EUROPE 2007. Gross Domestic Product and Ecological Footprint

Similar documents
How can an Ecological Footprint Contribute to Green Economy in Africa?

Why are resource limits now undermining economic performance?

EU Lesson Plan. Name of Teacher: Sharon Goralewski School: Oakland Schools Title of Lesson Plan: The European Union: United in Diversity

187/ December EU28, euro area and United States GDP growth rates % change over the previous quarter

CALCULATING THE ECOLOGICAL FOOTPRINT AND BIOCAPACITY

99/ June EU28, euro area and United States GDP growth rates % change over the previous quarter

The Tax Burden of Typical Workers in the EU Edition. James Rogers & Cécile Philippe May (Cover page) Data provided by

Costs of air pollution from European industrial facilities an updated assessment

Alcohol Consumption in Ireland A Report for the Health Service Executive

COMMUNICATION FROM THE COMMISSION

How To Calculate Tax Burden In European Union

Energy prices in the EU Household electricity prices in the EU rose by 2.9% in 2014 Gas prices up by 2.0% in the EU

41 T Korea, Rep T Netherlands T Japan E Bulgaria T Argentina T Czech Republic T Greece 50.

Wind energy scenarios for A report by the European Wind Energy Association - July Wind energy scenarios for 2020

NEW PASSENGER CAR REGISTRATIONS BY ALTERNATIVE FUEL TYPE IN THE EUROPEAN UNION 1 Quarter

Electricity and natural gas price statistics 1

The Tax Burden of Typical Workers in the EU Edition

EBA REPORT ON THE BENCHMARKING OF DIVERSITY PRACTICES. EBA-Op July 2016

Taxation trends in the European Union EU27 tax ratio fell to 39.3% of GDP in 2008 Steady decline in top corporate income tax rate since 2000

Comprehensive emissions per capita for industrialised countries

Six greenhouse gases covered by the United Nations Framework Convention on Climate Change (UNFCCC) and its Kyoto Protocol are:

How To Understand Factoring

Pan- European region

WP1 Task 1 The Drivers of Electricity Demand and Supply

168/ November At risk of poverty or social exclusion 2 rate in the EU28, (% of total population)

OVERVIEW OF PURCHASE AND TAX INCENTIVES FOR ELECTRIC VEHICLES IN THE EU

NERI Quarterly Economic Facts Summer Distribution of Income and Wealth

ERMInE Database. Presentation by Nils Flatabø SINTEF Energy Research. ERMInE Workshop 2 - Northern Europe Oslo, 1. November 2006

IS ENERGY IN ESTONIA CHEAP OR EXPENSIVE?

THE TAX BURDEN OF TYPICAL WORKERS IN THE EU 27

193/ December Hourly labour costs in the EU28 Member States, 2012 (in )

CO2 BASED MOTOR VEHICLE TAXES IN THE EU IN 2016

Size and Development of the Shadow Economy of 31 European and 5 other OECD Countries from 2003 to 2015: Different Developments

Electricity, Gas and Water: The European Market Report 2014

CO2 BASED MOTOR VEHICLE TAXES IN THE EU IN 2015

ERASMUS FOR YOUNG ENTREPRENEURS : A NEW EXCHANGE PROGRAMME

Tourism trends in Europe and in Mediterranean Partner Countries,

EUROPE 2020 TARGETS: RESEARCH AND DEVELOPMENT

EUF STATISTICS. 31 December 2013

U.S. Trade Overview, 2013

1. Perception of the Bancruptcy System Perception of In-court Reorganisation... 4

Monitoring the social impact of the crisis: public perceptions in the European Union (wave 6) REPORT

Wealth Accounting and Valuation of Ecosystem Services (WAVES): a Global Partnership. Natural Capital Accounting for Sustainable Development

EU study on company car taxation: presentation of the main results

Wind Power in Germany in 2014

GDP per capita, consumption per capita and comparative price levels in Europe

PBL Note. Non-ETS emission targets for 2030

JRC SCIENTIFIC AND POLICY REPORTS

The education system and lifelong learning in Finland. October 2015 Petri Haltia

Labour Force Survey 2014 Almost 10 million part-time workers in the EU would have preferred to work more Two-thirds were women

2 ND CALL FOR PROPOSALS 27 October January 2009

INTERNATIONAL TRACKED POSTAGE SERVICE

July Figure 1. 1 The index is set to 100 in House prices are deflated by country CPIs in most cases.

