Geometry - Semester 2. Mrs. Day-Blattner 1/20/2016
|
|
|
- Rhoda Norman
- 9 years ago
- Views:
Transcription
1 Geometry - Semester 2 Mrs. Day-Blattner 1/20/2016
2 Agenda 1/20/2016 1) 20 Question Quiz - 20 minutes 2) Jan 15 homework - self-corrections 3) Spot check sheet Thales Theorem - add to your response 4) Finding the center of circles. Introductory activity. 5) Homework
3 Problem Set - correct your own work, use color B A.O C 1. A, B, and C are three points on a circle, and angle ABC is a right angle. What s wrong with the picture? Explain your reasoning. Student s said angle ABC couldn t be a right angle because AC wasn t a diameter of the circle. That is correct.
4 Problem Set - correct your own work, use color to B show this proof also A.O C Draw in the 3 radii from O to A, B and C. - isosceles triangles, label congruent base angles (a, b, and c ). For ABC
5 Problem Set - correct your own work, use color B A.O C Draw in the 3 radii from O to A, B and C. - isosceles triangles, label congruent base angles (a, b, and c ). For ABC 2a + 2b + 2c = 180
6 BUT, angle B = 90 = b + c Problem Set - correct your own work, use color B A.O C For ABC 2a + 2b + 2c = 180 2(a + b + c ) = 180 a + b + c = 90
7 Problem Set - correct your own work, use color B A.O C a + b + c = 90 and 90 = b + c can t both be true at the same time - we have a contradiction (a can t be 0 )
8 since line segment AC is not a diameter of the circle. Also, can do a proof similar to answer for Show that there is something mathematically wrong with the picture below. Again students noted that angle ABC couldn t be a right angle, B C A.O
9 3. In the figure, AB is the diameter of a circle of radius 17 miles. If BC = 30 miles, what is AC? C 30 miles Use Pythagorean theorem AC 2 + (30mile) 2 = (34miles) 2 AC = sq.rt [(34mile) 2 -(30miles) 2 ] AC = sq.rt [( ) miles 2 ] A 17 miles. 17 miles B AC = sq.rt256 miles AC = 16 miles
10 4. In the figure below, O is the center of the circle, and AD is a diameter. a) Find measure of angle AOB = 48 isosceles triangle BOD, angle BOD = 180 angle BOD = 132 Angle AOB and BOD are linear pairs, so Angle AOB = 48 b) If measure angle AOB: measure of angle COD = 3: 4, what is measure of angle BOC? m angle AOB
11 4. In the figure below, O is the center of the circle, and AD is a diameter. b)if measure angle AOB: measure of angle COD = 3: 4, what is measure of angle BOC? 48 = 3 m COD 4 m COD = 4(48 ) / 3 = 64 m BOC = = 68
12 5. PQ is a diameter of a circle, and M is another point on the circle. The point R lies on the line MQ such that RM = MQ. Show that measure of angle PRM = measure of angle PQM. HINT- you need to draw a picture to help you explain the situation.
13 Label the lengths that you know are congruent, and the right angles and write a proof to show m PRM = m PQM M Q center P O
14 6. Inscribe triangle ABC in a circle of diameter 1 such that AC is a diameter. Explain why: a) sin(angle A ) = BC sin (angle A) = side opposite angle A / hypotenuse = BC /1 = BC b) cos(angle A) = AB cos(angle A) = side adjacent to angle A / hypotenuse = AB / 1 = AB
15 Spot Check: Thales Theorem The shape defined by the endpoints of the two diameters will always form a rectangle. According to Thales theorem, whenever an angle is drawn from the diameter of a circle to a point on its circumference, then the angle formed is a right angle. All four endpoints represent angles drawn from the diameter of the circle to a point on the cirumference, therefore each of the four angles is a right angle.
16 Spot Check: Thales Theorem The shape defined by the endpoints of the two diameters will always form a rectangle. A quadrilateral with 4 right angles, will be a rectangle by definition of a rectangle. (A square is ALSO a rectangle, but one with additional properties. When the diameters cross at right angles then you will draw a square.)
