Application of Dynamic Programming Method to Marketing Decisions Based on Customer Database



Similar documents
OPTIMAL DESIGN OF A MULTITIER REWARD SCHEME. Amir Gandomi *, Saeed Zolfaghari **

The Influence of Loyalty Programs and Short-Term Promotions on Customer Retention

Louvain School of Management Working Paper Series Editor : Prof. Frank Janssen (president-ilsm@uclouvain.be)

Rewarding Your Members

Research - Unley Business Loyalty Card Program. Author: Chris Williams Business & Economic Development July 2009

Loyalty Codes. Customers: Getting Started. Overview. Introduction to loyalty programs

Power Struggles and Sales Promotion

Uncovering Consumer Decision Rules under Complex Dynamic Environments: The Case of Coalition Loyalty Programs

Demand Forecasting Optimization in Supply Chain

White Paper on Mobile Digital Wallets For Restaurants and Retailers

IJMT Volume 2, Issue 9 ISSN:

Financial Reporting Update

Loyalty program membership: A study of factors influencing customers' decision Introduction

A PREDICTIVE MODEL OF REDEMPTION AND LIABILITY IN LOYALTY REWARD PROGRAMS INDUSTRY

Predict the Popularity of YouTube Videos Using Early View Data

A Robustness Simulation Method of Project Schedule based on the Monte Carlo Method

Executive Cover Memo. The Allround brand is in a favorable position, but the cold medicine is also becoming a

Sharing Online Advertising Revenue with Consumers

A conceptual model for exploring impact of loyalty programs on consumer purchase behavior: with special reference to Indian apparel retailers

Credit Card Rewards Consumer Insights

Marketing Mix Modelling and Big Data P. M Cain

Getting the most out of your gift card program A white paper published by National Gift Card Corp.

The Profitability of Credit Card Operations of Depository Institutions

Loyalty Card Program Description

An Empirical Investigation of Customer Defection & Acquisition Rates for Declining and Growing Pharmaceutical Brands

Sales Promotion, Events, and Sponsorships. Chapter Outline. Key Points. Chapter 16

ECON 459 Game Theory. Lecture Notes Auctions. Luca Anderlini Spring 2015

Acquiring new customers is 6x- 7x more expensive than retaining existing customers

photos: Shutterstock.com Page 76 lneonline.com Les Nouvelles Esthétiques & Spa November 2014

Inventory Control Policy of Preventive Lateral Transshipment between Retailers in Multi Periods

Lecture notes: single-agent dynamics 1

The Road to Rewards. Fuel Savings Rank #1 as Consumers Preferred Incentive for Rewards Programs

6 Scalar, Stochastic, Discrete Dynamic Systems

TH ANNUAL GLOBAL SHOPPER STUDY. June 2015

AMERICAN EXPRESS LOYALTY PROGRAMS THAT TRANSFORM CUSTOMERS INTO

Database Direct Response Marketing Personal Selling

Product recommendations and promotions (couponing and discounts) Cross-sell and Upsell strategies

To Increase Sales to Boomer+ Customers Consider Developing a Customer Loyalty Club

An Analysis on Price Dispersion in Online Retail Market Based on the Different of the Product Levels

From token loyalty to meaningful relationships: How loyalty programs and Big Data Analytics are facilitating CRM in the retail sector

Applying CRM in Information Product Pricing

Chapter 10. Key Ideas Correlation, Correlation Coefficient (r),

Suggestions for simplified Fixed Capital Stock calculations at Statistics Sweden Michael Wolf, National Accounts Division Statistics Sweden

Boost Your Direct Marketing Success with Prepaid Incentive Cards

A Study on Customer Satisfaction in Mobile Telecommunication Market by Using SEM and System Dynamic Method

The Impact of Customer Loyalty Programs on Customer Retention

The Business Case for Investing in Retail Data Analytics

Why Do High-Tech Firms Offer Perks at Work?