Pan-European opinion poll on occupational safety and health

IMMIGRATION TO AND EMIGRATION FROM GERMANY IN THE LAST FEW YEARS

Government at a Glance 2015

DRAFT AMENDING BUDGET N 6 TO THE GENERAL BUDGET 2014 GENERAL STATEMENT OF REVENUE

FEDERATION EUROPEENNE DES MEDECINS SALARIES EUROPEAN FEDERATION OF SALARIED DOCTORS

Ownership transfer Critical Tax Issues. Johan Fall, Anders Ydstedt March, 2010

Ecological Footprint Calculator

Planned Healthcare in Europe for Lothian residents

13 th Economic Trends Survey of the Architects Council of Europe

The Tax Burden of Typical Workers in the EU 27

Updated development of global greenhouse gas emissions 2013

EU-10 AND THE CAP CONTENTS

EU Energy Policy and the Energy Situation in Germany

DEBT LEVELS AND FISCAL FRAMEWORKS. Christian Kastrop Director of Policy Studies Branch Economics Department

ERASMUS+ MASTER LOANS

INNOVATION IN THE PUBLIC SECTOR: ITS PERCEPTION IN AND IMPACT ON BUSINESS

The current electricity costs of energy-intensive industries in Germany

Finnish foreign trade 2014 Figures and diagrams FINNISH CUSTOMS Statistics 1

Wealth Accounting & Valuation of Ecosystem Services and CBD reporting & targeting

Value of production of agricultural products and foodstuffs, wines, aromatised wines and spirits protected by a geographical indication (GI)

Financing public expenditure: some key figures at EU and national levels

Implementing the cooperation mechanisms of the RES directive current status and open questions

The Guardianship Service

Green Economy: 10 years Success Story of End-of-Life Vehicles. ECOMONDO Rimini, 9 November 2011 Speaker: Artemis Hatzi-Hull

Computing our Future Computer programming and coding in schools in Europe. Anja Balanskat, Senior Manager European Schoolnet

Fact sheet: The Kyoto Protocol

Environmental Issues. Approaches to Environmental Science. Environmental Issues, natural capital degradation. Approaches to Environmental Science

4 Distribution of Income, Earnings and Wealth

KOREA ECOLOGICAL FOOTPRINT REPORT Measuring Korea's impact on nature

Pure Power. Wind Energy Scenarios up to By the European Wind Energy Association

Fish dependence 2014 update. The reliance of the EU on fish from elsewhere

The Vision of the European Cosmetics Industry

The energy industry and energy price issues in Slovakia during recent years 1

Intervention on behalf of Denmark, Norway and Ireland on the occasion of the Open Working Group on Sustainable Development Goals meeting on

Annual European Union greenhouse gas inventory and inventory report 2015

Beer statistics edition. The Brewers of Europe

Keeping European Consumers safe Rapid Alert System for dangerous non-food products 2014

Indicator fact sheet Fishing fleet trends

SMEs access to finance survey 2014

Poverty and Social Exclusion in Central, Eastern and South-Eastern European Member States. Michael Knogler

Public Debt and Contingent Liabilities: A Cross-Country Comparison

10TH EDITION MERGER CONTROL VADEMECUM FILING THRESHOLDS AND CLEARANCE CONDITIONS IN THE 29 EUROPEAN JURISDICTIONS

The European Union s Economic and Monetary Union

ERASMUS+ MASTER LOANS

Transcription:

