Fig. 7.1 Size Enlargement, Agglomeration 7. Particle formulation by agglomeration, 7.1 Fundamental agglomeration principles 7.2 Agglomerate strength 7.3 Pelletizing of moist powder 7.4 Press agglomeration 7.4.1 Powder compression and compaction behaviour 7.4.2 Briquetting and tabletting 7.4.3 Roller press Fig_MPE_7 VO Mechanical Process Engineering - Particle Technology Agglomeration Dr. W. Hintz/Prof. Dr. J. Tomas 23.06.2014 Figure 7.1
Fig. 7.2 Processes or unit operations of mechanical process engineering according to RUMPF without change of particle size with change of particle size separation mechanical separation (filters, separators, screens, sifters) size reduction (crushing and grinding) combination powder mixing and blending size enlargement (agglomeration) transport and storage of bulk materials particle size analysis Fig_MPE_7 VO Mechanical Process Engineering - Particle Technology Agglomeration Dr. W. Hintz/Prof. Dr. J. Tomas 23.06.2014 Figure 7.2
Fig. 7.3 Agglomeration - Size Enlargement 7.1 Fundamental agglomeration principles: a) tumble agglomeration (growth or agitation agglomeration) pelletizing b) press agglomeration (compaction) continuous sheets solid forms (tablets, briquettes) c) sintering (thermal process) A feed material (for agglomeration), Q heat flow Fig_MPE_7 VO Mechanical Process Engineering - Particle Technology Agglomeration Dr. W. Hintz/Prof. Dr. J. Tomas 23.06.2014 Figure 7.3
Fig. 7.4 Different Types of Pellets and Granulates Cellets Pelletizing Pharma Micropellet < 500 µm Coating Pharma Micropellet < 500 µm (Cross-Section) Coating Pharma Instant-Tee Agglomeration Food Aromas Encapsulating Food Sweetener Agglomeration Food Amino acid Coating Feeding stuff Polymer Agglomeration Fine chemistry Detergent component Spraying granulation Fine chemistry Quelle: www.glatt.de Fig_MPE_7 VO Mechanical Process Engineering - Particle Technology Agglomeration Dr. W. Hintz/Prof. Dr. J. Tomas 23.06.2014 Figure 7.4
7.2 Tensile Strength of Agglomerates Fig. 7.5 Approximation of the theoretical tensile strength of agglomerates versus primary particle size, porosity ε = 0.35 (according to RUMPF) Fig_MPE_7 VO Mechanical Process Engineering - Particle Technology Agglomeration Dr. W. Hintz/Prof. Dr. J. Tomas 23.06.2014 Figure 7.5
Fig. 7.6 Compressive strength of agglomerates (according to RUMPF) lignite briquettes calcinated pellets of 25 mm diameter ore briquettes green pellets 50 X 50 mm pellets 25 mm diameter dried with 2-3 % of salt green green pellets 20 mm diam. dried pellets 20 mm diam. dried Fig_MPE_7 VO Mechanical Process Engineering - Particle Technology Agglomeration Dr. W. Hintz/Prof. Dr. J. Tomas 23.06.2014 Figure 7.6
Fig. 7.7 7.3 Tumble Agglomeration (Pelletizing) Species of the genus Scarabaeus, which occur throughout Southern Europe and Northern Africa, are fairly typical of the dung - rolling scarabs: Scarabaeus sacer (actual size 25 30 mm long) adult beetle rolling its ball of dung to a suitable place for burial Scarabaeus sacer, nature s pelletizer Fig_MPE_7 VO Mechanical Process Engineering - Particle Technology Agglomeration Dr. W. Hintz/Prof. Dr. J. Tomas 23.06.2014 Figure 7.7
7.3 Tumble Agglomeration (Pelletizing) Fig. 7.8 1. Balling drum and balling pan a) balling drum b) balling pan A feed material P green pellets W water Fig_MPE_7 VO Mechanical Process Engineering - Particle Technology Agglomeration Dr. W. Hintz/Prof. Dr. J. Tomas 23.06.2014 Figure 7.8
