. DEF. Two straight lines, drawn from the same point, are said to contain an angle. The straight lines are called the arms of the angle; their point of intersection is called the vertex of the angle. The angle contained by two straight lines OA and OB is called the angle AOB or the angle BOA, or, if there is only one angle at the point, simply the angle O. If a straight line OP, starting from the position OA, revolves about the point O as a hinge, until it reaches the position OB, it is said to turn through or describe the angle AOB. In order to describe the angle AOC in the above figure, the revolving line would have to turn in the opposite direction or sense to that in which it turned to describe the angle AOB. We therefore say that the angles AOB, AOC are described in opposite senses. DEF. Two angles are said to be equal when one of them can be placed so that its arms fall along the arms of the other. Note that the size of an angle does not depend on the lengths of its arms. DEF. Two angles (BAC, CAD), which are situated on opposite sides of a common arm and have a common vertex, are called adjacent angles. The angle BAD is the sum of the angles BAC, CAD. The angle CAD is the difference of the angles BAD, BAC. The bisector of an angle is the straight line which bisects it, i.e., which divides it into two equal parts. DEF. If the arms of an angle AOB are produced through O to C and D, the angles AOB, COD are said to be vertically opposite: so also are the angles BOC, DOA. DEF. When one straight line, standing on another straight line, makes the adjacent angles equal, each of these angles is called a right angle; and the straight line standing on the other is said to be perpendicular to it. AXIOM. All right angles are equal.

4 NEW AGE CLASSICAL MATH SERIES ELEMENTS OF GEOMETRY DEF. The straight line which bisects a given straight line, and is perpendicular to it, is called the perpendicular* bisector of the line. The distance of a point from a straight line is the length of the perpendicular drawn from the point to the line. DEF. An acute angle is an angle which is less than a right angle. DEF. An obtuse angle is an angle which is greater than a right angle. DEE. Two angles are said to be supplementary when their sum is two right angles. In this case, each angle is called the supplement of the other. Thus, the angles AOC, COB are supplementary. DEF. TWO angles are said to be complementary when their sum is one right angle. In this case, each angle is called the complement of the other. Thus, the angles AOC, COD are complementary. The table of angular measurement is as follows: 1 right angle = 90 degrees (90 ) 1 degree = 60 minutes (60') 1 minute = 60 seconds (60"). Plane Geometry deals with the properties of lines and points which are in the same plane. The discussion is divided into propositions which are either theorems or constructions. A theorem is a proposition in which some statement has to be proved. The statement itself is called the enunciation. The enunciation of a theorem consists of two parts. The first part, called the hypothesis, states what is assumed. The second part, called the conclusion, states what has to be proved. For example, a simple theorem in Algebra is as follows: If a = b, then na = nb. The hypothesis is a = b; the conclusion is na = nb. If two theorems are such that the hypothesis of each is the conclusion of the other, then either of the theorems is said to be the converse of the other. Thus, the converse of the above theorem is If na = nb, then a = b. *Sometimes also it is called the right bisector.

THE STRAIGHT LINE 5 Note particularly that the converse of a theorem is not necessarily true. Thus, consider the theorem If a = b, then a 2 = b 2. The converse is If a 2 = b 2, then a = b, and this is not correct, for if a 2 = b 2 we can only conclude that either a = b or a = b. When a theorem has been proved, it is sometimes found that other important theorems follow so easily that they hardly require formal proofs. Such theorems are called corollaries. NOTE: In writing out Theorems, an accurate figure drawn with instruments is not expected. A neat freehand drawing is sufficient. A construction is a proposition in which it is required to draw some particular figure. It is convenient to arrange the theorems and constructions in separate groups. In order to do this we make the following Postulates: Let it be granted that 1. From the greater of two given straight lines, a part can be cut off equal to the less. 2. A straight line may be bisected (that is divided into two equal parts). 3. At any point in a given straight line, a perpendicular can be drawn to that straight line. 4. At any point in a given straight line, a straight line can be drawn, making with the given line an angle equal to a given angle. Other postulates of this kind will be stated further on. These postulates are sometimes called hypothetical constructions. NOTE: It is suggested that, in a first course, the formal treatment of Theorems 1, 2, 3, 4, 6, 7, 8, 9, 10, 14, 17, 18 should be replaced by oral explanations, the facts stated in the enunciations being regarded as axiomatic. II. ANGLES AT A POINT THEOREM 1 (Euclid I. 13) If a straight line stands on another straight line the sum of the two adjacent angles is two right angles.

