Internet Routing and MPLS

Similar documents
Multiprotocol Label Switching (MPLS)

Computer Network Architectures and Multimedia. Guy Leduc. Chapter 2 MPLS networks. Chapter 2: MPLS

MPLS Basics. For details about MPLS architecture, refer to RFC 3031 Multiprotocol Label Switching Architecture.

Introducing Basic MPLS Concepts

Course Description. Students Will Learn

MPLS Multiprotocol Label Switching

MPLS Concepts. Overview. Objectives

MPLS. Packet switching vs. circuit switching Virtual circuits

MPLS - A Choice of Signaling Protocol

MPLS is the enabling technology for the New Broadband (IP) Public Network

MPLS Traffic Engineering - A Choice Of Signaling Protocols

Internet, Part 2. 1) Session Initiating Protocol (SIP) 2) Quality of Service (QoS) support. 3) Mobility aspects (terminal vs. personal mobility)

Migrating to MPLS Technology and Applications

Multi-Protocol Label Switching To Support Quality of Service Needs

WAN Topologies MPLS. 2006, Cisco Systems, Inc. All rights reserved. Presentation_ID.scr Cisco Systems, Inc. All rights reserved.

An Introduction to MPLS

MPLS Based Recovery Mechanisms

Master Course Computer Networks IN2097

OPNET simulation of voice over MPLS With Considering Traffic Engineering

Introduction to MPLS and Traffic Engineering

Broadband Networks. Prof. Karandikar. Department of Electrical Engineering. Indian Institute of Technology, Bombay. Lecture - 26

Analysis of traffic engineering parameters while using multi-protocol label switching (MPLS) and traditional IP networks

How To Provide Qos Based Routing In The Internet

QoS Implementation For MPLS Based Wireless Networks

Multiprotocol Label Switching Architecture & LDP. Introduction MPLS Basics LDP Procedures LDP Specification

APPLICATION NOTE 211 MPLS BASICS AND TESTING NEEDS. Label Switching vs. Traditional Routing

Quality of Service Routing in MPLS Networks Using Delay and Bandwidth Constraints

Performance Evaluation of Voice Traffic over MPLS Network with TE and QoS Implementation

VoIP versus VoMPLS Performance Evaluation

Quality of Service in the Internet. QoS Parameters. Keeping the QoS. Traffic Shaping: Leaky Bucket Algorithm

Network management and QoS provisioning - QoS in the Internet

A Preferred Service Architecture for Payload Data Flows. Ray Gilstrap, Thom Stone, Ken Freeman

MPLS-based Virtual Private Network (MPLS VPN) The VPN usually belongs to one company and has several sites interconnected across the common service

Multi Protocol Label Switching (MPLS) is a core networking technology that

Overview. QoS, Traffic Engineering and Control- Plane Signaling in the Internet. Telematics group University of Göttingen, Germany. Dr.

20. Switched Local Area Networks

Recovery Modeling in MPLS Networks

ISTANBUL. 1.1 MPLS overview. Alcatel Certified Business Network Specialist Part 2

QoS Parameters. Quality of Service in the Internet. Traffic Shaping: Congestion Control. Keeping the QoS

Overview of Voice Over Internet Protocol

Lesson 13: MPLS Networks

Investigation and Comparison of MPLS QoS Solution and Differentiated Services QoS Solutions

Industry s First QoS- Enhanced MPLS TE Solution

MPLS. A Tutorial. Paresh Khatri. paresh.khatri@alcatel-lucent.com.au

Chapter 9. IP Secure

Lecture 8: Routing I Distance-vector Algorithms. CSE 123: Computer Networks Stefan Savage

Path Selection Analysis in MPLS Network Based on QoS

MPLS Environment. To allow more complex routing capabilities, MPLS permits attaching a

How To Understand The Benefits Of An Mpls Network

How Routers Forward Packets

A New Fault Tolerant Routing Algorithm For GMPLS/MPLS Networks

Implementing MPLS VPN in Provider's IP Backbone Luyuan Fang AT&T

MPLS Quality of Service What Is It? Carsten Rossenhövel EANTC (European Advanced Networking Test Center)

Bandwidth Management in MPLS Networks

RSVP- A Fault Tolerant Mechanism in MPLS Networks

Internetworking and Internet-1. Global Addresses

MPLS in Private Networks Is It a Good Idea?