EUROPE 27 Gross Domestic Product and Ecological

Europe s Ecological The European Union (EU) has demon - strated considerable dynamism over the past 4 years. It has grown stronger polit - ically and economically and today, together, its 27 Member States make up the world s largest economy. But this economic growth and the increased affluence of its citizens have masked an increasing toll that Europe is taking on the planet s well-being, despite many successful environmental initiatives. The success of Europe s project to look beyond economic factors to gauge progress towards sustainable development is vital. Only then will the EU be able to maintain its compet itiveness, but also the lifestyles of its current and future citizens in the face of environmental challenges from the fertility of its soils and seas to climate change. The Ecological measures humanity s demand on the biosphere in terms of the area of biologically productive land and sea required to provide the resources we use and to absorb our waste. The footprint of a country or region includes all the cropland, grazing land, forest, and fishing grounds required to produce the food, fibre, and timber it consumes and to absorb the wastes it emits. In 23 the European Union s Ecological was 2.26 billion global hectares, 4.7 global hectares per person a global hectare (gha) is a hectare with world-average ability to produce resources and absorb wastes. In contrast, Europe s total supply of productive area, or biocapacity, in the same year was 1.6 billion gha, or 2.2 gha per person. When Europe s footprint was first measured, in the 196s, it was approximately commen surate with the available bio capacity. Since then it has more than doubled increasing by 16 per cent in the last 1 years. Europe maintains its ecological deficit the difference between its footprint and its biocapacity by importing goods and services from beyond its borders and exporting some of its wastes, including CO2. The European footprint is the sum of these areas, wherever they may be. But the world is already running a deficit the average biocapacity available per person is around 1.8 gha, while the average footprint is 2.2 gha. If all the world s citizens lived as Euro peans, we would need more than two and a half planets to provide the necessary resources, absorb our wastes, and leave some capacity for wild species. Figure 1: Ecological and biocapacity, EU-27 countries, 1993-23 This includes all EU countries for which complete data are available*. Figure 2: EU total Ecological, GDP, and population growth, 1971-23 Indexed data showing Ecological Foot print, GDP, and population growth for the EU. Data is added as new Member States join the Union, i.e. in 1971 the data is for the original EU-6, while in 23, it is for the EU-15. The diagram implies that some de coupling of GDP from the footprint has taken place. Nonetheless the footprint has more than doubled, and is growing faster than the population. * Throughout, data is provided for all EU-27 Member States except Cyprus and Malta. Fig 1: Ecological and biocapacity, EU-27 countries, 1993-23 (global hectares per person) 5 Fig 2: EU s total Ecological, GDP, and population growth, 1971-23 (Index, 1971=1) GDP 35 4 EU footprint 3 25 3 2 1 EU biocapacity World average biocapacity in 23 Index 2 15 1 5 2 1993 1995 1997 1999 21 23 1971 1973 1978 1981 + IRL, + GRC DNK & GBR 1983 1986 + ESP & PRT 1988 199 DEU 1993 1995 +AUT, 1998 23 reunites FIN & SWE

Measuring sustainability Sustainable development, according to IUCN The World Conservation Union, is a com - mitment to improving the quality of human life while living within the carrying capacity of supporting ecosystems. What does this mean for Europe? Is Sweden ecologically sustainable when its average resident s footprint is nearly three times larger than what is available per person world wide, yet is around two-thirds of Sweden s bio - capacity? If, however, everyone in the world led the same lifestyle as the average Swedish citizen, it is unlikely that the Earth could sustain life as we know it for long. Nor would humanity be sustainable were all countries to run an eco logical deficit as do all but three of the EU s Member States. The average footprint of Europe s citizens is more than twice Earth s available biocapacity per person, and about eight times that of such low-income countries as Mozambique or Pakistan. Progress towards sustainable development can be assessed using the United Nations Development Programme s (UNDP) Human Dev elopment Index (HDI) as an indicator of well-being, and the Ecological as a measure of demand on the biosphere. The HDI is a composite of life expectancy, literacy and education, and per capita GDP, with an HDI value of more than.8 considered high human development. Meanwhile, a footprint lower than 1.8 gha per person means that humanity as a whole would be using less than Earth s total though some biocapacity would still be needed for those species with whom we share the planet. Sustainable development requires that the world, on average, meets at least these two criteria, with countries moving into the green quadrant shown in Figure 3. The paradox is that as countries develop according to accepted criteria, their foot prints continue to grow even after they have achieved high human development. This implies a conflict between what is currently seen as development, and the internationally stated goal of sustainability. A sustainable society, Meadows, Randers and Meadows suggest in Limits to Growth: The 3-Year Update, is one that has the time, resources and will to innovate, to preserve the fertility of its ecosystems and focuses on increasing the quality of life rather than on merely expanding consumption. Figure 3: Human development and the Ecological This traces the development towards sust ain - ability of EU Member States. It shows that as levels of development, as measured by the HDI, increase, so too do footprints. For example, in 1995 Slovenia was the only European nation that met the two criteria of an HDI score of more than.8 and a footprint lower than the biocapacity available per person globally. However, its footprint has now more than doubled, while its HDI has risen by less than 5 per cent. (The table provides details of the years tracked.) Fig 3: Human development and the Ecological, earliest year and 23 Exceeds biosphere s average capacity per person, low development World average biocapacity available per person in 23 Within biosphere s average capacity per person, low development Threshold for high human development Exceeds biosphere s average capacity per person, high development Meets minimum criteria for sustainable development.5.6.7.8.9 1. HDI 8 6 4 2 () Years HDI HDI Austria 75/3 3.37.85 4.94.92 Belgium & Lux. 75/3 4.11.85 5.61.94 Bulgaria 8/3 4.6.77 3.11.81 Czech Rep. 95/3 4.36.85 4.91.87 Denmark 75/3 4.95.87 5.75.94 Estonia 9/3 4.42.79 6.47.85 Finland 75/3 4.37.84 7.64.94 France 75/3 3.68.85 5.63.94 Germany 8/3 4.88.86 5.93 Greece 75/3 2.2.84 5..91 Hungary 75/3 3.29.71 3.5.86 Ireland 75/3 3.5.86 4.95.96 Italy 75/3 2.57.84 4.15.93 Latvia 8/3 2.99.77 2.59.84 Lithuania 9/3 3.25.79 4.44.85 Netherlands 75/3 3.43.87 4.39.94 Poland 9/3 3.83.81 3.29.86 Portugal 75/3 2.57.79 4.19.9 Romania 9/3 3.31.78 2.35.77 Slovakia id /3 id id 3.23.86 Slovenia 95/3 1.68.86 3.42.9 Spain 75/3 2.47.84 5.36.93 Sweden 75/3 4.72.87 6.7.96 UK 75/3 4.32.85 5.59.94 3