SHAREHOLDER MEETING. May 15, 2014

A GUIDE TO LOYALTY PROGRAM SUCCESS

Accounting Notes. Purchasing Merchandise under the Perpetual Inventory system:

Internet PIN Debit: Aligning the Needs of Merchants, FIs and Consumers for Online Payments

Statistics in Retail Finance. Chapter 6: Behavioural models

Assessing Credit Risk for a Ghanaian Bank Using the Black- Scholes Model

page 1

TEACHING AGGREGATE PLANNING IN AN OPERATIONS MANAGEMENT COURSE

over-the-counter selling personal selling field selling network marketing telemarketing outbound telemarketing inbound telemarketing inside selling

FINDING BIG PROFITS IN THE AGE OF BIG DATA

When to Refinance Mortgage Loans in a Stochastic Interest Rate Environment

LECTURE - 2 YIELD MANAGEMENT

BOOTS delighting customers, building customer loyalty and profits

Journal of Financial and Economic Practice

5.1 Identifying the Target Parameter

From everyday to extraordinary: How retailers can woo shoppers with points and miles

Analysis of China Motor Vehicle Insurance Business Trends

Chapter 3 Local Marketing in Practice

Managing Customer Retention

Steering Consumer Payment Choice

Building the Loyalty Scheme Business Case

Motorola Mobile Loyalty Solution

Credit Card Market Study Interim Report: Annex 5 Firm business model analysis

Ignify. ecommerce. System Overview. Ignify ecommerce integrates with:

DELIGHTFUL OR DEPENDABLE? VARIABILITY OF CUSTOMER EXPERIENCES AS A PREDICTOR OF CUSTOMER VALUE

Linear Programming. Solving LP Models Using MS Excel, 18

Loyalty Programs. By Inez Blackburn (905)

Financial Institutions Rewards Consumer Insights

CREATING A CONNECTED BRAND EXPERIENCE WITH VERIFONE.

CORPORATE CREDIT CARD PROGRAM REWARDS AND REBATES POLICY

On Target Marketing SM. Text. Marketing

Retail Customers. Tutorial 7

The Effects of Start Prices on the Performance of the Certainty Equivalent Pricing Policy

Perception of Loyalty Programmes and their Influence on Purchase Behaviour, Store Attractiveness and Loyalty

Non-personal communication

Advertising by Mail. When to say YES! That s Canada Post Personalized Mail (Addressed Admail )

We will share valuable information about these aspects of selling through Amazon s FBA program:

Applying Customer Analytics to Promotion Decisions WHITE PAPER

Coordinated Pricing and Inventory in A System with Minimum and Maximum Production Constraints

Qantas Frequent Flyer

THE EFFECT OF LOYALTY PROGRAMS ON CUSTOMER LOYALTY IN THE HOSPITALITY INDUSTRY

Agricultural Marketing. Direct Marketing Strategies and Opportunities. Commodity or Niche? MARKETS DEFINED

FACEBOOK INSIGHTS FOR IMPLEMENTING SOCIAL CRM Introduction The rise of the internet and website technologies has resulted in widespread advancement

The Four Pillars of a Successful Rewards Program

Online marketing. Summery. Introduction. marketing. Martin Hellgren,

Leading Practices in Market Basket Analysis

Interest Rate and Credit Risk Derivatives

Economic background of the Microsoft/Yahoo! case

New Partner: The Ritz-Carlton Participation in Marriott Rewards. Questions & Answers to Respond to Guest Questions

Valuation of Razorback Executive Stock Options: A Simulation Approach

Cloud-based trading & financing ecosystem for global ecommerce

Revenue Management for Transportation Problems

Transcription:

Journal of Systems Science and Information Apr., 2016, Vol. 4, No. 2, pp. 169 176 DOI: 10.21078/JSSI-2016-169-08 Application of Dynamic Programming Method to Marketing Decisions Based on Customer Database Zhongqiu ZHAO School of Management and Economics, Beijing Institute of Technology, Beijing 100081, China E-mail : 991390529@qq.com Xiaofei LI School of Management and Economics, Beijing Institute of Technology, Beijing 100081, China E-mail : qingdaningda@163.com Baolong MA School of Management and Economics, Beijing Institute of Technology, Beijing 100081, China E-mail : 2041223454@qq.com Jinlin LI School of Management and Economics, Beijing Institute of Technology, Beijing 100081, China E-mail : 2948181988@qq.com Abstract The paper focuses on modeling longitudinal customer behavior and develops a dynamic programming (DP) to show how customer transaction database may be used to guide marketing decisions such as pricing and the design of customer reward programs. Dynamic programming is not as a tool to marketing decisions making in this research but rather as a description of consumer behavior. The results show that the method provides a means for evaluating the effectiveness of marketing strategy, for example, customer reward programs. Moreover, the findings from the model estimation indicate that reward program can actually increase the customer s purchase level and stimulate the repeat purchase behavior. Keywords behavior dynamic programming (DP); customer reward programs; marketing decisions; customer 1 Introduction Recently, a lot of researchers pay more attention to the customer purchase behavior based on the different marketing stimulis which include the short term promotions and long term programs [1 3]. The short term promotions are usually in a form of the coupon, different shipping policy and instant discount. The long-term programs, which are often called customer reward programs, are designed to maintain and enhance customer loyalty. As one of most popular Received July 1, 2015, accepted January 7, 2016 Supported by the National Natural Science Foundation of China (71272059, 71432002) and Beijing Colleges and Universities Young Talent Program (YETP1189) Corresponding author: Xiaofei LI

170 ZHAOZQ,LIXF,MABL,etal. marketing strategies, customer reward programs have attracted considerable interest among researchers [4 7]. The goal of reward programs is to encourage customer frequent purchase behavior which is potentially beneficial to the firm in a form of points, frequent flyer mileage, free gifts, and so on [3]. In practice, a loyalty card, rewards card, point card, advantage card, or club card is a plastic or paper card, visually similar to the credit card or debit card, which can identify the card holder as a member in a customer reward program [3]. In addition, the programs also can be viewed as a dynamic incentive based on the cumulative purchase amount in a certain period, which shifts the customer purchase behavior from myopic or single period decision making to a dynamic or multiple period decision making [8]. What this research focus is how the customer reward programs stimulate the customer purchase behavior. We adopt the dynamic programming (DP) algorithm to analyze the influence of such reward programs, since the customer makes decisions not only based on the current rewards from the purchase but also the future rewards received from the customer reward programs [3]. The approach is based on the idea that a customer s observed sequence of decisions may be interpreted as the solution to a dynamic optimization problem. DP method is ideal for analyzing individual choices which are based on both current and future expected benefits [8]. That a reward program rewards customer on the level of purchasing over a specified period is a prime example of such a decision problem. Another advantage of dynamic programming method is that the estimated coefficients can be used to conduct simulations which replicate the consumer s dynamic decision process [9]. 2 Theoretical Background 2.1 Customer Reward Programs The importance of effective customer relationships as a key to promote customer value and shareholder value is widely emphasized. Lately, many retail companies have introduced customer reward program which is an important customer relationship management tool [10] to enhance customer loyalty. It is currently popular in many industries, such as gasoline stations, supermarkets, airline business and clothing stores, and has achieved high participation rates among consumers [11, 12]. By 2012, approximately 2.65 billion customer reward program memberships were held by U.S. consumers [13], and 42% indicated that they used such customer reward programs much more for their purchases than in 2008 [14]. In some ways, this increasing popularity is largely a function of improving information technology and a philosophical trend towards customer focused marketing. A customer reward program is an integrated system of marketing actions that aims to reward and encourage customers loyal behaviors through incentives [15]. These programs typically allow customers to accumulate their purchase amount and redeem free rewards by purchasing repeatedly from an enterprise or alliance enterprise. For example, reach 30,000 points to redeem a round-trip ticket. Prior empirical researches have provided abundant evidence of the effectiveness of customer reward program. And they found positive effects of retail reward programs on customer purchase behavior. Such programs encourage repeat buying and thereby improve retention rates by providing incentives for customers to purchase more frequently and in larger volumes. Furthermore, firms would gain additional customers, increase the share-of-wallet (SOW) from existing ones, or prevent