17 Homework - Finding the Center On colored paper (or white unlined paper) plot 3 points (that are not all in a line). Label them (e.g. A, B, C). Then draw line segments that connect pairs of points. Use your compass and straight-edge to construct the perpendicular bisectors of the line segments. Place your compass point where 2 of the perpendicular bisectors intersect, then stretch out the pencil end of the compass to any one of your points (A, B or C) and draw a circle. You should find that you have found the point that is the same distance from all 3 points and so the circle you draw will have A, B and C all as points on the circumference of that circle. Do this activity 3 times to check that the process works every time and to help you gain confidence and skill doing the construction. Bring your papers with you to class on Friday - I will be collecting this homework assignment. See me at enrichment on Thursday if you need help. I'll be in room the computer lab.
Geometry of 2D Shapes
Name: Geometry of 2D Shapes Answer these questions in your class workbook: 1. Give the definitions of each of the following shapes and draw an example of each one: a) equilateral triangle b) isosceles
1. A student followed the given steps below to complete a construction. Which type of construction is best represented by the steps given above?
1. A student followed the given steps below to complete a construction. Step 1: Place the compass on one endpoint of the line segment. Step 2: Extend the compass from the chosen endpoint so that the width
Lesson 2: Circles, Chords, Diameters, and Their Relationships
Circles, Chords, Diameters, and Their Relationships Student Outcomes Identify the relationships between the diameters of a circle and other chords of the circle. Lesson Notes Students are asked to construct
POTENTIAL REASONS: Definition of Congruence:
Sec 6 CC Geometry Triangle Pros Name: POTENTIAL REASONS: Definition Congruence: Having the exact same size and shape and there by having the exact same measures. Definition Midpoint: The point that divides
Conjectures. Chapter 2. Chapter 3
Conjectures Chapter 2 C-1 Linear Pair Conjecture If two angles form a linear pair, then the measures of the angles add up to 180. (Lesson 2.5) C-2 Vertical Angles Conjecture If two angles are vertical
DEFINITIONS. Perpendicular Two lines are called perpendicular if they form a right angle.
DEFINITIONS Degree A degree is the 1 th part of a straight angle. 180 Right Angle A 90 angle is called a right angle. Perpendicular Two lines are called perpendicular if they form a right angle. Congruent
Grade 7 & 8 Math Circles Circles, Circles, Circles March 19/20, 2013
Faculty of Mathematics Waterloo, Ontario N2L 3G Introduction Grade 7 & 8 Math Circles Circles, Circles, Circles March 9/20, 203 The circle is a very important shape. In fact of all shapes, the circle is
Section 9-1. Basic Terms: Tangents, Arcs and Chords Homework Pages 330-331: 1-18
Chapter 9 Circles Objectives A. Recognize and apply terms relating to circles. B. Properly use and interpret the symbols for the terms and concepts in this chapter. C. Appropriately apply the postulates,
Chapter 6 Notes: Circles
Chapter 6 Notes: Circles IMPORTANT TERMS AND DEFINITIONS A circle is the set of all points in a plane that are at a fixed distance from a given point known as the center of the circle. Any line segment
CK-12 Geometry: Parts of Circles and Tangent Lines
CK-12 Geometry: Parts of Circles and Tangent Lines Learning Objectives Define circle, center, radius, diameter, chord, tangent, and secant of a circle. Explore the properties of tangent lines and circles.
Definitions, Postulates and Theorems
Definitions, s and s Name: Definitions Complementary Angles Two angles whose measures have a sum of 90 o Supplementary Angles Two angles whose measures have a sum of 180 o A statement that can be proven
Chapters 6 and 7 Notes: Circles, Locus and Concurrence
Chapters 6 and 7 Notes: Circles, Locus and Concurrence IMPORTANT TERMS AND DEFINITIONS A circle is the set of all points in a plane that are at a fixed distance from a given point known as the center of
Angles that are between parallel lines, but on opposite sides of a transversal.
GLOSSARY Appendix A Appendix A: Glossary Acute Angle An angle that measures less than 90. Acute Triangle Alternate Angles A triangle that has three acute angles. Angles that are between parallel lines,
CSU Fresno Problem Solving Session. Geometry, 17 March 2012
CSU Fresno Problem Solving Session Problem Solving Sessions website: http://zimmer.csufresno.edu/ mnogin/mfd-prep.html Math Field Day date: Saturday, April 21, 2012 Math Field Day website: http://www.csufresno.edu/math/news
Geometry Enduring Understandings Students will understand 1. that all circles are similar.