Case studies EU Member States have experienced rapid growth and political transition over the past 2 years. Some, such as Germany, have begun decoupling economic growth from resource use. Others, such as Greece and Spain, are still expanding in both economic and material terms. Another group, including Hungary and Romania, have the op - portunity of leap frogging from outdated technologies to modern, resource-efficient ones. Yet the EU remains an overall ecological debtor. From a low of 2.4 gha per Romanian to a high of 7.6 gha per Finnish citizen, all but three of the EU Member States Finland, Latvia, and Sweden are ecological debtors, and all have Ecological s above the world s average biocapacity per person. The upper graphs illustrate, for each year, a country s total Ecological the resources it used to meet the demands of its population. The Ecological is the product of population multi plied by consumption per person, and reflects the effic iency with which resources are turned into products. resource supply varies each year depending on ecosystem management, agricultural practices such as fertilizer use and irrigation, ecosystem degradation, and weather. These figures show the ratio of a country s demand to its biocapacity in each year, and how these have changed over time. Comparing these with a country s pop ulation growth highlights the true development of con sumption over the past 3 years. GERMANY Germany, after a rise in its Ecological of around 65 per cent between 1961 and 1971, has managed, by reducing the amount of coal it uses and becoming a world leader in renewable energy development, to stabilize its footprint and to increase its biocapacity, despite a 5 per cent increase in population. In this, Germany is leading the EU in terms of innovation and the decoupling of resource use and production. Nonetheless, its footprint is two and a half times its biocapacity and remains more than double the world average per person. Fig 4: Germany s total Ecological, biocapacity, and population, 1971-23 45 4 35 3 25 2 15 1 5 73 83 93 3 9 8 7 6 5 4 3 2 1 Fig 5: Germany s Ecological and biocapacity per person, 1971-23 FRANCE In 1961, France was using, in net terms, slightly less than its full domestic biocapacity, but by 1971 it was already an ecological debtor. The deficit has continued to grow, and by 23 France used nearly twice its own biocapacity, although this, too, has increased slightly. France s experience parallels a general EU-27 trend: biocapacity is increasing with improved technology and more intensive agriculture, but is outpaced by the growth of consumption, with the largest component being energy, whether for industrial and domestic use or transport. Fig 6: France s total Ecological, biocapacity, and population, 1971-23 45 4 35 3 25 2 15 1 5 73 83 93 3 Fig 7: France s Ecological and biocapacity per person, 1971-23 9 8 7 6 5 4 3 2 1 The lower graphs track, in absolute terms, the average Ecological per person and biocapacity per person in each country over a 3-year period. As populations grow, so the biocapacity per person diminishes unless measures are in force to decouple consumption from resource use. 6. 3. 6. 3. 4. 73 83 93 3. 73 83 93 3