Application of Dynamic Programming Method to Marketing Decisions Based on Customer Database 171 loyal customers switching to other sellers, among other things by introducing customer reward programs [16]. In other words, the ultimate goal of customer reward programs is to prompt loyal customers to purchase more frequently and more. A common characteristic shared by the industries where customer reward programs are popular is that the means exist to monitor customer transaction histories and to conduct individual level marketing. Another special characteristic of loyalty programs is that their attractiveness may change dynamically with a customer s decisions. As purchases are made, both the customer s investment in the program and the customer s likelihood of earning a reward increase. Conversely, when a customer decides not to purchase in a given period, the likelihood of earning a reward decreases, because the customer moves no closer to the reward threshold, and the time left to earn rewards shrinks. These dynamic factors are a challenge in the modeling of customer response to loyalty programs. For a frequency program to be effective in increasing loyalty, it must have a structure that motivates customers to view purchases as a sequence of related decisions rather than as independent transactions. That is, the structure must give customers an incentive to adopt a dynamic perspective [17]. As a result, we adopted dynamic programming to stimulate the customer purchase behavior. 2.2 Dynamic Programming Model Dynamic programming is set of techniques concerned with the general problem of controlling a dynamic system whose evolution from state to state can be influenced by the application of controls and yields a stream of state- and control-dependent payoffs [17]. The methods of individual level customer behavior have begun to appear in marketing research, for example, Romana Khan Serdar Sayman and Stephen J. Hoch (2014) examined buyers willingness to pay a price premium for a firm offering a loyalty program reward using an analytical model of dynamic consumer choice [14]. A perhaps somewhat less obvious application of dynamic programming to customer behaviors involves the use of dynamic programming as a behavioral model of customer decisions. By assuming that consumers are making decisions based upon decision rules that consider both the immediate benefits and future consequences associated with an action, a dynamic programming model may be used within a statistical inference procedure to estimate models of individual behavior. This paper pays close attention to how the firm might use DP method to model the customer decision is a fairly intuitive and straightforward application. This general type of approach to modeling decisions is referred to as discrete choice dynamic programming or estimable structural dynamic programming. 3 The dynamic Formulation Procedure and Algorithm 3.1 Dynamic Customer Behavior in a Reward Program This part develops a model of customer response to a reward program. In a reward program, customer purchase behavior in each period of whole year can be formulated based on their current cumulative purchase. The whole year is divided into 52 weeks according to the real happened purchase data. At the end of the year, the merchant will distribute the reward on the basis of customer whole year cumulative purchase amount. However, after this time period,

172 ZHAOZQ,LIXF,MABL,etal. the total purchase amount will restart from zero. It means that even the customer s cumulative purchase amount is very big, but still could lose the chance to get the reward just because of not touching the reward level that the merchant sets. Therefore the reward programs will dynamically stimulate the customer s purchase behavior based on the reward level and reward scale they set. According to the date, customer has 4 choices in each period, that is, no purchase, small purchase, medium purchase and large purchase respectively. The price in each period is supposed to randomly change associated with the last period price and the purchase level the customer chose in last period. Due to lack of real price data, it is assumed that the price for each period is uniform distribution and has three different levels which are high price, medium price and low price. As a result, the customer state can be defined in each period as two dimensions, which is cumulative purchase amount and price separately. Because of the use of the part of the paper frame, we define the customer state and stochastic factor from the paper. However, due to the inaccessible of the data and all the parameter that the author estimated, we cannot consider all the factors influencing the customer purchase behavior, the probability evolution of the price for next period and write down the clear expression of the reward function under different actions. However, we give the reasonable estimate of the parameter inside the reward function by using two piece of common knowledge. Firstly, the marginal reward is decreasing as the increase of the cumulative purchase. Secondly, to the same cumulative purchase amount, the higher the current price is, the less reward the customer gets. With the known data, we assume that the customer purchase is a multi-periods decision making and could be replicated by a DP method, then estimate the parameters from the data and DP algorithm to see the influence of the short-term promotion and reward programs. Whereas we use known parameter from Lewis [3] to see the customer s each period action by adopting the DP algorithm. 3.2 Formulation as a DP Algorithm The state space is a vector of information about the environment that is relevant to the customer s forward-looking optimization problem. The state space may consist of marketing-mix elements, such as the pricing environment in a given week, and customer-specific information, such as cumulative purchase amount. State x(t) denotes the cumulative purchase amount at period t. p(t) denotes the price of the merchandise at period t where p(t) includes the high price and mediate price and low price. The quantity decision is likely to be based on marketing factors such as price and on individual-level factors such as inventories. A myopic decision maker would select from the options 1, 2,,J. Actions are as follows: j = 1 no purchase; j = 2 purchase small [0, 50); j = 3 purchase medium [50, 75); j = 4 purchase large [75, + ). The increase of cumulative purchase amount is a comparative number on average. W is a stochastic factor, which denoted as w1: price high; w2: price medium; w3: price low. We assume the next period price could be high, mediate, low with uniform distribution.