High School - Circles Essential Questions: 1. Why are geometry and geometric figures relevant and important? 2. How can geometric ideas be communicated using a variety of representations? ******(i.e maps,
Conjectures for Geometry for Math 70 By I. L. Tse
Conjectures for Geometry for Math 70 By I. L. Tse Chapter Conjectures 1. Linear Pair Conjecture: If two angles form a linear pair, then the measure of the angles add up to 180. Vertical Angle Conjecture:
New York State Student Learning Objective: Regents Geometry
New York State Student Learning Objective: Regents Geometry All SLOs MUST include the following basic components: Population These are the students assigned to the course section(s) in this SLO all students
The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Tuesday, August 13, 2013 8:30 to 11:30 a.m., only.
GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Tuesday, August 13, 2013 8:30 to 11:30 a.m., only Student Name: School Name: The possession or use of any communications
GEOMETRY. Constructions OBJECTIVE #: G.CO.12
GEOMETRY Constructions OBJECTIVE #: G.CO.12 OBJECTIVE Make formal geometric constructions with a variety of tools and methods (compass and straightedge, string, reflective devices, paper folding, dynamic
39 Symmetry of Plane Figures
39 Symmetry of Plane Figures In this section, we are interested in the symmetric properties of plane figures. By a symmetry of a plane figure we mean a motion of the plane that moves the figure so that
1 Solution of Homework
Math 3181 Dr. Franz Rothe February 4, 2011 Name: 1 Solution of Homework 10 Problem 1.1 (Common tangents of two circles). How many common tangents do two circles have. Informally draw all different cases,
The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Thursday, August 13, 2009 8:30 to 11:30 a.m., only.
GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Thursday, August 13, 2009 8:30 to 11:30 a.m., only Student Name: School Name: Print your name and the name of your
Angles in a Circle and Cyclic Quadrilateral
130 Mathematics 19 Angles in a Circle and Cyclic Quadrilateral 19.1 INTRODUCTION You must have measured the angles between two straight lines, let us now study the angles made by arcs and chords in a circle
Math 531, Exam 1 Information.
Math 531, Exam 1 Information. 9/21/11, LC 310, 9:05-9:55. Exam 1 will be based on: Sections 1A - 1F. The corresponding assigned homework problems (see http://www.math.sc.edu/ boylan/sccourses/531fa11/531.html)
Algebra Geometry Glossary. 90 angle
lgebra Geometry Glossary 1) acute angle an angle less than 90 acute angle 90 angle 2) acute triangle a triangle where all angles are less than 90 3) adjacent angles angles that share a common leg Example:
Objectives. Cabri Jr. Tools
^Åíáîáíó=NO Objectives To learn how to construct all types of triangles using the Cabri Jr. application To reinforce the difference between a construction and a drawing Cabri Jr. Tools fåíêççìåíáçå `çåëíêìåíáåö
Geometry Module 4 Unit 2 Practice Exam
Name: Class: Date: ID: A Geometry Module 4 Unit 2 Practice Exam Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which diagram shows the most useful positioning
Geometry. Higher Mathematics Courses 69. Geometry
The fundamental purpose of the course is to formalize and extend students geometric experiences from the middle grades. This course includes standards from the conceptual categories of and Statistics and
Area. Area Overview. Define: Area:
Define: Area: Area Overview Kite: Parallelogram: Rectangle: Rhombus: Square: Trapezoid: Postulates/Theorems: Every closed region has an area. If closed figures are congruent, then their areas are equal.
The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Wednesday, January 29, 2014 9:15 a.m. to 12:15 p.m.
GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Wednesday, January 29, 2014 9:15 a.m. to 12:15 p.m., only Student Name: School Name: The possession or use of any
Geometry Course Summary Department: Math. Semester 1
Geometry Course Summary Department: Math Semester 1 Learning Objective #1 Geometry Basics Targets to Meet Learning Objective #1 Use inductive reasoning to make conclusions about mathematical patterns Give
The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Thursday, August 13, 2015 8:30 to 11:30 a.m., only.
GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Thursday, August 13, 2015 8:30 to 11:30 a.m., only Student Name: School Name: The possession or use of any communications
GEOMETRY COMMON CORE STANDARDS
1st Nine Weeks Experiment with transformations in the plane G-CO.1 Know precise definitions of angle, circle, perpendicular line, parallel line, and line segment, based on the undefined notions of point,
Postulate 17 The area of a square is the square of the length of a. Postulate 18 If two figures are congruent, then they have the same.