MikroTik RouterOS Introduction to MPLS. Prague MUM Czech Republic 2009

IP Switching: Issues and Alternatives

Adopting SCTP and MPLS-TE Mechanism in VoIP Architecture for Fault Recovery and Resource Allocation

PROTECTION ALGORITHMS FOR BANDWIDTH GUARANTEED CONNECTIONS IN MPLS NETWORKS WONG SHEK YOON

IP-Telephony Quality of Service (QoS)

How To Make A Network Secure

Management of Telecommunication Networks. Prof. Dr. Aleksandar Tsenov

Link Failure Recovery. for MPLS Networks with Multicasting

MPLS VPNs with DiffServ A QoS Performance study

Data Networking and Architecture. Delegates should have some basic knowledge of Internet Protocol and Data Networking principles.

Evolution of QoS routing in the Internet

IMPLEMENTING CISCO MPLS V3.0 (MPLS)

Implementing Multiprotocol Label Switching with Altera PLDs

MULTIPLE FAULT TOLERANCE IN MPLS NETWORK USING OPEN SOURCE NETWORK SIMULATOR

Implement a QoS Algorithm for Real-Time Applications in the DiffServ-aware MPLS Network

QUALITY OF SERVICE INTRODUCTION TO QUALITY OF SERVICE CONCEPTS AND PROTOCOLS

Nortel Technology Standards and Protocol for IP Telephony Solutions

Internet Firewall CSIS Packet Filtering. Internet Firewall. Examples. Spring 2011 CSIS net15 1. Routers can implement packet filtering

IP/MPLS-Based VPNs Layer-3 vs. Layer-2

HPSR 2002 Kobe, Japan. Towards Next Generation Internet. Bijan Jabbari, PhD Professor, George Mason University

Performance Evaluation of Multicast Transmission on MPLS Network Using PIM SM

Multiple Fault Tolerance in MPLS Network using Open Source Network Simulator

Protection And Restoration In MPLS Networks

EITF25 Internet Techniques and Applications L5: Wide Area Networks (WAN) Stefan Höst

A Fast Path Recovery Mechanism for MPLS Networks

MPLS-based Layer 3 VPNs

Data Communication Networks and Converged Networks

DESIGN AND VERIFICATION OF LSR OF THE MPLS NETWORK USING VHDL

Figure 1: Network Topology

Implementation of Traffic Engineering and Addressing QoS in MPLS VPN Based IP Backbone

QoS Strategy in DiffServ aware MPLS environment

Quality of Service Mechanisms and Challenges for IP Networks

- Multiprotocol Label Switching -

Design of MPLS networks VPN and TE with testing its resiliency and reliability

NAVAL POSTGRADUATE SCHOOL THESIS

Integrating Internet Protocol (IP) Multicast over Multiprotocol Label Switching (MPLS) for Real Time Video Conferencing Data Transmission

QoS Switching. Two Related Areas to Cover (1) Switched IP Forwarding (2) 802.1Q (Virtual LANs) and 802.1p (GARP/Priorities)

QoS in VoIP. Rahul Singhai Parijat Garg

MPLS and Traffic Engineering in IP Networks Daniel O. Awduche, UUNET (MCI Worldcom)

Internet Protocol: IP packet headers. vendredi 18 octobre 13

Project Report on Traffic Engineering and QoS with MPLS and its applications

Overlay Networks and Tunneling Reading: 4.5, 9.4

Using Multiprotocol Label Switching (MPLS) to Improve IP Network Traffic Engineering