Application of Dynamic Programming Method to Marketing Decisions Based on Customer Database 173 The evolution of the state is [X t+1,p t+1 ]= [ X t + 4 j=1 ] [33(j 1)d j (t),w(t)], where 4 j=1 d j(t) = 1. It means that customer only can choose one action in each period. The reward functions for different action in each period are as follows: R no (t) =b no ; R sm (t) =b sm b p,sm P t [(x(t) + 33(j sm 1))/100]b de sm ; R med (t) =b med b p,med P t [(x(t) + 33(j med 1))/100]b de med ; R lrg (t) =b lrg b p,lrg P t [(x(t) + 33(j lrg 1))/100]b de lrg. We set three level reward trigger in last period. Therefore, the reward for the last period T are as follows: R no (t) =b no ; R sm (T )=b sm + b p,sm P T + b c,sm C T + H h=1 R med (T )=b med + b p,med P T + b c,med C T + R lrg (T )=b lrg + b p,lrg P T + b c,lrg C T + Where we have ( 3 b h,sm SH(h) T + level=1 H ( 3 b h,med SH(h) T + h=1 H ( 3 b h,lrg SH(h) T + h=1 level=1 b level )(X T 1 + 33); level=1 b level )(X T 1 + 66); b level )(X T 1 + j). If X T 1 + 33(j 1) < 1000, then b level=1 = b level=2 = b level=3 =0; If 1000 X T 1 + 33(j 1) < 2000, then b level=1 =0.1,b level=2 = b level=3 =0; If 2000 X T 1 + 33(j 1) < 3000, then b level=1 =0,b level=2 =0.5,b level=3 =0; If 3000 <X T 1 + 33(j 1), then b level=1 = b level=2 =0,b level=3 =0.8. The Bellman equation is { } J(t) =max R j (t)+αe J j (t +1), j J pw where α is discount factor. When α is equal to 0, it means that the customer doesn t care the next period reward. A finite period DP algorithm is used in this research. According to the customer purchase habit, the time horizon is usually divided into 52 weeks. Here, to see the influence of reward programs and decrease of the calculation burden, we only consider 10 periods to the end of the year. 3.3 Results Analysis We plot the policies the customer chose at one period ahead of the T for both with reward program and without reward program.

174 ZHAOZQ,LIXF,MABL,etal. Figure 1 The policies chosen by the customer under the reward program Here X axial denotes the cumulative purchase amount and the different price under the same cumulative purchase amount, whereas the Y axial denotes the different level of purchase the customer choose. 4 means buy large and 1 means buy nothing. Figure 2 The policies chosen by the customer without reward program We could see from these two figures that there is a jump in the first one. The place of the jump is just around the cumulative purchase approach to the 3000. In this cumulative purchase area which is below 3000 but approach 3000, the customer is willing to buy large to cross the reward level 3000 to get the reward in the final period. However, in the long term, the stimulation of reward program will move forward, like Figure 3. In a long term, the reward program influences all the customer purchase actions around the reward trigger level by the cumulative effect. 4 Conclusions This article presents a DP method to modeling longitudinal customer purchase behavior. The model measures the influence of reward programs by considering customers sequences of