Chapter 11: Areas of Plane Figures (page 422) 11-1: Areas of Rectangles (page 423) Rectangle Rectangular Region Area is measured in units. Postulate 17 The area of a square is the square of the length
The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Student Name:
GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Wednesday, August 18, 2010 8:30 to 11:30 a.m., only Student Name: School Name: Print your name and the name of
Chapter 3.1 Angles. Geometry. Objectives: Define what an angle is. Define the parts of an angle.
Chapter 3.1 Angles Define what an angle is. Define the parts of an angle. Recall our definition for a ray. A ray is a line segment with a definite starting point and extends into infinity in only one direction.
Set 4: Special Congruent Triangles Instruction
Instruction Goal: To provide opportunities for students to develop concepts and skills related to proving right, isosceles, and equilateral triangles congruent using real-world problems Common Core Standards
1. Find the length of BC in the following triangles. It will help to first find the length of the segment marked X.
1 Find the length of BC in the following triangles It will help to first find the length of the segment marked X a: b: Given: the diagonals of parallelogram ABCD meet at point O The altitude OE divides
Geometry Regents Review
Name: Class: Date: Geometry Regents Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. If MNP VWX and PM is the shortest side of MNP, what is the shortest
/27 Intro to Geometry Review
/27 Intro to Geometry Review 1. An acute has a measure of. 2. A right has a measure of. 3. An obtuse has a measure of. 13. Two supplementary angles are in ratio 11:7. Find the measure of each. 14. In the
Selected practice exam solutions (part 5, item 2) (MAT 360)
Selected practice exam solutions (part 5, item ) (MAT 360) Harder 8,91,9,94(smaller should be replaced by greater )95,103,109,140,160,(178,179,180,181 this is really one problem),188,193,194,195 8. On
The Geometry of Piles of Salt Thinking Deeply About Simple Things
The Geometry of Piles of Salt Thinking Deeply About Simple Things PCMI SSTP Tuesday, July 15 th, 2008 By Troy Jones Willowcreek Middle School Important Terms (the word line may be replaced by the word
The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Wednesday, January 28, 2015 9:15 a.m. to 12:15 p.m.
GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Wednesday, January 28, 2015 9:15 a.m. to 12:15 p.m., only Student Name: School Name: The possession or use of any
Chapter 11. Areas of Plane Figures You MUST draw diagrams and show formulas for every applicable homework problem!
Chapter 11 Areas of Plane Figures You MUST draw diagrams and show formulas for every applicable homework problem! Objectives A. Use the terms defined in the chapter correctly. B. Properly use and interpret
The Area of a Triangle Using Its Semi-perimeter and the Radius of the In-circle: An Algebraic and Geometric Approach
The Area of a Triangle Using Its Semi-perimeter and the Radius of the In-circle: An Algebraic and Geometric Approach Lesson Summary: This lesson is for more advanced geometry students. In this lesson,
Circle Name: Radius: Diameter: Chord: Secant:
12.1: Tangent Lines Congruent Circles: circles that have the same radius length Diagram of Examples Center of Circle: Circle Name: Radius: Diameter: Chord: Secant: Tangent to A Circle: a line in the plane
TIgeometry.com. Geometry. Angle Bisectors in a Triangle
Angle Bisectors in a Triangle ID: 8892 Time required 40 minutes Topic: Triangles and Their Centers Use inductive reasoning to postulate a relationship between an angle bisector and the arms of the angle.
Geometry: Classifying, Identifying, and Constructing Triangles
Geometry: Classifying, Identifying, and Constructing Triangles Lesson Objectives Teacher's Notes Lesson Notes 1) Identify acute, right, and obtuse triangles. 2) Identify scalene, isosceles, equilateral
2006 Geometry Form A Page 1
2006 Geometry Form Page 1 1. he hypotenuse of a right triangle is 12" long, and one of the acute angles measures 30 degrees. he length of the shorter leg must be: () 4 3 inches () 6 3 inches () 5 inches
Exploring Geometric Mean
Exploring Geometric Mean Lesson Summary: The students will explore the Geometric Mean through the use of Cabrii II software or TI 92 Calculators and inquiry based activities. Keywords: Geometric Mean,
56 questions (multiple choice, check all that apply, and fill in the blank) The exam is worth 224 points.