Transcription:

Internet Routing and MPLS N. C. State University CSC557 Multimedia Computing and Networking Fall 2001 Lecture # 27

Roadmap for Multimedia Networking 2 1. Introduction why QoS? what are the problems? 2. Basic operations jitter buffers (at hosts) task scheduling (at hosts) packet shaping (at hosts) packet dropping (at routers) packet scheduling (at routers) 3. Types of service Integrated Services (IntServ) and Resource Reservation Protocol (RSVP) Differentiated Services (DiffServ) Today s Lecture 4. Application-level feedback and control Real-time Protocol (RTP), Realtime Control Protocol (RTCP) 5. Application signaling and device control Session Description Protocol (SDP) Real-time Streaming Protocol (RTSP) Session Initiation Protocol (SIP) Media Gateway Control Protocol (MGCP) 6. Routing Multi-protocol Label Switching (MPLS) multicasting

Roadmap 3 I. Internet Routing II. Connection-oriented networks III. MPLS overview IV. MPLS benefits and applications V. Encapsulation and hierarchical forwarding VI. Label distribution

Routing Protocols 4 Goal: determine paths to each destination, based on *some* optimality criterion and create routing tables for packet forwarding Routing protocol 1. routers exchange info regarding state of network 2. run routing algorithm to compute routes (paths) Optimization criteria what metric to use (hops, delay, cost, )? how often does it change? based purely on *destination*, not on source

Requirements For Routing Algorithms 5 1. Simplicity 2. Scale to large Internet size (hierarchical) 3. "Safe" interconnection of different organizations 4. Adapt to changes in topology 5. Avoid routing loops 6. Efficient (low message overhead, converges quickly) 7. Paths should be (near) optimal, according to some criterion

Autonomous Systems 6

Networks and Autonomous Systems 7 In the Internet today more than 10,000 ASes more than 250,000 networks

Classification of Routing Algorithms 8 Intra-domain vs. inter-domain intra-domain: within a single administrative entity (autonomous system) inter-domain: between autonomous systems Intra-domain routing protocols single administration simplicity routing efficiency/optimality is primary objective Inter-domain routing protocols larger geographical reach scalability, security routing policies, distribution of control fault isolation

Routing Optimization 9 Criteria minimum number of hops minimum propagation delay minimum congestion / packet loss least cost Constraints security considerations business relationships

Fault Recovery and Convergence Time 10 Routing algorithms will eventually converge on optimal routes as long as state of the links / routers remain stable no requirement for updates to be synchronized During convergence, non-shortest paths and loops may develop "good news travels fast, bad news travels slowly"

Problems with Routing for Multimedia 11 1. Destination-based routing only 2. Routing recalculation / convergence / fault recovery time 3. Lack of optimization for QoS

Conventional Packet Forwarding 12 As a packet travels in an IP network, each router... analyzes the packet's header consults the routing, or forwarding, table chooses a next hop router for the packet independently of any choices made for other packets

Conventional Packet Forwarding (cont'd) 13 Packet headers contain many fields for varying purposes only some of them are used for routing purposes Choosing the next hop involves two steps partition the entire set of possible packets into forwarding equivalence classes (FECs) map each FEC to a next hop Current forwarding scheme has limitations uses only destination IP address from packet doesn t support QoS, traffic engineering, fast recovery from failures,

Connection-Oriented Architectures 14 Ex.: ATM, Frame Relay, X.25 A logical connection must be set up before data is exchanged the state of the connection is maintained at each network switch A flow is the sequence of datagrams exchanged over a TCP or UDP connection multiple flows may be multiplexed into a single logical connection Connection-oriented architectures enable the type of services that not well-supported by conventional IP datagram routing

MPLS Networks 15 A logical connection is established between two points in a pure datagram network connection carries normal datagram traffic MPLS adds an additional header, containing a label identifies the connection A hybrid architecture (advantages of both?) logical connections can be used for connection-oriented services normal datagram processing (forwarding) still available for datagram services