SPAIN Spain s remarkable economic growth since 1961 has been accompanied by a significant rise in its footprint and, because of its rising population, a diminution in the biocapacity available per person. Since 1971, both absolute and per person Ecological s have grown by more than 16 per cent, although population increased by just over 2 per cent. In 23, its biocapacity available per person was just below the global average, while its footprint was 15 per cent above the European and almost 15 per cent higher than the global average, despite Spain being a leader in renewable energy. HUNGARY Hungary s footprint per person rose from 2.4 gha in 1961 to a high of 4.2 gha in 1991, but has since fallen back to 3.5 gha, while its population diminished slightly. Over the same period, the country s biocapacity followed a similar pattern rising from 2.1 gha in 1961 to 2.8 gha in 1991, then moving to just above the global average at 2 gha in 23. With these changes largely due to economic shifts resulting from the close of the Soviet era, Hungary has the opportunity, strength ened by accession to the European Union, of decoupling eco nomic growth from re source use, leapfrogging the environment/development paradox. ROMANIA Romania has the lowest Ecological among the EU-27, at just 2.4 gha per person marginally more than the global average. Yet it remains an ecological debtor, with biocapacity of 2.3 gha per person. Over the years, the discrepancy between footprint and biocapacity has varied until 197 the country enjoyed a biocapacity reserve, but then ran a deficit until 1994. In the years measured since then, all but two show a reserve of biocapacity over footprint. As these years also show rapid growth in GDP, it will be interesting to see whether these trends continue following accession to the European Union. Fig 8: Spain s total Ecological, biocapacity, and population, 1971-23 45 4 35 3 25 2 15 1 5 73 83 93 3 9 8 7 6 5 4 3 2 1 Fig 1: Hungary s total Ecological, biocapacity, and population, 1971-23 45 4 35 3 25 2 15 1 5 73 83 93 3 9 8 7 6 5 4 3 2 1 Fig 12: Romania s total Ecological, biocapacity, and population, 1971-23 45 4 35 3 25 2 15 1 5 73 83 93 3 9 8 7 6 5 4 3 2 1 Fig 9: Spain s Ecological and biocapacity per person, 1971-23 6. Fig 11: Hungary s Ecological and biocapacity per person, 1971-23 6. Fig 13: Romania s Ecological and biocapacity per person, 1971-23 6. 3. 3. 3.. 73 83 93 3. 73 83 93 3. 73 83 93 3 5

Europe s share At a national level, all but three countries of the EU-27 currently run ecological deficits and the com bined footprint of Member States is more than twice their biocapacity. Nations and regions with ecological deficits can maintain their resource consumption in two ways and usually do so by combining both. They can use their own ecological assets faster than these are regenerated each year for example, depleting existing forest stocks rather than just harvesting the amount grown each year. Or they can import resources from Fig 14: Ecological debtor and creditor countries, 23 National Ecological relative to nationally available biocapacity. Ecodebt more than 5% larger than biocapacity 5% larger than biocapacity Ecocredit 5% larger than footprint more than 5% larger than footprint Insufficient data (inset, not part of the EU) elsewhere and export the wastes they generate, including CO2. Ecological creditors just Finland, Latvia, and Sweden among the EU-27 may be endowed with ecological reserves, but this does not necessarily mean that all their assets are well managed and are not subject to over - harvesting or degradation. Things change just 4 years ago, much of Europe, too, was an ecological creditor. But with a continuing global deficit, debtor and creditor countries alike will come to realize the significance of ecological assets both for economic competitiveness and national security, and the economic value of curbing their footprints, thereby husbanding their biocapacity. As national and regional ecological deficits continue to increase, the predominant geopolitical line may shift away from the current economic division between the developed and developing, and fall between those with ecological reserves and those with deficits. Fig 15: EU s share of the global total, 1971-23 Figure 14: Ecological debtor and creditor countries, 23 Figure 15: EU-27 s share, 1971-23 The EU-27 is home to 7.7 per cent of the global population, and contains 9.5 per cent of the world s biocapacity. Yet, in 23 the European Union accounted for just over 16 per cent of the global Ecological. Although Europe s shares have diminished since 1971, largely as a result of increases in global population, it remains ecologically dependent upon countries with ecological reserves. With the world already in ecological deficit, this is unlikely to be sus - tainable in the long term, and highlights the urgency of decoupling attit udes, lifestyles, and production from current levels of resource consumption. Ecological 23 1993 1983 1973 1971 6 5 1 15 2 25 Per cent