6.1.1 Review: Semester Review Study Sheet Geometry Core Sem 2 (S2495808) Semester Exam Preparation Look back at the unit quizzes and diagnostics. Use the unit quizzes and diagnostics to determine which
Heron s Formula. Key Words: Triangle, area, Heron s formula, angle bisectors, incenter
Heron s Formula Lesson Summary: Students will investigate the Heron s formula for finding the area of a triangle. The lab has students find the area using three different methods: Heron s, the basic formula,
Unit 2 - Triangles. Equilateral Triangles
Equilateral Triangles Unit 2 - Triangles Equilateral Triangles Overview: Objective: In this activity participants discover properties of equilateral triangles using properties of symmetry. TExES Mathematics
CIRCLE COORDINATE GEOMETRY
CIRCLE COORDINATE GEOMETRY (EXAM QUESTIONS) Question 1 (**) A circle has equation x + y = 2x + 8 Determine the radius and the coordinates of the centre of the circle. r = 3, ( 1,0 ) Question 2 (**) A circle
Geometry Unit 5: Circles Part 1 Chords, Secants, and Tangents
Geometry Unit 5: Circles Part 1 Chords, Secants, and Tangents Name Chords and Circles: A chord is a segment that joins two points of the circle. A diameter is a chord that contains the center of the circle.
QUADRILATERALS CHAPTER 8. (A) Main Concepts and Results
CHAPTER 8 QUADRILATERALS (A) Main Concepts and Results Sides, Angles and diagonals of a quadrilateral; Different types of quadrilaterals: Trapezium, parallelogram, rectangle, rhombus and square. Sum of
San Jose Math Circle April 25 - May 2, 2009 ANGLE BISECTORS
San Jose Math Circle April 25 - May 2, 2009 ANGLE BISECTORS Recall that the bisector of an angle is the ray that divides the angle into two congruent angles. The most important results about angle bisectors
The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Student Name:
GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Thursday, June 17, 2010 1:15 to 4:15 p.m., only Student Name: School Name: Print your name and the name of your
TImath.com. Geometry. Points on a Perpendicular Bisector
Points on a Perpendicular Bisector ID: 8868 Time required 40 minutes Activity Overview In this activity, students will explore the relationship between a line segment and its perpendicular bisector. Once
GEOMETRY CONCEPT MAP. Suggested Sequence:
CONCEPT MAP GEOMETRY August 2011 Suggested Sequence: 1. Tools of Geometry 2. Reasoning and Proof 3. Parallel and Perpendicular Lines 4. Congruent Triangles 5. Relationships Within Triangles 6. Polygons
Archimedes and the Arbelos 1 Bobby Hanson October 17, 2007
rchimedes and the rbelos 1 obby Hanson October 17, 2007 The mathematician s patterns, like the painter s or the poet s must be beautiful; the ideas like the colours or the words, must fit together in a
Sandia High School Geometry Second Semester FINAL EXAM. Mark the letter to the single, correct (or most accurate) answer to each problem.
Sandia High School Geometry Second Semester FINL EXM Name: Mark the letter to the single, correct (or most accurate) answer to each problem.. What is the value of in the triangle on the right?.. 6. D.
Geometry Chapter 10 Study Guide Name
eometry hapter 10 Study uide Name Terms and Vocabulary: ill in the blank and illustrate. 1. circle is defined as the set of all points in a plane that are equidistant from a fixed point called the center.
Warm-up Tangent circles Angles inside circles Power of a point. Geometry. Circles. Misha Lavrov. ARML Practice 12/08/2013
Circles ARML Practice 12/08/2013 Solutions Warm-up problems 1 A circular arc with radius 1 inch is rocking back and forth on a flat table. Describe the path traced out by the tip. 2 A circle of radius
Solutions to Practice Problems
Higher Geometry Final Exam Tues Dec 11, 5-7:30 pm Practice Problems (1) Know the following definitions, statements of theorems, properties from the notes: congruent, triangle, quadrilateral, isosceles
Unit 3: Circles and Volume
Unit 3: Circles and Volume This unit investigates the properties of circles and addresses finding the volume of solids. Properties of circles are used to solve problems involving arcs, angles, sectors,
Mathematics Geometry Unit 1 (SAMPLE)
Review the Geometry sample year-long scope and sequence associated with this unit plan. Mathematics Possible time frame: Unit 1: Introduction to Geometric Concepts, Construction, and Proof 14 days This
CHAPTER 8 QUADRILATERALS. 8.1 Introduction
CHAPTER 8 QUADRILATERALS 8.1 Introduction You have studied many properties of a triangle in Chapters 6 and 7 and you know that on joining three non-collinear points in pairs, the figure so obtained is
Additional Topics in Math
Chapter Additional Topics in Math In addition to the questions in Heart of Algebra, Problem Solving and Data Analysis, and Passport to Advanced Math, the SAT Math Test includes several questions that are
Contents. 2 Lines and Circles 3 2.1 Cartesian Coordinates... 3 2.2 Distance and Midpoint Formulas... 3 2.3 Lines... 3 2.4 Circles...