Models of pellet nucleation and pellet formation mechanism Fig. 7.9 liquid solid a) Pellet nucleation mechanism b) Embedding of small feed particles at the surface of wet agglomerates (acc. to Pietsch, Aufbereitungstechnik 7 (1966) 177-191) Fig_MPE_7 VO Mechanical Process Engineering - Particle Technology Agglomeration Dr. W. Hintz/Prof. Dr. J. Tomas 23.06.2014 Figure 7.9
Fig. 7.10 Balling pan pelletizer Inclined pan pelletizer 1. pan 5. device for changing the 2. pan drive pan angle of inclination 3. water supply (tilt angle to the horizontal) 4. bottom share Fig_MPE_7 VO Mechanical Process Engineering - Particle Technology Agglomeration Dr. W. Hintz/Prof. Dr. J. Tomas 23.06.2014 Figure 7.10
Fig. 7.11 Figure shows conditions to determine the critical rotation speed of pan β pan bottom angle of inclination (tilt angle to the horizontal) Φ b dynamic angle of repose of the material to be granulated ω angular velocity D g m pan diameter gravitational acceleration mass in the pan 1 n crit = π g sinβ 2D n crit critical number of revolutions Fig_MPE_7 VO Mechanical Process Engineering - Particle Technology Agglomeration Dr. W. Hintz/Prof. Dr. J. Tomas 23.06.2014 Figure 7.11
Movement of the charge in a pelletizing pan at different rotational speeds Fig. 7.12 Qualitative relationship between moisture, residence time or throughput and average pellet size for balling pan f moisture content Fig_MPE_7 VO Mechanical Process Engineering - Particle Technology Agglomeration Dr. W. Hintz/Prof. Dr. J. Tomas 23.06.2014 Figure 7.12
Fig. 7.13 Deep dish or pan pelletizer 1 disc 2 screw conveyor 3 water supply A feed P green product Fig_MPE_7 VO Mechanical Process Engineering - Particle Technology Agglomeration Dr. W. Hintz/Prof. Dr. J. Tomas 23.06.2014 Figure 7.13
Fig. 7.14 Different material flow patterns during revolution of balling drums material is sliding, rotational speed too slow material is rolling, rotational speed is optimal, 8 14 rpm, 6 10 drum angle material is cataracting, rotational speed too fast Fig_MPE_7 VO Mechanical Process Engineering - Particle Technology Agglomeration Dr. W. Hintz/Prof. Dr. J. Tomas 23.06.2014 Figure 7.14
Fig. 7.15 Flow sheets for pelletizing systems a) with balling drums 1 mixer 2 balling drum or pan 3 screen 4 mill b) with balling pan A feed Z additives P green pellets Fig_MPE_7 VO Mechanical Process Engineering - Particle Technology Agglomeration Dr. W. Hintz/Prof. Dr. J. Tomas 23.06.2014 Figure 7.15
Fig. 7.16 7.4 Press Agglomeration Operation principles of press agglomeration : a) a) in a closed die b) in a open die c) by roller pressure b) c) A feed B agglomerate F P compaction or press force F R wall friction force in the die channel h punch stroke length l filling level (not compacted) s thickness of compacted material k compaction (k=l/s) β 1 half of nip angle 1 punch 2 pressing die Fig_MPE_7 VO Mechanical Process Engineering - Particle Technology Agglomeration Dr. W. Hintz/Prof. Dr. J. Tomas 23.06.2014 Figure 7.16
