SuperIOr Controller. Digital Dynamics, Inc., 2014 All Rights Reserved. Patent Pending. Rev: 5-16-14 1

Similar documents
Straton and Zenon for Advantech ADAM Copalp integrates the straton runtime into the ADAM-5550 device from Advantech

ABB drives. Automation solutions Drives, PLC, motion, motors and safety

Implementing a Reliable Furnace Monitoring System

EtherCAT Cutting Costs with High-speed Ethernet

ni.com/vision NI Vision

G4 Digital DC Output Modules. G4 Digital DC Output Modules. Features. Description. Part Numbers

Permissible ambient temperature Operation Storage, transport

40.3. Control Relays and Timers

Figure 1 FPGA Growth and Usage Trends

MLC TM Maximum Productivity and Versatility for Control without Compromise!

Automation Unit TM 1703 ACP Flexible automation and telecontrol

Configuring PROFINET

ISIO 200. Binary Input/Output (I/O) Terminal with IEC Interface

Modular I/O System Analog and Digital Interface Modules

Linear Motion and Assembly Technologies Pneumatics Service. Industrial Ethernet: The key advantages of SERCOS III

Electronics Ltd. Presenting. Power, Intelligence... with a sense of feeling

RACKS CLASSIC STANDARD DIGITAL. DATA SHEET page 1/3. Description

Square D Model 6 Motor Control Centers

JNIOR. Overview. Get Connected. Get Results. JNIOR Model 310. JNIOR Model 312. JNIOR Model 314. JNIOR Model 410

FIBER OPTIC APPLICATION IN A PROFIBUS NETWORK

Digital and Analog I/O

Combined Cycle Control Overview

Bristol ControlWave Redundant Control

SIMATIC NET. CP AS-Interface Master B C. Preface Contents. Technical Description and Installation Instructions Interface to the User Program

The Case for Intelligent Remote I/O. The Case for Intelligent Remote I/O. Wise Delegation for Your Automation System. Introduction

Introduction to the Actuator Sensor-Interface

Bioreactor Process Plant Powered by NI LabVIEW and NI CompactRIO

Siemens and National Instruments Deliver Integrated Automation and Measurement Solutions

Programming Logic controllers

Programmable Logic Controllers Definition. Programmable Logic Controllers History

Computer Controlled Generating Stations Control and Regulation Simulator, with SCADA SCE

The integrated HMI-PLC

GE Intelligent Platforms. PACSystems High Availability Solutions

AS-i 3.0 Gateways, PROFIsafe via PROFIBUS or PROFINET

FIRE ALARM AND DETECTION SYSTEMS SECTION 16721

Multi-Range Programmable DC Power Supplies 9115 Series

Modbus and ION Technology

Modbus and ION Technology

HIGH RELIABILITY POWER SUPPLY TESTING

AS-i 3.0 PROFIBUS Gateways with integrated Safety Monitor

SAN Conceptual and Design Basics

SECTION 13XXX CONTROL DESCRIPTION (DICP Models NC, 412, 622, 826, 1030)

EDI Distributor Control Interface Wiring and Setup Instructions

Analog Servo Drive 25A8

NEW GENERATION PROGRAMMABLE AUTOMATION CONTROLLER

Understanding Programmable Automation Controllers (PACs) in Industrial Automation

GAM900/GAM900S. Acceleration precisely measured and safely monitored

Simplify Data Acquisition with a Built-in LXI Web Server

Rosemount Analytical s X-STREAM XE Web-Browser Interface Takes Process Analysis to the Next Level

Disturbance Recoder SPCR 8C27. Product Guide

EMBEDDED ACCESS CONTROL Hardware Installation Guide

A+ Guide to Managing and Maintaining Your PC, 7e. Chapter 1 Introducing Hardware

PLCs and SCADA Systems

Plant automation and telecontrol in one system. SIMATIC PCS 7 TeleControl SIMATIC PCS 7. Answers for industry.