Contents Lines and Circles 3.1 Cartesian Coordinates.......................... 3. Distance and Midpoint Formulas.................... 3.3 Lines.................................. 3.4 Circles..................................
POTENTIAL REASONS: Definition of Congruence: Definition of Midpoint: Definition of Angle Bisector:
Sec 1.6 CC Geometry Triangle Proofs Name: POTENTIAL REASONS: Definition of Congruence: Having the exact same size and shape and there by having the exact same measures. Definition of Midpoint: The point
MATHEMATICS Grade 12 EUCLIDEAN GEOMETRY: CIRCLES 02 JULY 2014
EUCLIDEAN GEOMETRY: CIRCLES 02 JULY 2014 Checklist Make sure you learn proofs of the following theorems: The line drawn from the centre of a circle perpendicular to a chord bisects the chord The angle
Practice Test Answer and Alignment Document Mathematics: Geometry Performance Based Assessment - Paper
The following pages include the answer key for all machine-scored items, followed by the rubrics for the hand-scored items. - The rubrics show sample student responses. Other valid methods for solving
The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Tuesday, January 26, 2016 1:15 to 4:15 p.m., only.
GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Tuesday, January 26, 2016 1:15 to 4:15 p.m., only Student Name: School Name: The possession or use of any communications
7.4A/7.4B STUDENT ACTIVITY #1
7.4A/7.4B STUDENT ACTIVITY #1 Write a formula that could be used to find the radius of a circle, r, given the circumference of the circle, C. The formula in the Grade 7 Mathematics Chart that relates the
Name Date Class. Lines and Segments That Intersect Circles. AB and CD are chords. Tangent Circles. Theorem Hypothesis Conclusion
Section. Lines That Intersect Circles Lines and Segments That Intersect Circles A chord is a segment whose endpoints lie on a circle. A secant is a line that intersects a circle at two points. A tangent
GEOMETRIC MENSURATION
GEOMETRI MENSURTION Question 1 (**) 8 cm 6 cm θ 6 cm O The figure above shows a circular sector O, subtending an angle of θ radians at its centre O. The radius of the sector is 6 cm and the length of the
2004 Solutions Ga lois Contest (Grade 10)
Canadian Mathematics Competition An activity of The Centre for Education in Ma thematics and Computing, University of W aterloo, Wa terloo, Ontario 2004 Solutions Ga lois Contest (Grade 10) 2004 Waterloo
For the circle above, EOB is a central angle. So is DOE. arc. The (degree) measure of ù DE is the measure of DOE.
efinition: circle is the set of all points in a plane that are equidistant from a given point called the center of the circle. We use the symbol to represent a circle. The a line segment from the center
The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Thursday, January 24, 2013 9:15 a.m. to 12:15 p.m.
GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Thursday, January 24, 2013 9:15 a.m. to 12:15 p.m., only Student Name: School Name: The possession or use of any
Class-10 th (X) Mathematics Chapter: Tangents to Circles
Class-10 th (X) Mathematics Chapter: Tangents to Circles 1. Q. AB is line segment of length 24 cm. C is its midpoint. On AB, AC and BC semicircles are described. Find the radius of the circle which touches
Discovering Math: Exploring Geometry Teacher s Guide
Teacher s Guide Grade Level: 6 8 Curriculum Focus: Mathematics Lesson Duration: Three class periods Program Description Discovering Math: Exploring Geometry From methods of geometric construction and threedimensional
Angle - a figure formed by two rays or two line segments with a common endpoint called the vertex of the angle; angles are measured in degrees
Angle - a figure formed by two rays or two line segments with a common endpoint called the vertex of the angle; angles are measured in degrees Apex in a pyramid or cone, the vertex opposite the base; in
Duplicating Segments and Angles
CONDENSED LESSON 3.1 Duplicating Segments and ngles In this lesson, you Learn what it means to create a geometric construction Duplicate a segment by using a straightedge and a compass and by using patty
Quadrilaterals GETTING READY FOR INSTRUCTION
Quadrilaterals / Mathematics Unit: 11 Lesson: 01 Duration: 7 days Lesson Synopsis: In this lesson students explore properties of quadrilaterals in a variety of ways including concrete modeling, patty paper
Blue Pelican Geometry Theorem Proofs
Blue Pelican Geometry Theorem Proofs Copyright 2013 by Charles E. Cook; Refugio, Tx (All rights reserved) Table of contents Geometry Theorem Proofs The theorems listed here are but a few of the total in
Curriculum Map by Block Geometry Mapping for Math Block Testing 2007-2008. August 20 to August 24 Review concepts from previous grades.