Fig. 7.17 Isentropic Powder Compression Adiabatic gas compression: dv dp = 1 κ ad V p Isentropic powder compression: ρ b dρ ρ b = n σ M,st ρb,0 b 0 M,st 0 σ dσ M,st + σ (1) (2) bulk density ρ b ρ b,0 n = 1 ideal gas compressibility index 0 < n < 1 compressible n = 0 incompressible σ M,st σ 0 ρ b = ρ b,0 (1 + ) n isostatic tensile strength -σ 0 0 centre stress during consolidation or steady-state flow σ M,st Compressibility index of powders, semi-empirical estimation index n evaluation examples flowability 0 0.01 incompressible gravel free flowing 0.01 0.05 low compressibility fine sand 0.05-0.1 compressible dry powder cohesive 0.1-1 very compressible moist powder very cohesive Fig_MPE_7 VO Mechanical Process Engineering - Particle Technology Agglomeration Dr. W. Hintz/Prof. Dr. J. Tomas 23.06.2014 Figure 7.17
Fig. 7.18 Powder Compression n 1 - n σ 0 W m,b =.. (1 + ) - 1 ρ b,0 p σ 0 1-n bulk density ρ b ρ b,0 ρ b,0 n σ0 0 < n < 1 p ρ b = ρ b,0 (1 + ) dρ b dp = n σ 0 ρ b n p + σ 0 compression rate dρ b /dp specific compression work W m,b isostatic tensile strength -σ 0 0 average pressure p Fig_MPE_7 VO Mechanical Process Engineering - Particle Technology Agglomeration Dr. W. Hintz/Prof. Dr. J. Tomas 23.06.2014 Figure 7.18
Fig. 7.19 Compression and Preshear Work F N preshear τ pre, YL3 FS s shear force F S τ pre, YL2 τ pre, YL1 W b, pre = F S (s) ds s pre displacement s specific compression and preshear work W m,b, W m,b,pre W m,b,pre = (1 + ) s pre. sin 2ϕ st 2. h Sz σ 0 ρ b,0. s pre sin 2ϕ st σ 0 2. h Sz ρ b,0 n 1 - n σ 0 σ M,st σ 0 σ M,st 0 < n < 1 W m,b =.. (1 + ) - 1 ρ b,0 1-n σ 0 1-n isostatic tensile strength -σ 0 0 average pressure at steady-state flow σ M,st Fig_MPE_7 VO Mechanical Process Engineering - Particle Technology Agglomeration Dr. W. Hintz/Prof. Dr. J. Tomas 23.06.2014 Figure 7.19
Fig. 7.20 Microprocesses and deformation mechanism at powder press agglomeration (compaction) p h(t) p h(t) h 0 a) Feed of loose packing b) Elastic-plastic contact deformation c) Pore filling by fine particles p p p h(t) h(t) h(t) d) Plastic deformation of particles to create large contact areas e) Breakage of f) Plastic deformation edges, particle of entire tablet breakage, pore filling Compaction function of cohesive Powder Tablet, briquette or ribbon strength σ T compact strength lg(σ T in MPa) σ T = f(p) uniaxial compressive strength σ c 0 For hopper design σ c = a 1 σ 1 + σ c,0 consolidation stress σ 1 10-3 compaction pressure lg(p in MPa) Fig_MPE_7 VO Mechanical Process Engineering - Particle Technology Agglomeration Dr. W. Hintz/Prof. Dr. J. Tomas 23.06.2014 Figure 7.20
Fig. 7.21 Density in cylindrical compacts panels a) g): pressure of isobars given in MPa panel h): agglomerate density of isodensity lines in % of pure solid density (according to ORR) Fig_MPE_7 VO Mechanical Process Engineering - Particle Technology Agglomeration Dr. W. Hintz/Prof. Dr. J. Tomas 23.06.2014 Figure 7.21
Fig. 7.22 Punch - and - Die - Presses a) Reciprocating piston and die (excenter) press 1 excenter drive 2 upper punch 3 lower punch 4 rotating table with inwrought dies 5 feed shoe with hopper A feed B tablets b) Rotary tabletting machines B Fig_MPE_7 VO Mechanical Process Engineering - Particle Technology Agglomeration Dr. W. Hintz/Prof. Dr. J. Tomas 23.06.2014 Figure 7.22
