What is Greenhouse Effect?

Similar documents
FACTS ABOUT CLIMATE CHANGE

Climate Control and Ozone Depletion. Chapter 19

Phosphorus and Sulfur

The atmosphere has a number of gases, often in tiny amounts, which trap the heat given out by the Earth.

Chapter 7: Greenhouse gases and particulate matter

Fact Sheet Series for Key Stages 2 & 3

climate science A SHORT GUIDE TO This is a short summary of a detailed discussion of climate change science.

AP* Environmental Science: Atmosphere and Air Pollution Answer Section

The Greenhouse Effect. Lan Ma Global Warming: Problems & Solutions 17 September, 2007

CARBON THROUGH THE SEASONS

The Atmosphere. Introduction Greenhouse Effect/Climate Change/Global Warming

Chapter 3: Climate and Climate Change Answers

The Earth s Atmosphere

Data Sets of Climate Science

GREENHOUSE EFFECT & GLOBAL WARMING - The internet as the primary source of information

COST OF GREENHOUSE GAS MITIGATION [21jun, 10jul 1pm]

Jessica Blunden, Ph.D., Scientist, ERT Inc., Climate Monitoring Branch, NOAA s National Climatic Data Center

Solar Flux and Flux Density. Lecture 3: Global Energy Cycle. Solar Energy Incident On the Earth. Solar Flux Density Reaching Earth

Environmental Chemistry (Air)

MCQ - ENERGY and CLIMATE

AP ENVIRONMENTAL SCIENCE 2013 SCORING GUIDELINES

READING COMPREHENSION I SIR ISAAC NEWTON

GETTING TO THE CORE: THE LINK BETWEEN TEMPERATURE AND CARBON DIOXIDE

Review 1. Multiple Choice Identify the choice that best completes the statement or answers the question.

The Balance of Power in the Earth-Sun System

Policy & Management Applications of Blue Carbon. fact SHEET

Climate Change Mini-Simulation: Background Guide

Calculating the Environmental Impact of Aviation Emissions

The Science and Ethics of Global warming. Global warming has become one of the central political and scientific issues of

Worksheet A Environmental Problems

Energy Pathways in Earth s Atmosphere

GLOBAL CIRCULATION OF WATER

For public information only; not an official document. November 2013

Climate Change and Protection of the Habitat: Empirical Evidence for the Greenhouse Effect and Global Warming

CHAPTER 5 Lectures 10 & 11 Air Temperature and Air Temperature Cycles

Climate Models: Uncertainties due to Clouds. Joel Norris Assistant Professor of Climate and Atmospheric Sciences Scripps Institution of Oceanography

Facts on CO 2 Capture and Storage

Ch Air, Weather, and Climate. Outline

Paleo-Earth System Modelling

Finding Ways to Postpone Climate Tipping Points Using Updated Metrics

Climate Change on the Prairie:

GLOBAL WARMING : THE SIGNIFICANCE OF METHANE

Orbital-Scale Climate Change

BRSP-7 Page 1. A Open B Covered C Covered / Water. Two different experiments are presented, each experiment using a different pair of models:

Earth Sciences -- Grades 9, 10, 11, and 12. California State Science Content Standards. Mobile Climate Science Labs

Climate Change: A Local Focus on a Global Issue Newfoundland and Labrador Curriculum Links

California Standards Grades 9 12 Boardworks 2009 Science Contents Standards Mapping

Climate changes. MED-HYCOS CRP IRD BP 5045 AGROPOLIS Montpellier marc.morell@mpl.ird.fr. by Marc Morell

The Polar Climate Zones

AP ENVIRONMENTAL SCIENCE 2007 SCORING GUIDELINES

THE ECOSYSTEM - Biomes

Chapter 1.9 Global Environmental Concerns

Global Warming. Charles F. Keller

«Introduce a tax on Carbon Dioxide»

Fundamentals of Climate Change (PCC 587): Water Vapor

Global Warming and Greenhouse Gases Reading Assignment

Climate Lingo Bingo. Climate Discovery: Climate Future. Teacher s Guide. National Science Content Standards Addressed:

Lesson Plan Simulating the Greenhouse Effect in a Terrarium.

CHAPTER 3 Heat and energy in the atmosphere

PRIZE WINNING ENTRY (FIRST PRIZE) IN ICAR NATIONAL ESSAY COMPETITION FOR SCHOOL CHILDREN Global Climatic Changes & Its Effect on Agriculture

Climate Change and Renewable Energy A Perspective from a Measurements Viewpoint

ESCI 107/109 The Atmosphere Lesson 2 Solar and Terrestrial Radiation

History of Chlorofluorocarbons

Frequently Asked Question 1.1 What Factors Determine Earth s Climate?