Curriculum Map by Geometry Mapping for Math Testing 2007-2008 Pre- s 1 August 20 to August 24 Review concepts from previous grades. August 27 to September 28 (Assessment to be completed by September 28)
Chapter 7 Quiz. (1.) Which type of unit can be used to measure the area of a region centimeter, square centimeter, or cubic centimeter?
Chapter Quiz Section.1 Area and Initial Postulates (1.) Which type of unit can be used to measure the area of a region centimeter, square centimeter, or cubic centimeter? (.) TRUE or FALSE: If two plane
Lesson 3.1 Duplicating Segments and Angles
Lesson 3.1 Duplicating Segments and ngles In Exercises 1 3, use the segments and angles below. Q R S 1. Using only a compass and straightedge, duplicate each segment and angle. There is an arc in each
Geometry and Measurement
The student will be able to: Geometry and Measurement 1. Demonstrate an understanding of the principles of geometry and measurement and operations using measurements Use the US system of measurement for
Mathematics 3301-001 Spring 2015 Dr. Alexandra Shlapentokh Guide #3
Mathematics 3301-001 Spring 2015 Dr. Alexandra Shlapentokh Guide #3 The problems in bold are the problems for Test #3. As before, you are allowed to use statements above and all postulates in the proofs
Geometry Unit 10 Notes Circles. Syllabus Objective: 10.1 - The student will differentiate among the terms relating to a circle.
Geometry Unit 0 Notes ircles Syllabus Objective: 0. - The student will differentiate among the terms relating to a circle. ircle the set of all points in a plane that are equidistant from a given point,
Comprehensive Benchmark Assessment Series
Test ID #1910631 Comprehensive Benchmark Assessment Series Instructions: It is time to begin. The scores of this test will help teachers plan lessons. Carefully, read each item in the test booklet. Select
Practical Geometry CHAPTER. 4.1 Introduction DO THIS
PRACTICAL GEOMETRY 57 Practical Geometry CHAPTER 4 4.1 Introduction You have learnt how to draw triangles in Class VII. We require three measurements (of sides and angles) to draw a unique triangle. Since
GEOMETRY. Chapter 1: Foundations for Geometry. Name: Teacher: Pd:
GEOMETRY Chapter 1: Foundations for Geometry Name: Teacher: Pd: Table of Contents Lesson 1.1: SWBAT: Identify, name, and draw points, lines, segments, rays, and planes. Pgs: 1-4 Lesson 1.2: SWBAT: Use
CCGPS UNIT 3 Semester 1 ANALYTIC GEOMETRY Page 1 of 32. Circles and Volumes Name:
GPS UNIT 3 Semester 1 NLYTI GEOMETRY Page 1 of 3 ircles and Volumes Name: ate: Understand and apply theorems about circles M9-1.G..1 Prove that all circles are similar. M9-1.G.. Identify and describe relationships
The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY
GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Wednesday, June 20, 2012 9:15 a.m. to 12:15 p.m., only Student Name: School Name: Print your name and the name
The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Thursday, January 26, 2012 9:15 a.m. to 12:15 p.m.
GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXMINTION GEOMETRY Thursday, January 26, 2012 9:15 a.m. to 12:15 p.m., only Student Name: School Name: Print your name and the name
The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Thursday, August 16, 2012 8:30 to 11:30 a.m.
GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Thursday, August 16, 2012 8:30 to 11:30 a.m., only Student Name: School Name: Print your name and the name of your
Right Triangles 4 A = 144 A = 16 12 5 A = 64
Right Triangles If I looked at enough right triangles and experimented a little, I might eventually begin to notice a relationship developing if I were to construct squares formed by the legs of a right