Power & Environmental Monitoring

M-series FOUNDATION Fieldbus I/O

White paper The future role of ethernet and the trend to decentralised control solutions

MINIMAT-EC-Servo Screwdriver Spindles

Tidal Engineering Corporation Engineering and Manufacturing Services


Electronic Control Devices The European Product Catalogue 2007

S-series SQ Controller

Testing for the Unexpected: An Automated Method of Injecting Faults for Engine Management Development

Application Unit, MDRC AB/S 1.1, GH Q R0111

Safety Requirements Specification Guideline

NGSS Data Consolidator (DC)

High Power Programmable DC Power Supplies PVS Series

SMS GSM Alarm Messenger

INDUSTRIAL AUTOMATION EQUIPMENT EDITION

SNAP-SCM-PROFI Communication Module

Model: DC-A2IO Advanced HVAC Controller

Easy and efficient asset management for your business

Technical Training Module ( 30 Days)

White Paper Utilizing Leveling Techniques in DDR3 SDRAM Memory Interfaces

NETWORK ENABLED EQUIPMENT MONITOR

MN1010 Evaluation Kit v3 User Guide

An overview of Computerised Numeric Control (C.N.C.) and Programmable Logic Control (P.L.C.) in machine automation

Introduction to Data Acquisition

4.0 UPS dedicated to ICT for unmatched energy savings

A-307. Mobile Data Terminal. Android OS Platform Datasheet

LNG Monitoring. Fiber-Optic Leakage Detection System. Pipeline leakage detection. Regasification and liquefaction monitoring

Product Information Sheet UH36 Hi Pot Tester

Designing an efficient Programmable Logic Controller using Programmable System On Chip

PLC Based Liquid Filling and Mixing

3500/62 Process Variable Monitor

3500/22M Transient Data Interface

Computer Controlled Vortex Tube Refrigerator Unit, with SCADA TPVC

How to read this guide

Safety Relays ESM/ESM-F

SYSTEM 4C. C R H Electronics Design

SPPA-T3000 Control System The Benchmark in Controls

Smart DeviceNet Remote I/O Terminals

Cesar RF Power Supplies: 2, 4, 13.56, 27.12, and MHz; 300 W to 5 kw

M2M/IoT Solutions.

AMICO Information. Management System (AIMS)

Research RF Sputtering Packages

Updating to Test Universe 3.0. What s new?

Safety Function: Door Monitoring

Wireless Field Data Backhaul

Transcription:

SuperIOr Controller The SuperIOr Controller is a game changer in the world of high speed embedded control. The system combines incredible speed of both control and communication with revolutionary configurable distributed interlocks. It features customizable remote modules that allow precise tailoring of I/O with customer configured field connects. This document provides an introduction and overview of the SuperIOr Controller family of products. For further details, please contact: Ray Gorski - Director, Sales & Marketing, Digital Dynamics, Inc. 5 Victor Square, Scotts Valley, CA 95066, 831-461-5724 rgorski@digitaldynamics.com Digital Dynamics, Inc., 2014 All Rights Reserved. Patent Pending. Rev: 5-16-14 1

General Description The SuperIOr Controller is a distributed Input/Output (I/O) control system for embedded OEM machine control applications. The system supports complex control and interlock strategies that require high speed distributed I/O. It can simultaneously manage up to 1000 inputs and outputs with sub-millisecond response times. Typical applications include automation of semiconductor and photovoltaic wafer fabrication tools, metrology systems, extrusion and molding machines, medical manufacturing and analytical equipment. Each system is composed of a Master Control Module (MCM) connected to a network of Remote Interface Modules (RIMs). The system can operate under the control of a customersupplied supervisory host computer or can operate autonomously as the system computer for the entire machine. The SuperIOr MCM provides precise coordination of as many as 16 configurable Remote I/O Modules (RIMs) distributed throughout a tool. I/O assignment and safety interlocks are easy to specify using a simple configuration application. Interlocks are electrically programmed into dual redundant configuration PROMs, providing the ultimate in configurable safety interlock integrity. Any number of I/O points in any combination of RIMs can be interlocked. Interlocks can be easily re-configured, substantially reducing hardware design spins traditionally needed to accommodate process changes. SuperIOr RIMs are fast I/O subsystems configured to support sensors and actuators throughout the controlled equipment. Each RIM is configured with multiple plug-in I/O cards specifically designed for machine control applications. The I/O cards support high-resolution analog and fast digital inputs and outputs, as well as precision temperature measurement, P.I.D. loop control and serial bus communications to smart devices. RIMs can be installed in close proximity to the components with which they interface (up to 250 cable feet from the MCM). The system is designed to use low cost CAT6 cables to provide redundant communication paths between the MCM and the RIMs thus significantly reducing the need for complex custom cables usually required to reach I/O points in conventional control systems. The SuperIOr Controller system is the newest family of industrial control products designed and manufactured by Digital Dynamics, Inc. (DDI) in Scotts Valley, CA. DDI is an ISO 9001 registered company with 40 years of design and manufacturing experience, and a worldwide installed base of more than 40,000 advanced electronic control systems. The SuperIOr Controller system incorporates patent pending technology. Digital Dynamics, Inc., 2014 All Rights Reserved. Patent Pending. Rev: 5-16-14 2