6 NEW AGE CLASSICAL MATH SERIES ELEMENTS OF GEOMETRY Let the straight line CD stand on the straight line ACB. It is required to prove that Ð ACD + Ð DCB = 2 right angles. Construction. Let CE be drawn perpendicular to AB. Proof. Ð ACD + Ð DCB = Ð ACE + Ð ECD + Ð DCB. Also Ð ACE + Ð ECB = Ð ACE + Ð ECD + Ð DCB. \ Ð ACD + Ð DCB = Ð ACE + Ð ECB. But, by construction, Ðs ACE, ECB are right angles. \ Ð ACD + Ð DCB = 2 right angles. COROLLARY. If any number of straight lines are drawn from a given point, the sum of the consecutive angles so formed is four right angles. Thus, in the figure, Ð AOB + Ð BOC + Ð COD + Ð DOA = 4 right angles. THEOREM 2* (Euclid I. 14) If at a point in a straight line, two other straight lines, on opposite sides of it, make the adjacent angles together equal to two right angles, these two straight lines are in the same straight line. At the point C, in the straight line CD, let the straight lines CA, CB, on opposite sides of CD, make the adjacent angles ACD, DCB together equal to two right angles. It is required to prove that CA, CB are in the same straight line. Construction. Produce AC to some point E. Proof. By construction, ACE is a straight line; \ Ð ACD + Ð DCE = 2 right angles. But, it is given that Ð ACD + Ð DCB = 2 right angles; \ Ð ACD + Ð DCB = Ð ACD + Ð DCE. From each of these equals, take the angle ACD: \ Ð DCB = Ð DCE; \ CB falls along CE. But, by construction, CA and CE are the same straight line. \ CA and CB are in the same straight line. *See NOTE on page 5.

THE STRAIGHT LINE 7 NOTE: In Theorem 1, it is given that CA and CB are in the same straight line, and it is proved that Ð ACD + Ð DCB = 2 rt. Ðs. In Theorem 2, it is given that Ð ACD + Ð DCB = 2 rt. Ðs, and it is proved that CA and CB are in the same straight line. These are therefore converse theorems (see p. 4). THEOREM 3* (Euclid I. 15) If two straight lines intersect, the vertically opposite angles are equal. Let the straight lines AB, CD intersect at O. It is required to prove that Ð AOC = Ð BOD and Ð COB = Ð DOA. Proof. Because OC stands on the straight line AB, \ Ð AOC + Ð COB = 2 right angles; and because OB stands on the straight line CD, \ Ð BOD + Ð COB = 2 right angles; \ Ð AOC + Ð COB = Ð BOD + Ð COB. From each of these equals take the angle COB; \ Ð AOC = Ð BOD. Similarly it can be shown that Ð COB = Ð DOA. EXERCISE I (on pages 1-7) 1. What is the angle in degrees between the hands of a watch at (i) 2 o clock, (ii) 5 o clock? 2. What angle does (i) the minute hand, (ii) the hour hand, turn through in 20 minutes? 3. What is the angle in degrees between the hands of a clock at (i) 12.15, (ii) 2.15 o clock? 4. What are the supplements of 2/3rt. Ð, 40, 120, 98 10'? 5. What are the complements of 1/4 rt. Ð, 40, 35 10' 10"? 6. If in the figure of Theorem 1, the Ð BCD = 32, how large are the Ðs ACD, ECD? *See NOTE on page 5.

