Meson spectroscopy and pion cloud effect on baryon masses

Similar documents
High Energy Physics. Lecture 4 More kinematics and a picture show of particle collisions

Hints on the quadrupole deformation of the (1232)

Quark Model. Quark Model

PoS(Baldin ISHEPP XXII)026

arxiv:hep-lat/ v1 16 Aug 2004

Spontaneous symmetry breaking in particle physics: a case of cross fertilization

arxiv:hep-ph/ v1 1 Oct 2003

UN PICCOLO BIG BANG IN LABORATORIO: L'ESPERIMENTO ALICE AD LHC

Recent developments in Electromagnetic Hadron Form Factors

Study of the B D* ℓ ν with the Partial Reconstruction Technique

Phenomeological Determination of the Orbital Angular Momentum

Charm physics with Moebius Domain Wall Fermions

Theoretical Particle Physics FYTN04: Oral Exam Questions, version ht15

0.33 d down c charm s strange t top b bottom 1 3

Calorimetry in particle physics experiments

PoS(LHCPP2013)033. Rare B meson decays at LHC. Francesco Dettori Nikhef and Vrij Universiteit, Amsterdam fdettori@nikhef.nl.

How To Find The Higgs Boson

November 16, Interpolation, Extrapolation & Polynomial Approximation

Launching DORIS II and ARGUS. Herwig Schopper University Hamburg and CERN

What is Matter? Matter is anything that has mass. All objects are made of matter. Air, water, a brick, even you are made of matter!

Concepts in Theoretical Physics

Scanning Near-Field Optical Microscopy for Measuring Materials Properties at the Nanoscale

A SUSY SO(10) GUT with 2 Intermediate Scales

Finite Elements for 2 D Problems

Exact Inference for Gaussian Process Regression in case of Big Data with the Cartesian Product Structure

arxiv:hep-ph/ v1 13 Jun 2000

Investigation of molecular states with charm and beauty hadrons

Search for Dark Matter at the LHC

Research Management Plan (RMP) for the. STAR Heavy Flavor Tracker (HFT)

Instability, dispersion management, and pattern formation in the superfluid flow of a BEC in a cylindrical waveguide

Artificial Neural Networks and Support Vector Machines. CS 486/686: Introduction to Artificial Intelligence

Chiral Dynamics of Heavy-Light Mesons. Michael Altenbuchinger December, 2013

PID Controller Design for Nonlinear Systems Using Discrete-Time Local Model Networks

Single photon detection with H8500 MAPMTs for the CBM RICH detector*

Pearson Physics Level 30 Unit VIII Atomic Physics: Chapter 17 Solutions

FLAVOUR OVERVIEW. Luca Silvestrini. INFN, Rome. M. SUSY2013. Special thanks to D. Derkach & M. Bona

1 Experiments (Brahms, PHENIX, and STAR)

Baryon Chiral Perturbation Theory in its manifestly covariant forms and the study of the πn dynamics & On the Y(2175) resonance

ALICE-USA. DRAFT - Research Management Plan

The Higgs sector in the MSSM with CP-phases at higher orders

Electromagnetic splitting of directed flow in heavy ion collisions

Top rediscovery at ATLAS and CMS

PION SCALAR FORM FACTORS FROM

Big Bang Cosmology. Big Bang vs. Steady State

Plate waves in phononic crystals slabs

Parton showering effects in central heavy-boson hadroproduction

2. Parallel pump system Q(pump) = 300 gpm, h p = 270 ft for each of the two pumps

Reflection Positivity of the Free Overlap Fermions

Loop Analysis. Chapter Introduction

Perfect Fluidity in Cold Atomic Gases?

Open access to data and analysis tools from the CMS experiment at the LHC

Basic Concepts in Nuclear Physics

Perpetual motion and driven dynamics of a mobile impurity in a quantum fluid

Nonlinear Algebraic Equations Example

MODEL DJ-3 DRAFT INDUCER SPECIFICATIONS

Høgskolen i Narvik Sivilingeniørutdanningen STE6237 ELEMENTMETODER. Oppgaver

Radiative corrections to anti-neutrino proton scattering

Sound. References: L.D. Landau & E.M. Lifshitz: Fluid Mechanics, Chapter VIII F. Shu: The Physics of Astrophysics, Vol. 2, Gas Dynamics, Chapter 8

Masses in Atomic Units

Robert Collins CSE598G. More on Mean-shift. R.Collins, CSE, PSU CSE598G Spring 2006

Introduction to Green s functions

Supporting Information

Boardworks AS Physics

Weak Interactions: towards the Standard Model of Physics

DIFFERENTIATION MATRICES FOR MEROMORPHIC FUNCTIONS

Comparison of approximations to the transition rate in the DDHMS preequilibrium model