Fig. 7.23 Pelletizing machines 1 cutter A feed B briquettes a) ram extrusion or plunger press b) screw extruder c) pelleting machine with flat die and muller-type press rollers d) pelleting machine with one solid and one hollow roll e) pelleting machine with two hollow rolls f) pelleting machine with internal press roll g) gear-type pelletizer Fig_MPE_7 VO Mechanical Process Engineering - Particle Technology Agglomeration Dr. W. Hintz/Prof. Dr. J. Tomas 23.06.2014 Figure 7.23
Fig. 7.24 Compaction mechanism in a ram press filling pressure begin of back stroke begin of compaction back expansion begin of stroke begin of pre-filling Sequence of events during a briquetting cycle in the ram press (according to KEGEL and RAMMLER) Fig_MPE_7 VO Mechanical Process Engineering - Particle Technology Agglomeration Dr. W. Hintz/Prof. Dr. J. Tomas 23.06.2014 Figure 7.24
Fig. 7.25 Schematic representation of the decrease in elastic recovery and increase of density of a briquette during consecutive press cycles in a ram press Fig_MPE_7 VO Mechanical Process Engineering - Particle Technology Agglomeration Dr. W. Hintz/Prof. Dr. J. Tomas 23.06.2014 Figure 7.25
Fig. 7.26 Ram extrusion press for coal briquetting (ZEMAG, Zeitz, Germany) 1 briquette die 5 thrust piece 2 ram 6 coal ejector channel 3 ram holder 7 slipping dog 4 press top cap 8 connecting rod Fig_MPE_7 VO Mechanical Process Engineering - Particle Technology Agglomeration Dr. W. Hintz/Prof. Dr. J. Tomas 23.06.2014 Figure 7.26
Fig. 7.27 Vacuum Vakuumstrangpresse Ram Press product Fabrikat Breitenbach Breitenbach type Typ VAS 56b 56b Zylinder-Ø: 560 mm cylinder-dia. 560 mm Leistung: max. 50 to./ press Antriebsmotor: force: 240 max. KW500 kn drive: 240 kw Fig_MPE_7 VO Mechanical Process Engineering - Particle Technology Agglomeration Dr. W. Hintz/Prof. Dr. J. Tomas 23.06.2014 Figure 7.27
Fig. 7.28 Roller press machines Types of roller press machines: a) roller compacting machine b) roller briquetting machine c) ring roller press Fig_MPE_7 VO Mechanical Process Engineering - Particle Technology Agglomeration Dr. W. Hintz/Prof. Dr. J. Tomas 23.06.2014 Figure 7.28
Compaction zones and angles of a roller press Fig. 7.29 α o feed angle of roller α E grip angle of roller (angle of compaction) α g nip angle or neutral angle (sign of friction forces changes) α > α g velocity lag of compacted (compressed) powder compared to roller tip speed v b < v u = ω. D/2 = π. n. D α < α g velocity advance of compacted material sheet (ribbon) compared to roller tip speed v b > v u α V angle of elastic release (recovery) zone after passing the minimum roller gap, the ribbon (compacted sheet) gets thicker s 2 > s 1 than the roller gap for roller angle α = 0 to -α V Fig_MPE_7 VO Mechanical Process Engineering - Particle Technology Agglomeration Dr. W. Hintz/Prof. Dr. J. Tomas 23.06.2014 Figure 7.29
Fig. 7.30 Feeder design for roller press machines (KÖPPERN, Hattingen, Germany) a) gravity feeder with adjustable tongue (or plate) b) screw feeder for filling and pre-compaction Fig_MPE_7 VO Mechanical Process Engineering - Particle Technology Agglomeration Dr. W. Hintz/Prof. Dr. J. Tomas 23.06.2014 Figure 7.30
Fig. 7.31 Roller press (KÖPPERN, Hattingen, Germany) 1 rollers with replaceable rings or sleeves as pressing tools 4 hydraulic reservoir 2 roller core with integral journals 5 hydraulic pump 3 hydraulic cylinder 6 automatic grease lubrication Fig_MPE_7 VO Mechanical Process Engineering - Particle Technology Agglomeration Dr. W. Hintz/Prof. Dr. J. Tomas 23.06.2014 Figure 7.31