Application of Dynamic Programming Method to Marketing Decisions Based on Customer Database 175 purchase as a solution to a dynamic optimization problem. A primary strength of the approach is that the dynamic programming method provides a good solution for modeling dynamic customer behavior. The research shows that this model is a great tool by which to monitor or track the development of customer purchase behavior. The method includes both the influence of previous behavior in terms of cumulative purchase amount and expectations of future prices and loyalty rewards. Modeling the forward-looking behaviors intuitively appeal the customer response to a reward program [18]. With the popularity of reward programs, this paper provides a modeling method for evaluating the effectiveness of marketing strategy. Figure 3 Ten periods to the T with reward in T Figure 4 Ten periods to T without reward in T The model estimates the effects of the reward program. The results show that the reward program increases customer repeat-purchase rate effectively. Specially, the customers tend to increase their purchase to cross the reward level to get the reward in the final point of a reward period. However, in the long term, the stimulation of reward program will move forward. In a word, the reward program increases the customer s purchase level actually and stimulates customer repeat purchase behavior. On the other hand, the model also provides a platform for conducting simulation studies because the estimated coefficients can be used to conduct simulations that replicate the consumer s dynamic decision process. 5 Limitations and Future Research The model is developed using data from internal transaction databases. When modeling customer behavior using this type of data, it is usually necessary to make reasonable assumptions about the customer purchase decision. In general, the DP method adopted in this research is to assume the presence of a relatively constant outside alternative. In both the newspaper subscription and Internet grocery purchase decisions the customer has a no buy option in each period. In general, neither dataset includes data or covariates that indicate how the relative attractiveness of the no buy or outside alternative change in each period. By way of compensation for this deficiency, prices are adjusted using relevant CPI data for comparable products. More specific variations in the outside alternatives are captured by the stochastic or error component. In terms of future research this research focuses on what is hoped to be a series of studies focusing on the dynamics of customer behavior and customer management. The current work

176 ZHAOZQ,LIXF,MABL,etal. focuses mostly on the development of methodologies for customer analysis and management. The next step is to begin to examine both databases in an effort to test and add to the extant body of knowledge related to customer loyalty. References [1] Rust R T, Chung T S. Marketing models of service and relationships. Marketing Science, 2006, 25(6): 560 580. [2] Sun B H, Neslin S A, Srinivasan K. Measuring the impact of promotions on brand switching when consumers are forward looking. Journal of Marketing Research, 2004, 40(9): 389 405. [3] Lewis M. The influence of loyalty programs and short-term promotions on customer retention. Journal of Marketing Research, 2004, 41(8): 281 292. [4] Liu Y P, Yang R. Competing loyalty programs: Impact of market saturation, market share, and category expandability. Journal of Marketing, 2009, 73(1): 93 108. [5] Yi Y J, Jeon H S. Effects of loyalty programs on value perception, program loyalty and brand loyalty. Journal of the Academy of Marketing Science, 2003, 31(3): 229 241. [6] Valeria S, Bradlow E T, Fader P S. Stockpiling points in linear loyalty programs. Journal of Marketing Research, 2015, 2(52): 253 267. [7] Dorotic M, Verhoef P C, Fok D, et al. Reward redemption effects in a loyalty program when customers choose how much and when to redeem. International Journal of Research in Marketing, 2014, 4(31): 339 355. [8] Lewis M. Incorporating strategic consumer behavior into customer valuation. Journal of Marketing, 2005, 69(4): 230 238. [9] Sharp B, Sharp A. Loyalty programs and their impact on repeat purchase loyalty patterns. International Journal of Research in Marketing, 1997, 14: 473 486. [10] Kang J, Alejandro T B, Groza M D. Customer-company identification and the effectiveness of loyalty programs. Journal of Business Research, 2015, 2(68): 464 471. [11] Melnyk V, Bijmolt T. The effects of introducing and terminating loyalty programs. European Journal of Marketing, 2015, 3(49): 54 76. [12] Zhang J. The impact of an item-based loyalty program on consumer purchase behavior. Journal of Marketing Research, 2012, 1(49): 50 65. [13] Leenheera J, van Heerdeb H J, Bijmoltc T H A, et al. Do loyalty programs really enhance behavioral loyalty? An empirical analysis accounting for self-selecting members. International Journal of Research in Marketing, 2007, 24(1): 31 47. [14] Sayman S, Hoch S T. Dynamics of price premiums in loyalty programs. European Journal of Marketing, 2014, 48(314). DOI: 10.1108/EJM-11-2011-0650. [15] Berry J. Bulking up: The 2013 COLLOQUY loyalty census: Growth and trends in U.S. loyalty program activity. http: //www.colloquy.com/files/2013-colloquy-census-talk-white-paper.pdf. [16] Mintel. American lifestyle 2013: Five years later. Available at http: //academic.mintel.com. [17] Lewis M V. Applications of dynamic programming to customer management. Northwestern University, Chicago, 2001.