Transcription:

Meson spectroscopy and pion cloud effect on baryon masses Stanislav Kubrak, Christian Fischer, Helios Sanchis-Alepuz, Richard Williams Justus-Liebig-University, Giessen 13.06.2014 SK, C. Fischer, H. Sanchis-Alepuz, R. Williams Meson () spectroscopy and pion cloud effect 13.06.2014 1 / 24

Talk Objectives Talk Objectives 1. Pion cloud effect on baryon masses 2. Light meson spectroscopy for J = 0..3 3. Charmonium spectroscopy and gluon shape impact SK, C. Fischer, H. Sanchis-Alepuz, R. Williams Meson () spectroscopy and pion cloud effect 13.06.2014 2 / 24

Pion Cloud Effect - why it is crucial? Evidence of pion clouds The excess of ū sea / d sea = 1.14 in nucleon sea. P. Amaudruz at al, Phys. Rev. Lett. 66, 2712(1991) The ratio E2/M1 in Nucleon-Delta transition. K. Joo et al. (CLAS), Phys. Rev. Lett. 88, 122001 (2002), hep-ex/0110007. This effect is expect to impact the nucleon form factors behaviour: a) The pion cloud probed at long wavelengths. b) The nucleon core probed at high Q2 The ratio E2/M1 as a function of Q 2. G. Eichmann and C. Fischer,Eur.Phys.J.A48,9(2012) SK, C. Fischer, H. Sanchis-Alepuz, R. Williams Meson () spectroscopy and pion cloud effect 13.06.2014 3 / 24

DSE and BSE with the pion cloud There are familiar rainbow-ladder Dyson-Schwinger and Bethe-Salpeter equations, but with an additional pion exchange term: System of DSEs and BSEs Christian S. Fischer, Richard Williams, Phys.Rev.D78:074006,2008 Internal quark-pion vertex: Γ π (p 2 ) = B(p2 ) chiral f π K, C. Fischer, H. Sanchis-Alepuz, R. Williams Meson () spectroscopy and pion cloud effect 13.06.2014 4 / 24

Pion cloud effect Quark mass functions Pion dressing functions M(p 2 ) [GeV] 0,6 0,5 0,4 0,3 0,2 RL1, η=2.0 RL1, η=1.6 RL2, η=2.0 RL2, η=1.6 RL2+π, η=2.0 RL2+π, η=1.6 30 E(p) wo pion F(p) wo pion G(p) wo pion H(p) wo pion E(p) with pion F(p) with pion 20 G(p) with pion H(p) with pion 10 0,1 0 10-4 10-3 10-2 10-1 10 0 10 1 10 2 10 3 p 2 [GeV 2 ] 0 0.0001 0.001 0.01 0.1 1 10 100 1000 Properties Provides dynamical quark mass generation Fulfil Gell-Mann-Oakes-Renner relation Conserves Axial WTI SK, C. Fischer, H. Sanchis-Alepuz, R. Williams Meson () spectroscopy and pion cloud effect 13.06.2014 5 / 24

Fadeev equation for baryons Fadeev Equation Helios Sanchis-Alepuz, SK, Christian S. Fischer, PLB 733C (2014) Evolution of Nucleon and Delta masses M (GeV) SK, C. Fischer, H. Sanchis-Alepuz, R. Williams Meson () spectroscopy and pion cloud effect 13.06.2014 6 / 24

Talk Objectives Talk Objectives 1. Pion cloud effect on baryon masses 2. Light meson spectroscopy for J = 0..3 3. Charmonium spectroscopy and gluon shape impact SK, C. Fischer, H. Sanchis-Alepuz, R. Williams Meson () spectroscopy and pion cloud effect 13.06.2014 7 / 24

Rainbow-ladder truncation Quark DSE Kernel as an effective one-gluon exchange S 1 (p) = Z 2 S 1 0 + g 2 Z 1f C F γ µ S(k)Γ ν (k, p)d µν k Meson BSE α eff (p 2 ) = π η7 Λ 2 p2 e p2 η 2 Λ 2 + pqcd [Γ(p; P)] tu = λ K (2) rs;tu (p, k; P) [χ(k; P)] sr. k Λ = 0.72GeV, η = 1.8 ± 0.2 P. Maris, R. Tandy, PRC 78 K, C. Fischer, H. Sanchis-Alepuz, R. Williams Meson () spectroscopy and pion cloud effect 13.06.2014 8 / 24