How Do Oceans Affect Weather and Climate?

Changing Clouds in a Changing Climate: Anthropogenic Influences

Economic Development and the Risk of Global Climate Change

The climate cooling potential of different geoengineering options

Lecture 1: A Brief Survey of the Atmosphere

For public information only; not an official document. March 2013

Introduction to the Greenhouse Effect

The Nitrogen Cycle. What is Nitrogen? Human Alteration of the Global Nitrogen Cycle. How does the nitrogen cycle work?

AP ENVIRONMENTAL SCIENCE 2010 SCORING GUIDELINES

2. What kind of energy is stored in food? A. chemical energy B. heat energy C. kinetic energy D. light energy

Amherst County Public Schools. AP Environmental Science Curriculum Pacing Guide. College Board AP Environmental Science Site

What are the subsystems of the Earth? The 4 spheres

THE WATER CYCLE. Ecology

The Climate System: an Overview

Composition of the Atmosphere. Outline Atmospheric Composition Nitrogen and Oxygen Lightning Homework

SPQ Module 3 Solar Power

Implications of Abundant Natural Gas

Which of the following can be determined based on this model? The atmosphere is the only reservoir on Earth that can store carbon in any form. A.

Atmospheric Processes

Chesapeake Bay Governor School for Marine and Environmental Science

How To Predict Climate Change In Tonga

SUPPLEMENTARY TOPIC 3 ENERGY AND CHEMICAL REACTIONS

The Ice Age By: Sue Peterson

Systems Thinking and Modeling Climate Change Amy Pallant, Hee-Sun Lee, and Sarah Pryputniewicz

A Global Warming Primer

Biomes An Overview of Ecology Biomes Freshwater Biomes

ENERGY & ENVIRONMENT

degrees Fahrenheit. Scientists believe it's human activity that's driving the temperatures up, a process

Understanding the Changes to Global Warming Potential (GWP) Values

GCOS science conference, 2 Mar. 2016, Amsterdam. Japan Meteorological Agency (JMA)

Introduction to Non- Conventional Energy Systems

AP ENVIRONMENTAL SCIENCE 2012 SCORING GUIDELINES

Climate change: a summary of the science

global warming Encyclopedic Entry

Climate Change. Impacts, answers to common questions about the science of climate change

Transcription:

Climatological Information Services > Climate Change > Green House Effect What is Greenhouse Effect? The Greenhouse Effect is a term that refers to a physical property of the Earth's atmosphere. If the Earth had no atmosphere, its average surface temperature would be very low of about 18 rather than the comfortable 15 found today. The difference in temperature is due to a suite of gases called greenhouse gases which affect the overall energy balance of the Earth's system by absorbing infra red radiation. In its existing state, the Earthatmosphere system balances absorption of solar radiation by emission of infrared radiation to space (Fig. 1. Due to greenhouse gases, the atmosphere absorbs more infrared energy than it re radiates to space, resulting in a net warming of the Earth atmosphere system and of surface temperature. This is the Natural Greenhouse Effect. With more greenhouse gases released to the atmosphere due to human activity, more infrared radiation will be trapped in the Earth's surface which contributes to the Enhanced Greenhouse Effect. Fig. 1 A simplified diagram illustrating the global long term radiative balance of the atmosphere. Net input of solar radiation (240 Wm 2 must be balanced by net output of infrared radiation. About a third (103 Wm 2 of incoming solar radiation is reflected and the remainder is mostly absorbed by the surface. Outgoing infrared radiation is absorbed by greenhouse gases and by clouds keeping the surface about 33 warmer than it would otherwise be. Types of Greenhouse gases Greenhouse gases comprise less than 1% of the atmosphere. Their levels are determined by a balance between sources and sinks. Sources and sinks are processes that generate and destroy greenhouse gases respectively. Human affect greenhouse gas levels by introducing new sources or by interfering with natural sinks. The major greenhouse gases in the atmosphere are carbon dioxide (CO 2, methane, (CH 4, nitrous oxide (N 2 O, chlorofluorocarbons (CFCs and ozone (O 3. Atmospheric water vapour (H 2 O also makes a large contribution to the natural greenhouse effect but it is thought that its presence is not directly affected by human activity. Characteristics of some of the greenhouse gases are shown in Table 1. Global Warming Potential (GWP Different greenhouse gases exert different effects on the Earth's energy balance. In order to assist policymakers to measure the impact of various greenhouse gases on global warming, the concept of Global Warming Potentials (GWPs was introduced by the Intergovernmental Panel on Climate Change (IPCC in its 1990 report. GWP reflects the relative strength of individual greenhouse gas with respect to its impact on global warming. It was defined as the cumulative radiative forcing* between the present and some future time caused by a unit mass of greenhouse gas emitted now, expressed relative to CO 2. The GWPs developed by IPCC for a number of greenhouse gases are shown in Table 2. Global Warming Potentials take into account the differing atmospheric lifetimes and abilities of various gases to absorb radiation. Derivations of GWPs requires knowledge of the fate of the emitted gas (typically not well understood and the radiative forcing due to the amount remaining in the atmosphere (reasonably well