SuperIOr Controller System The marriage of integrated control with distributed I/O! Provides the advantages of centralized programming with the flexibility of distributed control. SuperIOr Features SuperIOr Benefits Lightning Fast Response: Scanning all I/O points at sub-millisecond speed ensures maximum performance of the machine under control. Synchronization Accuracy: Single Master Control provides precise timing between all I/O points on the machine. Skew minimization includes automatic compensation for MCM to RIM cable lengths. Integrated Safety: Dual redundant FPGAs are used to configure hardware safety interlocks independent of CPU processing. Intrinsic Output Monitoring: All digital outputs are continuously monitored to verify the integrity of the discrete control system. In the event of an anomalous condition, the system will automatically deactivate the affected RIM. Ease of Configuration: I/O assignment and safety interlocks are easily specified and programmed into the configuration PROMs. Interlocks can be readily re-configured, substantially reducing the need for hardware design spins to accommodate process changes. Scalable and Flexible I/O: A single SuperIOr Controller system can span the complex I/O requirements of a large-scale machine with up to 1000 mixed signal I/O points and up to 16 distributed RIMs. Digital Dynamics, Inc., 2014 All Rights Reserved. Patent Pending. Rev: 5-16-14 3

I/O Versatility: RIMs can be tailored to machine requirements using a broad range of DDI industrial I/O cards including digital and analog I/O, temperature control and serial communications. Industry Standard Interface: The system can support high-speed digital communications including Ethernet, RS-232, MODBus/TCP and EtherCAT (coming Q4 2014). Small System Footprint: Compact, high-density system components save valuable space in the customer s equipment. Improved Cable Routing: RIMs are connected to the MCM with inexpensive, easily routed CAT6 cables, dramatically reducing the requirement for long and costly custom cables. Customer-specified RIM Connectors: Custom cable connections from the RIMs to their respective sensors and actuators are short and simple. Designed for Industrial Applications: High integrity circuitry ensures reliable and repeatable control in large and complex embedded applications. Logging and Monitoring: A SuperIOr Controller system can be configured to continuously log digital and analog control signals and deliver the information to a supervisory host upon request. Individual points can be monitored for dynamically changing high and low level alarms. Optional I/O Monitor Display: Remote terminal displays the state of all I/O and safety interlocks throughout the system to aid in system setup and troubleshooting. Digital Dynamics, Inc., 2014 All Rights Reserved. Patent Pending. Rev: 5-16-14 4

SYSTEM SPECIFICATIONS Ethernet SuperIOr Master Control Module (MCM) The SuperIOr MCM is a fast real-time processor that can manage up to 16 remotely distributed RIMs. The MCM coordinates all signals and provides for customer configured safety interlocks. All interlocks are acted upon in real time by dual redundant FPGA hardware logic, providing the ultimate in safety interlock integrity. This unique configurable interlock capability dramatically reduces the need to redesign circuit boards to accommodate process or machine changes. System Configuration & Programmable Interlocks Customer configurable I/O mapping. Up to 64 programmable interlocks using any of the 1000 digital inputs and outputs. Supports faster and easier design changes under documentation control. Currently Available Configurations Ethernet MCM supporting up to 8 RIMs Ethernet MCM supporting up to 16 RIMs MCM Dimensions (approx.) 3 H x 9 W x 5 D (76mm x 229mm x 127mm) Safety Complies with tool requirements for SEMI S2 and applicable sections of UL 991. Suitable for use in SIL3 environments as specified in IEC61508. Digital Dynamics, Inc., 2014 All Rights Reserved. Patent Pending. Rev: 5-16-14 5

MCM Front Panel Connectors and Indicators Digital Dynamics, Inc., 2014 All Rights Reserved. Patent Pending. Rev: 5-16-14 6