Devil is in details Poles in quark propagator 10 Eigenvalue extrapolation 1.0 5 0.5 0-1.0 0.0 ImI p 2 M - 0.5-0.5 0.0 ReI p 2 M 0.5 1.0 Barycentric rational interpolation: -1.0 PN 1 2 C = t + i2tmbs 2 MBS wi i=0 x xi yi wi i=0 x xi R(x) = PN 1, Cauchy Integral Im(p2) wk = f(z0) Re(p2) k X i=k d k ( 1) i+d Y j=i,j6=k 1. xk xj J. Berrut, L. Trefethen, SIAM Rev 46 f (z0 ) = 1 2πi I C dzf (z) z z0 SK, C. Fischer, H. Sanchis-Alepuz, R. Williams Meson () spectroscopy and pion cloud effect 13.06.2014 9 / 24

Comparison of extrapolations Meson eigenvalue curves 1.2 2++ (within contour) 2++ (Cauchy) 2++ (Extrapolation) 1.4 1.2 2-- (within contour) 2-- (Cauchy) 2-- (Extrapolation) 1 Eigenvalue 0.8 1 0.8 0.6 0.6 Eigenvalue 0.4 1.6 1.4 1.2 1 0.8 0.6 0.4 0.4 0.6 0.8 1 1.2 M[GeV] 2-+ (within contour) 2-+ (Cauchy) 2-+ (Extrapolation) 0.2 0.4 0.6 0.8 1 1.2 1.4 M[GeV] 0.4 0.4 0.6 0.8 1 1.2 1.4 M[GeV] 1.6 3+- (within contour) 1.4 3+- (Cauchy) 3+- (Extrapolation) 1.2 1 0.8 0.6 0.4 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 M[GeV] SK, C. Fischer, H. Sanchis-Alepuz, R. Williams Meson () spectroscopy and pion cloud effect 13.06.2014 10 / 24

Partitioning optimization Heavy and light quark s contours 20 10 Heavy quark (Maximum) Light quark (Maximum) Heavy quark Light quark 0 Im(p 2 )[GeV 2 ] 10 20 30 40 50 20 0 20 40 60 80 100 Re(p 2 )[GeV 2 ] C Heavyquark = k + ζp BS C Lightquark = k + (1 ζ)p BS 1 Optimal partitioning: ζ = Mheavy max /Mmax light + 1 SK, C. Fischer, H. Sanchis-Alepuz, R. Williams Meson () spectroscopy and pion cloud effect 13.06.2014 11 / 24

n n spectrum n n spectrum 2 π0(1800) ρ(1700) π2(1670) ρ3(1690) PDG η = 1.8 η = 2.0 1.5 π0(1300) ρ(1450) a0(1450) a2(1320) b1(1235) a1(1260) π1(1400) M[GeV] 1 ρ(770) 0.5 π0 0 0 + 1 0++ 1+ 1++ 2++ 2 2 + 3 3+ 3++ 0 0+ 1 + 2+ J PC SK, C. Fischer, H. Sanchis-Alepuz, R. Williams Meson () spectroscopy and pion cloud effect 13.06.2014 12 / 24

s s spectrum s s spectrum M[Gev] 2.4 2.2 2 1.8 1.6 1.4 η(1405) φ(2175) φ(1680) f ' 2(1525) φ ' 3(1850) PDG η = 1.8 η = 2.0 1.2 1 φ(1020) 0.8 0.6 0 + 1 0++ 1+ 1++ 2++ 2 2 + 3 3+ 3++ 0 0+ 1 + 2+ 3 + J PC SK, C. Fischer, H. Sanchis-Alepuz, R. Williams Meson () spectroscopy and pion cloud effect 13.06.2014 13 / 24

9 n s spectrum 14 PDG n s spectrum 2 1.8 K * (1680) K2(1820) K2(1770) K3(1780) PDG η = 1.8 η = 2.0 1.6 M[GeV] 1.4 1.2 K0 * (1430) K * (1410) K1(1400) K2 * (1430) K1(1270) 1 K * (892) 0.8 0.6 0.4 K0(493) 0 0+ 1 1+ 2 2+ 3 3+ J P SK, C. Fischer, H. Sanchis-Alepuz, R. Williams Meson () spectroscopy and pion cloud effect 13.06.2014 14 / 24

Regge trajectories Natural parity 4.0 φ 3 (1850) Unnatural parity 4.0 3.0 isoscalar ss f 2 (1525) 3.0 a 3 (1875) M 2 [GeV 2 ] 2.0 φ(1020) ρ(1690) M 2 [GeV 2 ] 2.0 a 1 (1260) ρ 2 (???) 1.0 0.0 a 2 (1320) isovector nn ρ(770) 1 -- 2 ++ 3 -- J PC 1.0 0.0 isovector nn 1 ++ 2 -- 3 ++ J PC K, C. Fischer, H. Sanchis-Alepuz, R. Williams Meson () spectroscopy and pion cloud effect 13.06.2014 15 / 24