Where it Fits 16 Below the network layer not an end-to-end protocol IPv4 IPv6 IPX Appletalk Network Layer MPLS ATM Frame Relay Ethernet PPP FDDI Link Layer

MPLS Labels and Encapsulation 17 Insert in each packet a new header ("shim header") Link Layer Header MPLS Shim Header IP Header Payload A label = short, fixed length value used to identify the FEC Labels have local significance only adjacent routers must agree on the binding of label FEC does not have to be globally unique no meaning to the label; just an identifier

The MPLS Forwarding Table 18 Add a new table to router: the Label Switching Forwarding Table may be other info in this table, as well (e.g., quality of service) Forwarding Table Incoming Packet Label Outgoing Interface Next Hop Address Outgoin g Packet Label Other Requirements 6 #2 192.0.168.100 12

Basic MPLS Idea 19 Look at the label to pick an outgoing interface Then replace the incoming label with the appropriate outgoing label Routers that don t support MPLS do normal packet forwarding interface #1 -- 6 ------ -- 12 ------ Router interface #2 interface #3 incoming label outgoing label

MPLS Terminology 20 A label-switched router (LSR) can perform MPLS labelswitching A label-switched path (LSP) is a consecutive sequence of LSRs that forward a packet using MPLS An ingress LSR is the first LSR on a LSP determines FEC for packet from routing table inserts a label (shim header) in front of the packet at this point, the label is bound to the FEC at this router An egress LSR is the last LSR on a LSP responsible for removing the label from the packet

Inserting Labels into Packets 21

Label-Switched Paths 22 Ra Rd Rb Rf Rc Re Can start and terminate in the middle of the network

Notes 23 Labels are an optimization packets can be routed even if labels aren't set up at all, or are set up on just parts of the path Assignment of a packet to an FEC is done only once, as the packet enters the MPLS network subsequent hops do not need to examine the network layer header Important questions on what basis are LSPs set up? how are they set up, and how long do they last?

Some Benefits / Applications of MPLS 24 1. Traffic engineering, source-based QoS routing 2. Route pinning 3. Protection and fast rerouting 4. Hierarchical forwarding Also: faster packet processing at routers (= greater throughput)

1. Traffic Engineering 25 Datagram networks (IP) have poor controllability route on destination address, least-hop path MPLS provides better control classification into FECs at entry to LSP may be arbitrarily complex Operator can use global optimization algorithms to map traffic demands to physical links not possible using local optimization

2. Route Pinning 26 Some applications are sensitive to path changes or disruptions IP routing does not guarantee routing changes won t occur MPLS routing LSP will not change unless there is explicit intervention provides a specific and stable path (pinned route)

3. Protection and Fast Rerouting 27 For datagram networks, routing recovers from failures by computing alternative paths drawback: long latency in reconfiguring network and reestablishing connections is possible MPLS provides two choices 1. dynamically establish new LSPs around points of failure relatively long latency for most datagram traffic 2. switch to a backup LSP previously established for the failed LSP relatively short latency no signaling or setup required much less expensive than using SONET for recovery

Protection Switching 28

4. Hierarchical Routing and the Label Stack 29 A packet may carry several labels organized in a LIFO stack Purpose: a hierarchy of label-switched paths e.g., paths within paths The bottom of the stack is indicated by a bit in the shim header

Hierarchical Forwarding Example 30

Hierarchical Forwarding (cont'd) 31 One MPLS network can run over another forwarding hierarchy can scale to very large MPLS networks, each constructed from smaller MPLS networks Forwarding Table entries include operation to perform on the packet's label stack swap: replace label at top of stack with a specified new label poplabel stack (end of nested LSP reached) pusha new label onto the label stack (start of nested LSP) Forwarding Table, again Incoming Packet Label 6 Outgoing Interface #2 Next Hop Address 192.0.168.100 Operation swap Outgoing Packet Label 12 Other Require -ments