SuperIOr Remote Interface Modules (RIM) RIM Specifications The SuperIOr RIMs are very fast I/O subsystems configured to pair with various sensors and actuators throughout your equipment. Configuration is accomplished with a broad family of robust plug-in I/O cards. Interface with MCM High speed dual redundant communication via a single CAT6 cable per RIM Master control power relay for safety interlock RIM Configurations Six Slot RIM (accommodates up to 6 I/O Cards) Twelve Slot RIM (up to 12 I/O Cards) Twenty Four Slot RIM (up to 24 I/O Cards) RIM Dimensions (approx.) Six Slot RIM: (3 H x 7 W x 4 D) (76mm x 178mm x 102mm) Twelve Slot RIM: (3 H x 7 W x 7 D) (76mm x 178mm x 178mm) Twenty Four Slot RIM: (3 H x 11 W x 7 D) (76mm x 28mm x 178mm) Digital Dynamics, Inc., 2014 All Rights Reserved. Patent Pending. Rev: 5-16-14 7

Typical 24 Slot RIM with I/O Cards Installed Digital Dynamics, Inc., 2014 All Rights Reserved. Patent Pending. Rev: 5-16-14 8

SuperIOr I/O Cards A family of industrial plug-in SuperIOr TM I/O Cards is available to configure RIMs. A wide variety of card types are available to interface with sensors and actuators throughout the machine. D-IN 16 ch. (5V logic) A-IN 8 ch. Default to 0V A-OUT 8 ch. D-IN 16 ch. (24V logic) A-IN 8 ch. Default to 10V A-OUT 16 ch. D-IN 16 ch. Inverted (24V logic) A-IN 16 ch. Default to 0V 8 ch. AIN + 8 ch. AOUT D-OUT 16 ch. Sourcing A-IN 16 ch. Default to 10V D-OUT 8 ch. OPTO D-OUT 8 ch. SPST Relay Thermocouples 7 ch. (J, K, T, etc.) D-OUT 16 ch. OPTO RS-232/RS-485, 4 ch. Overtemp 8 ch. (J, K, T, etc.) I.D. Card Additional types are in development and others can be designed upon request. I/O Monitor Display (optional) Displays state of all I/O and Safety Interlocks throughout the system. Displays system information. Available app. for customer laptop computer or optional tablet via MCM serial connection. Development Process 1. Begin by defining all the I/O used throughout the machine, and then consider logical groupings based on geographical distribution. 2. Identify size and quantity of RIMs your tool will need. DDI can assist you in this analysis to determine the optimal allocation of I/O cards and RIMs. 3. Define tag names associated with each input and output and correlate them with I/O card designations in RIMs. Certain outputs will be classified as safety outputs. 4. Work with DDI to develop a schematic for each RIM and a spreadsheet for defining your safety interlocks. Customer sends DDI a schematic or we can develop it for you. 5. Typically the customer does a wiring diagram of the connections and connectors needed then DDI will layout the PCB and mechanical designs on our CAD systems. 6. DDI handles all manufacturing challenges of component sourcing, assembly and quality control, then delivers a complete, plug-in-ready solution. Digital Dynamics, Inc., 2014 All Rights Reserved. Patent Pending. Rev: 5-16-14 9

Application Example: Semiconductor Manufacturing Tools Semiconductor manufacturing requires precision control. A typical tool utilizes hazardous gases, heaters, RF generators, turbo pumps, liquid baths, mechanical hoists and robot transfer arms. A supervisory computer may orchestrate the overall activity by sending commands to I/O controllers which, in turn, activate the various pumps, valves and generators. These controllers must always operate safely and their digital outputs in particular are interlocked with various safety inputs to prevent operation unless all safety interlocks are satisfied. A typical example of a controlled subsystem would be an RF generator. The generator is controlled with an analog voltage to set its power level and has a voltage read back to show its power level. An overall enable signal requires 24 volts to be present to enable the generator. Before the generator can be enabled, there must be adequate cooling water flow and the cover on the RF section must be in place. In a conventional control approach, the signals would be routed to I/O points on the control system and a custom printed circuit board would be designed to implement the safety interlock string. Using a SuperIOr Controller for this application, a RIM located near the RF generator would be configured with the appropriate I/O cards to read the flow switch, cover switch, and power level read-back and to generate the enable and set-point signals. The SuperIOr MCM would be configured to implement the necessary interlock logic in its dual-redundant FPGAs. The RIM would be connected to the MCM by a CAT 6 cable, eliminating the need to run the control signals back to the MCM and eliminating the need for a customized printed circuit board to implement the interlock logic. To obtain complete data and specifications for the SuperIOr Controller, please contact: Ray Gorski - Director, Sales & Marketing, Digital Dynamics, Inc. 5 Victor Square, Scotts Valley, CA 95066, 831-461-5724 rgorski@digitaldynamics.com Digital Dynamics, Inc., 2014 All Rights Reserved. Patent Pending. Rev: 5-16-14 10