Radial excitations Leading amplitudes for ground and excited states 0.06 Leading vector meson amplitude ρ(770) ρ(1465) 0.04 0.02 0 0.02 0.0001 0.001 0.01 0.1 1 10 100 1000 10000 p 2 [GeV 2 ] SK, C. Fischer, H. Sanchis-Alepuz, R. Williams Meson () spectroscopy and pion cloud effect 13.06.2014 16 / 24

Talk Objectives Talk Objectives 1. Pion cloud effect on barion masses 2. Light meson spectroscopy for J = 0..3 3. Charmonium spectroscopy and gluon shape impact SK, C. Fischer, H. Sanchis-Alepuz, R. Williams Meson () spectroscopy and pion cloud effect 13.06.2014 17 / 24

Lattice charmonium Charmonium spectrum on the lattice Liuming Liu et al., JHEP 07 (2012) 126 SK, C. Fischer, H. Sanchis-Alepuz, R. Williams Meson () spectroscopy and pion cloud effect 13.06.2014 18 / 24

c c spectrum c c spectrum M[Gev] 5 4.5 4 3.5 ψ(4.66) ψ(4.42) X(4.36) X(4.26) ψ(4.15) ψ(4.04) X(3.918) X(3.927) X(3.872) ψ(3.77) ψ(2s)(3.68) ηc(2s)(3.63) hc(3.52) χc2(3.55) χc1(3.51) χc0(3.41) PDG η = 1.25 3 J/ψ(3.09) ηc(2.98) 2.5 0 + 1 0++ 1+ 1++ 2++ 2 2 + 3 3+ 3++ 0 0+ 1 + 2+ 3 + J PC SK, C. Fischer, H. Sanchis-Alepuz, R. Williams Meson () spectroscopy and pion cloud effect 13.06.2014 19 / 24

Gluon shape Gluon shape α eff (x 2 ) = πη 7 P n (x 2 )e x2 η 2 + pqcd, x 2 = p2 Λ 2, P n(x 2 ) = n b i x 2i i=0 Particularly: P 2 (x 2 ) = x 2 + bx 4 1 Maris-Tandy model 0.1 0.01 b = 0 b = 0.2..1.0 0.001 1 p 2 [GeV 2 ] SK, C. Fischer, H. Sanchis-Alepuz, R. Williams Meson () spectroscopy and pion cloud effect 13.06.2014 20 / 24

Shape impact ψ(4.42) X(4.36) X(4.26) ψ(4.15) Shape impact on the charmonium ψ(4.04) 4 X(3.918) X(3.872) 3.8 ψ(3.77) 3.6 ηc(2s)(3.63) ψ(2s)(3.68) hc(3.52) χc1(3.51) M[Gev] 3.4 χc0(3.41) 3.2 J/ψ(3.09) 3 ηc(2.98) PDG b = 0.2..1 2.8 0 + 1 0++ 1+ 1++ J PC SK, C. Fischer, H. Sanchis-Alepuz, R. Williams Meson () spectroscopy and pion cloud effect 13.06.2014 21 / 24

Gradient descent Cost function to re-gauge quark mass J (m q ) = As example ( 1 λ J/Ψ (M exp J/Ψ ) ) 2 P 2 (x 2 ) = x 2 + bx 4 and j = Ψ(2S), Ψ(3S) Cost function to fit gluon shape parameters J (b 0,.., b n ) = j ( ) 2 1 λ j (M exp j ) Use gradient descent to obtain b i : b i = b i J (b 0,.., b n ) b i the fit gives: b = 0.288 SK, C. Fischer, H. Sanchis-Alepuz, R. Williams Meson () spectroscopy and pion cloud effect 13.06.2014 22 / 24

Further Development Further Development Increase a variability of the effective interaction (Scaling vs Decoupling) Charmonium weak decay constants Charm form factors and transition form factors Pion form factor with pion cloud effect SK, C. Fischer, H. Sanchis-Alepuz, R. Williams Meson () spectroscopy and pion cloud effect 13.06.2014 23 / 24

Conclusion Conclusion M N M splitting and indication of missing self-gluon interaction J = 3 light meson spectrum Regge behaviour Similar pattern for J = 2 and J = 3 with the lattice in charmonium spectrum SK, C. Fischer, H. Sanchis-Alepuz, R. Williams Meson () spectroscopy and pion cloud effect 13.06.2014 24 / 24