Stack Operations 32

Establishing LSPs 33 Before traffic forwarding can take place... an LSP must be set up labels / operations must be assigned at each hop Two LSP types (based on method used to determine the route) control-driven LSP explicitly-routed LSP or constraint-based LSP (CR-LSP) Label distribution protocol = method by which one LSR informs another LSR of label FEC bindings it has made

Constructing Label-Switched Paths 34 Creating labels and FECs Construct when routing table is updated Or, construct when instructed by a "downstream" router Or, construct when packet volume justifies Label = 25 Dest = 192.69.*.* Label = 6 Label = 14 Dest = 192.69.*.* Dest = 192.69.*.* 192.69.*.*

Control-Driven LSPs 35 The LSP will be the same path computed by IP routing Main benefits simplicity, compatibility with existing routing speed-up of forwarding function

Explicitly-Routed LSPs (CR-LSPs) 36 CR-LSP specified by network operator or network management application route for CR-LSP is specified in the setup message setup message traverses all LSRs along the specified route each LSR sends label request to the next-hop LSR Network traffic will be directed to a path independent of what is computed by IP routing Benefits traffic engineering route pinning etc.

Informing Upstream Routers 37 Directions downstream = direction in which data is propagated along an LSP to the destination upstream = opposite direction (away from destination) Technique #1: on-demand (solicited) label distribution upstream LSR explicitly requests, from its next-hop LSR for a particular FEC, a label FEC binding for that FEC Technique #2: unsolicited label distribution downstream LSR distributes its label FEC bindings to upstream LSRs that have not explicitly requested them Both techniques may be used in same network at same time

On-Demand label Distribution 38 Which label should I use for FEC F? For FEC F use label L Direction of data flow

Direction of Messages 39 Direction o f label requests, and direction of data Direction of label FEC bindings

Label Distribution Protocols 40 Label Distribution Protocol (LDP) Explicit routing Constrained-Based Routing LDP (CR-LDP) RSVP extensions Extensions to existing routing protocols (e.g., BGP) to carry label information

Explicit (Source) Routing 41 Initiating (source) node specifies the route for the LSP based on load balancing, QoS, security,

CR-LDP (Internet Draft) 42 Extensions to LDP (RFC 3036) carries explicit route information carries traffic parameters for resource reservation (carries options for CR-LSP resilience (e.g., global or local repair)) 1 Label Request (B,C) 2 Label Request (C) 3 LSR A LSR B LSR C 5 4 Label Mapping (17) Label Mapping (32)

CR-LDP Steps 43 1. LSR A determines it needs LSP to LSR C policies / other factors determine route should go through B creates Label Request with route (B,C), + traffic parameters reserves resources for new LSP forwards Label Request to B 2. LSR B receives request and processes it reserves resources (may also reduce resource amount) modifies route to (C) forwards to C

CR-LDP Steps (cont d) 44 1. LSR C is egress of LSP makes reservation allocates label sends Label Mapping message back to B (including reservation information) 4. LSR B receives Label Mapping matches to original request finalizes reservation allocates incoming label passes new label to A 5. LSR A receives label mapping matches to request, finalizes reservation

RSVP Extensions for MPLS 45 RSVP reservations RSVP "PATH" message is sent from source to destination LSR RSVP "RESV" message sent in reverse direction (from destination to source, in response to PATH message) Two MPLS-specific objects added to PATH message "Label Request" object to request label bindings "Explicit Route" object listing LSRs in the path One MPLS object added to RESV message " Label" object with the label binding Resources are reserved for a LSP at the same time as label assignments are made while RESV message propagated to source

Sources of Info 46 Books B. Davie and Y. Rekhter, MPLS: Technology and Applications, 2000 Web L-o-n-g list of web resources: http://www.mplsrc.com/articles.shtml IETF http://www.ietf.org/html.charters/mpls-charter.html