Moving into credit Europe has been running an ecological deficit since the 196s, and its Ecological is rising faster than both its biocapacity per person and the world average available per person. Although biocapacity can increase, for example as a result of increasing agricultural efficiency, it is limited. Managing and dimin - ishing the footprint provide greater potential in the search for sustainability. It is not a question of whether Europe can afford to stem its foot - print s rapid escalation it cannot afford not to. Human-made infrastructure can last for many decades. Figure 17 compares typical lifespans for some human and physical assets together, Europeans born and the infrastructure built today will shape resource consumption for much of the rest of the 21st century. Transport and urban infrastructures including energy generation become traps if they operate on large footprints. In contrast, future-friendly infrastructure cities designed to be resource efficient, with carbon-neutral buildings and pedestrian and public-transport oriented systems can support a high quality of life with a small footprint. The longer infrastructure is built to last, the more critical it is to ensure that we are not creating a destructive legacy that will undermine future well-being. Cities, nations, and the EU itself, should consider how competitiveness will be impacted if economic activity is hampered by infra structure that can only operate with large resource demands. And if, as is predicted, the global population grows to 9 billion, humanity will need to find ways for the average person to live well on less than half the current global average footprint. MEASURING FOR SUSTAINABILITY Economic indicators are essential, but without resource accounting, ecological deficits will go unnoticed and are likely to persist. By the time their effects become apparent, it may be too late to change course. The visible effects of climate change provide the greatest evidence of the need to change thinking beyond individual econ - omic sectors, and embrace the concept that in the long term healthy economies can only thrive within healthy environments. Resource accounting and reporting are essential to combating and mitigating the effects of climate change, preserving fish stocks, and minimizing waste all European issues. They can establish baselines, set targets, protect ecological assets, monitor the progress of sustain ability strategies, and help prevent or at least mitigate the effects of environ mental crises and their associated socio-economic consequences. The managerial usefulness of indicators and accounting measures such as the Ecological and WWF s Living Planet Index, a measure of biodiversity, is attested to by their adoption as indicators for the 21 targets of the Convention on Biological Diversity. Together with other indicators of the health of key aspects of the biosphere and human well-being, they can help provide the full set of information necessary to keep Europe on target in its quest for a sustainable future. Fig 16: EU countries and world average Ecological, 1971-23 (global hectares per person) Fig 17: Lifespans of people, assets and infrastructure 5 Car 1-2 years (EU average) District heating systems 4 years (EU/US) 4 EU-27 footprint Highway 2-5 years 3 2 World biocapacity World footprint EU-27 biocapacity Average lifespans Bridge 3-75 years Coal-powered power station 3-75 years Human 7-82.5+ years (EU) 1 Commercial building design 5-1 years 1971 1981 1991 21 23 Railway, home, dam 5-15 years 2 25 21 215 7

The footprint data contained in this report were generated by the Global Network s National Accounts, 26 Edition. Global Network, 27 www.footprintnetwork.org WWF, Global Network and the Zoological Society of London track the state of the world s biodiversity and humanity s demands on the natural world through the twin indicators of the Living Planet Index and the Ecological. Together they show how humanity is now making unprecedented demands on Earth in terms of the resources we use and the wastes we produce to support our lifestyles and the toll that these are taking on the species that share our planet. The challenge of reducing our footprint, highlighted in Europe 27, Gross Domestic Product and Ecological produced as a contribution to the Beyond GDP conference (European Parliament, November 27), goes to the very heart of our current economic models. Comparing the Ecological with a recognized measure of human development, the United Nations Human Development Index, this report clearly shows that what we currently accept as high development is a long way away from the world s stated aim of sustainable development. As countries improve the well-being of their people, they are bypassing the goal of sustainability and becoming ecological debtors using far more resources than the planet can sustain. It is inevitable that this path will limit both the abilities of poor countries to develop and of rich countries to maintain prosperity. It is time to make some vital choices. Change that improves living standards while reducing our impact on the natural world will not be easy. But we must recognize that choices we make now will shape our opportunities far into the future. The good news is that it can be done. We already have technologies that can lighten our footprint, including many that can significantly reduce climate-threatening carbon dioxide emissions. But we must all do more. The message of this report is that we are living beyond our means, and that the choices each of us makes today will shape the possibilities for the generations that follow us. James P. Leape Director General, WWF International 1986 Panda symbol WWF-World Wide Fund For Nature WWF and living planet are WWF Registered Trademarks 11.7 (1M) WWF s mission is to stop the degradation of the planet s natural environment and to build a future in which humans live in harmony with nature, by: - conserving the world s biological diversity - ensuring that the use of renewable natural resources is sustainable - promoting the reduction of pollution and wasteful consumption. WWF European Policy Office (EPO) 36 Avenue de Tervurenlaan B12 14 Brussels, Belgium Tel: +32 2 743 88 Fax: +32 2 743 88 19 www.panda.org/eu Cover image: QINETIQ LTD/Still Pictures World Wide Fund for Nature (WWF), 27.