8 NEW AGE CLASSICAL MATH SERIES ELEMENTS OF GEOMETRY 7. If in the figure of the corollary of Theorem 1, Ð AOB = 30, Ð BOC = 70, Ð COD = 140, what is the Ð DOA? 8. If in the figure of Theorem 3, the Ð AOC = 42, what are the other angles in the figure? 9. A straight line AB is bisected at C, and produced to D. Prove that DA + DB = 2DC. 10. A straight line AB is bisected at C, and any point D is taken in CB. Prove that AD DB = 2CD. 11. In the figure of Theorem 3, prove that the bisectors of the angles AOD, DOB are at right angles. 12. In the figure of Theorem 3, prove that the bisector of the AOD, when produced, bisects the Ð BOC. 13. In the figure of Theorem 3, prove that the bisectors of the angles AOC, BOD are in the same straight line. 14. A, B, C, D are four points, and AB, BC subtend (i.e. are opposite to) supplementary angles at D: show that A, D, C are in the same straight line. 15. OA, OB, OC, OD are straight lines so drawn that Ð AOB = Ð COD and Ð BOC = Ð AOD. Show that AO, OC and also BO, OD are in the same straight line. 16. CAD and AB are two straight lines and Ð CAX = Ð BAD; B, X being on opposite sides of C, D. Prove that AB, AX are in the same straight line. 17. XOA, XOB are angles on the same side of OX, and OC bisects the angle AOB. Prove that Ð XOA + Ð XOB = 2Ð XOC. 18. AOX, XOB are adjacent angles, of which AOX is the greater, and OC bisects the angle AOB. Prove that Ð AOX Ð XOB = 2Ð COX. III. TRIANGLES DEF. A plane figure is any part of a plane surface bounded by one or more lines, straight or curved. DEF. A rectilineal figure is one which is bounded by straight lines. It will be assumed that any figure may be duplicated (i.e. copied exactly), or that it may be moved from any one position to any other position, and, if necessary, turned over or folded. If a figure is taken up and placed on another figure in order to make a comparison, the first figure is said to be applied to the second. This process is called superposition. Figures which occupy the same portion of space are said to coincide. DEF. Figures which can be made to coincide are called congruent. Congruent figures are said to be equal in all respects. In two congruent figures, the sides and angles which coincide, when one figure is applied to the other, are said to correspond.

THE STRAIGHT LINE 9 DEF. The area of a plane figure is the amount of surface enclosed by its boundaries. DEF. Equal figures are those which have the same area. DEF. The perimeter of a plane figure is the sum of the lengths of its boundaries. DEF. A triangle is a plane figure bounded by three straight lines. The straight lines BC, CA, AB which bound a triangle ABC are called its sides and the points A, B, C its angular points or vertices. For distinction, one angular point is often called the vertex and the opposite side the base. DEF. An isosceles triangle is a triangle which has two equal sides. The side which is unequal to the others is always called the base, and the angular point opposite to the base is called the vertex. DEF. An equilateral triangle is a triangle whose three sides are equal. DEF. A right-angled triangle is a triangle one of whose angles is a right angle. DEF. The side opposite the right angle in a right-angled triangle is called the hypotenuse. DEF. An obtuse-angled triangle is a triangle which has one obtuse angle. DEF. An acute-angled triangle is a triangle which has three acute angles.

10 NEW AGE CLASSICAL MATH SERIES ELEMENTS OF GEOMETRY THEOREM 4* (Euclid I. 4) Two triangles are congruent if two sides and the included angle of one triangle are respectively equal to two sides and the included angle of the other. Let ABC, DEF be two triangles in which AB = DE, AC = DF and the included Ð A = The included Ð D. It is required to prove that the triangles are congruent. Proof. Apply the triangle ABC to the triangle DEF so that the point A falls on the point D and the straight line AB falls along the straight line DE. Then because AB = DE (given), \ The point B falls on the point E. Also since AB falls along DE and it is given that Ð A= Ð D, \ AC falls along DF; and since it is given that AC = DF. \ The point C falls on the point F. Hence A falls on D, B on E and C on F. \ The triangle ABC has been made to coincide with the triangle DEF. \ The triangles ABC, DEF are congruent. Note on Theorem 4. In the triangles ABC, DEF, it is given that AB = DE, AC = DF, included Ð A = included Ð D; it is proved that the triangles are congruent, and therefore (i) the triangles are equal in area, (ii) BC = EF, (iii) Ð B = Ð E, Ð C = Ð F. Observe that the angles which are proved equal are opposite equal sides in the two triangles. In congruent triangles, the sides and angles which coincide, when one triangle is applied to the other, are said to correspond. In using Theorem 4, the work should be written out as in the following example: *See NOTE (italic) on page 5.