understood. Hence, GWPs encompass certain uncertainty, typically + 35% relative to CO 2 reference. * Radiative forcing is defined as a change in average net radiation at the top of the troposphere (tropopause due to a change in either solar or infrared radiation. A radiative forcing perturbs the balance between incoming and outgoing radiation. A positive radiative forcing tends on average to warm the Earth's surface; a negative radiative forcing tends on average to cool the Earth's surface. Trends in greenhouse gas concentrations a Carbon Dioxide (CO 2 High quality observations of the concentration of CO 2 began in 1958, with flask measurements at the Mauna Loa Observatory in Hawaii. Fig. 2 shows that the average annual concentration of CO 2 in the atmosphere has risen from about 315 ppmv (part per million by volume in 1958 to around 363 ppmv in 1997. There is a clear annual cycle in the Mauna Loa data that corresponds to the annual cycle of plant respiration in the Northern Hemisphere : CO 2 concentration increase during the Fall and Winter and decline during Spring and Summer. This cycle, follows the growth and die back of vegetation, is reversed and of smaller amplitude in the Southern Hemisphere, and disappears almost entirely in the data measured near the Equator. Fig. 2 Atmospheric carbon dioxide monthly mean mixing ratios. Data prior to May 1974 are from the Scripps Institution of Oceanography (, data since May 1974 are from the U.S. National Oceanic and Atmospheric Administration (. A long term trend curve ( is fitted to the monthly mean values. b Methane (CH 4 The rate of increase of the atmospheric abundance of methane has declined over the last decade, slowing dramatically in 1991 to 1992, though with an apparent increase in the growth rate in late 1993 (Fig. 3. The average trend over 1980 to 1990 is about 13 ppbv/year (part per billion by volume/year. Fig. 3 Atmospheric methane mixing ratios from discrete air samples collected at Mauna Loa, Hawaii. A smooth curve (red and long term trend (green are fitted to the measurements (blue.

c Nitrous Oxide (N 2 O Over the last four decades, the average growth rate of N 2 O is about 0.25%/year (Fig. 4. Current tropospheric concentration of N 2 O is around 312 to 314 ppbv. Fig. 4 Atmospheric N2O mixing ratios. d Chlorofluorocarbons (CFCs Among the family compounds of chlorocarbons, CFCl 3 (CFC 11 and CF 2 Cl 2 (CFC 12 are receiving more attention because of their larger concentrations and potentially significant effects on stratospheric ozone. CFC 11 and CFC 12 have the highest concentrations of the man made chlorocarbons, around 0.27 and 0.55 ppbv, respectively (measured at Mauna Loa in 1997, Fig. 5 & 6. As indicated in their GWP values, these two gases are strong infrared absorbers. It is thought that CFC 11 and CFC 12 have contributed about one third of the radiative forcing of gases other than CO 2 during the 1980s. Fig. 5 Atmospheric CFC 11 mixing ratio.

Fig. 6 Atmospheric CFC 12 mixing ratios. ( Courtesy: Mauna Loa Observatory, Hawaii Consequences of Enhanced Greenhouse Effect i Global Warming Increase of greenhouse gases concentration causes a reduction in outgoing infrared radiation, thus the Earth's climate must change somehow to restore the balance between incoming and outgoing radiation. This climatic change will include a global warming of the Earth's surface and the lower atmosphere as warming up is the simplest way for the climate to get rid of the extra energy. However, a small rise in temperature will induce many other changes, for example, cloud cover and wind patterns. Some of these changes may act to enhance the warming (positive feedbacks, others to counteract it (negative feedbacks. Using complex climate models, the "Intergovernmental Panel on Climate Change" in their third assessment report has forecast that global mean surface temperature will rise by 1.4 to 5.8 by the end of 2100. This projection takes into account the effects of aerosols which tend to cool the climate as well as the delaying effects of the oceans which have a large thermal capacity. However, there are many uncertainties associated with this projection such as future emission rates of greenhouse gases, climate feedbacks, and the size of the ocean delay...etc. ii Sea Level Rise If global warming takes place, sea level will rise due to two different processes. Firstly, warmer temperature cause sea level to rise due to the thermal expansion of seawater. Secondly, water from melting glaciers and the ice sheets of Greenland and the Antarctica would also add water to the ocean. It is predicted that the Earth's average sea level will rise by 0.09 to 0.88 m between 1990 and 2100. Potential Impact on human life a Economic Impact Over half of the human population lives within 100 kilometres of the sea. Most of this population lives in urban areas that serve as seaports. A measurable rise in sea level will have a severe economic impact on low lying coastal areas and islands, for examples, increasing the beach erosion rates along coastlines, rising sea level displacing fresh groundwater for a substantial distance inland. b Agricultural Impact Experiments have shown that with higher concentrations of CO 2, plants can grow bigger and faster. However, the effect of global warming may affect the atmospheric general circulation and thus altering the global precipitation pattern as well as changing the soil moisture contents over various continents. Since it is unclear how global warming will affect climate on a regional or local scale, the probable effects on the biosphere remains uncertain. c Effects on Aquatic systems The loss of coastal wetlands could certainly reduce fish populations, especially shellfish. Increased salinity in estuaries could reduce the abundance of freshwater species but could increase the presence of marine species. However, the full impact on marine species is not known. d Effects on Hydrological Cycle Global precipitation is likely to increase. However, it is not known how regional rainfall patterns will change. Some regions may have more rainfall, while others may have less. Furthermore, higher temperatures would probably increase evaporation. These changes would probably create new stresses for many water management systems.

Table 1 Characteristics of some major greenhouse gases Greenhouse gas Sources Sinks Importance for climate Carbon Dioxide (CO 2 1 Burning of fossil fuel 2 Land use change (deforestation 1 Ocean Uptake 2 Plants photosynthesis stratospheric O 3 Methane (CH 4 1 Biomass burning 2 Enteric fermentation 3Rice paddies 1 Reactions with OH 2 Microorganisms uptake by soils tropospheric O 3 and OH; affects stratospheric O 3 and H 2 O; produces CO 2 Nitrous Oxide (N 2 O 1 Biomass burning 2 Fossil fuel combustion 3 Fertilizers 1 Removal by soils 2 Stratospheric photolysis and reaction with O stratospheric O 3 Ozone (O 3 Photochemical reactions involving O 2 Catalytic chemical reactions involving NO x, ClO x and HO x species. Absorbs ultraviolet and infrared radiation Carbon Monoxide (CO 1 Plant emissions 2 Man made release (transport, industrial 1 Soil uptake 2 Reactions with OH Affects stratospheric O 3 and OH cycles; produces CO 2 Chlorofluorocarbons (CFCs Industrial production Insignificant in troposphere, dissociated in stratosphere (photolysis and reaction with O stratospheric O 3 Sulphur Dioxide (SO 2 1 Volcanoes 2 Coal and Biomass burning 1 Dry and wet deposition 2 Reactions with OH Forms aerosols, which scatter solar radiation Table 2 Global Warming Potentials (GWPs following the instantaneous injection of 1 Kg of each Greenhouse gas, relative to 1 Kg of CO 2 (Based on Intergovernmental Panel on Climate Change Third Assessment Report, 2001 Greenhouse gas Estimated Lifetime (years Global Warming Potential 20 years 100 years 500 years Carbon Dioxide (CO 2 Variable 1 1 1 Methane (CH 4 12.0 62 23 7 Nitrous Oxide (N 2 O 114 275 296 156 Chlorofluorocarbons (CFCs i CFCl 3 (CFC 11 45 6300 4600 1600 ii CF 2 Cl 2 (CFC 12 100 10200 10600 5200

iii CClF 3 (CFC 13 640 10000 14000 16300 iv C 2 F 3 Cl 3 (CFC 113 85 6100 6000 2700 v C 2 F 4 Cl 2 (CFC 114 300 7500 9800 8700 vi C 2 F 5 Cl (CFC 115 1700 4900 7200 9900