Multiaxial Fatigue. Professor Darrell Socie. 2008-2014 Darrell Socie, All Rights Reserved



Similar documents
NOTCHES AND THEIR EFFECTS. Ali Fatemi - University of Toledo All Rights Reserved Chapter 7 Notches and Their Effects 1

Design Analysis and Review of Stresses at a Point

Mechanical Properties - Stresses & Strains

Lecture 12: Fundamental Concepts in Structural Plasticity

Analysis of Stresses and Strains

STRAIN-LIFE (e -N) APPROACH

CH 6: Fatigue Failure Resulting from Variable Loading

FATIGUE TESTS AND STRESS-LIFE (S-N) APPROACH

MECHANICS OF MATERIALS

different levels, also called repeated, alternating, or fluctuating stresses.

EFFECTS OF SHOT-PEENING ON HIGH CYCLE FRETTING FATIGUE BEHAVIOR OF Ti-6Al-4V

Calculating and Displaying Fatigue Results

Torsion Tests. Subjects of interest

Structural Integrity Analysis

R&DE (Engineers), DRDO. Theories of Failure. Ramadas Chennamsetti

Mechanical Properties of Metals Mechanical Properties refers to the behavior of material when external forces are applied

Effects of Sulfur Level and Anisotropy of Sulfide Inclusions on Tensile, Impact, and Fatigue Properties of SAE 4140 Steel

Hardened Concrete. Lecture No. 14

Chapter Outline. Mechanical Properties of Metals How do metals respond to external loads?

Objective To conduct Charpy V-notch impact test and determine the ductile-brittle transition temperature of steels.

Stress Strain Relationships

Fatigue. 3. Final fracture (rough zone) 1. Fatigue origin. 2. Beach marks (velvety zone)

Fatigue Performance Evaluation of Forged Steel versus Ductile Cast Iron Crankshaft: A Comparative Study (EXECUTIVE SUMMARY)

Solid Mechanics. Stress. What you ll learn: Motivation

Lap Fillet Weld Calculations and FEA Techniques

Tensile fracture analysis of blunt notched PMMA specimens by means of the Strain Energy Density

Fatigue crack propagation

9. TIME DEPENDENT BEHAVIOUR: CYCLIC FATIGUE

Numerical Analysis of Independent Wire Strand Core (IWSC) Wire Rope

Figure 1: Typical S-N Curves

RESIDUAL STRESSES AND THEIR EFFECTS ON FATIGUE RESISTANCE

Unit 6 Plane Stress and Plane Strain

ADHESIVE BONDING PERFORMANCE OF GA COATED 590 MPa TENSILE STRENGTH STEELS

Materials Issues in Fatigue and Fracture

G1RT-CT D. EXAMPLES F. GUTIÉRREZ-SOLANA S. CICERO J.A. ALVAREZ R. LACALLE W P 6: TRAINING & EDUCATION

Version default Titre : SSNP161 Essais biaxiaux de Kupfer Date : 10/10/2012 Page : 1/8 Responsable : François HAMON Clé : V Révision : 9783

Solutions Manual. Failure, Fracture, Fatigue. An Introduction

Completely reversed, strain controlled fatigue tests of a steel alloy with E= MPa resulted in the following data:

Introduction. ε 1 θ=55 ε 2. Localized necking Because ν=0.5 in plasticity, ε 1 =-2ε 2 =-2ε 3. ε 3,ε 2

2.1 CYCLIC/FATIGUE LOADING OF STRUCTURAL MEMBERS

COMPLEX STRESS TUTORIAL 3 COMPLEX STRESS AND STRAIN

Fatigue Resistance of High Strength Bolts with Large Diameters

Ultrasonic Technique and Device for Residual Stress Measurement

Mohr s Circle. Academic Resource Center

B.TECH. (AEROSPACE ENGINEERING) PROGRAMME (BTAE) Term-End Examination December, 2011 BAS-010 : MACHINE DESIGN

Modeling of concrete for nonlinear analysis Using Finite Element Code ABAQUS

The elements used in commercial codes can be classified in two basic categories:

Solution for Homework #1

Objectives. Experimentally determine the yield strength, tensile strength, and modules of elasticity and ductility of given materials.

Assistant Professor of Civil Engineering, University of Texas at Arlington

IMPELLER FATIGUE ASSESSMENT USING AN S-N APPROACH

MATERIALS AND MECHANICS OF BENDING

FATIGUE CONSIDERATION IN DESIGN

Material Damage and Failure

ANALYSIS OF A LAP JOINT FRICTION CONNECTION USING HIGH STRENGTH BOLTS

WELD - STATIC AND FATIGUE STRENGTH -III

ESCUELA TÉCNICA SUPERIOR DE INGENIEROS INDUSTRIALES Y DE TELECOMUNICACIÓN

Analysis of Stress CHAPTER INTRODUCTION

The atomic packing factor is defined as the ratio of sphere volume to the total unit cell volume, or APF = V S V C. = 2(sphere volume) = 2 = V C = 4R

CAD-BASED DESIGN PROCESS FOR FATIGUE ANALYSIS, RELIABILITY- ANALYSIS, AND DESIGN OPTIMIZATION

Estimation of the crack propagation direction in a mixed-mode geometry via multi-parameter fracture criteria

Deflection Calculation of RC Beams: Finite Element Software Versus Design Code Methods

3. Test Methods for Evaluation of ESCR of Plastics

Determination of Structural Capacity by Non-linear FE analysis Methods

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES AND APPLICATIONS NQF LEVEL 3 OUTCOME 1 - LOADING SYSTEMS TUTORIAL 3 LOADED COMPONENTS

Prediction Of Behaviour Of Reinforced Concrete Deep Beams With Web Openings Using Finite Elements

The Fundamental Principles of Composite Material Stiffness Predictions. David Richardson

SOUTH AFRICAN NATIONAL INSTITUTE OF ROCK MECHANICS CHAMBER OF MINES OF SOUTH AFRICA CERTIFICATE IN ROCK MECHANICS PART 1 ROCK MECHANICS THEORY

ANALYSIS OF LOW CYCLE FATIGUE PROPERTIES OF SINGLE CRYSTAL NICKEL-BASE TURBINE BLADE SUPERALLOYS

Damage due to fatigue occurs when loading is markedly varying in time. R decreases with time S T. MSÚ F max

STRESS AND DEFORMATION ANALYSIS OF LINEAR ELASTIC BARS IN TENSION

New approaches in Eurocode 3 efficient global structural design

METU DEPARTMENT OF METALLURGICAL AND MATERIALS ENGINEERING

Sheet metal operations - Bending and related processes

Chapter 5 Bridge Deck Slabs. Bridge Engineering 1

CRITERIA FOR PRELOADED BOLTS

Numerical modelling of shear connection between concrete slab and sheeting deck

Short and Large Crack, Mixed-Mode Fatigue-Crack Growth Thresholds in Ti-6Al-4V 1

DEVELOPMENT OF A NEW TEST FOR DETERMINATION OF TENSILE STRENGTH OF CONCRETE BLOCKS

Effect of Crystal Orientation on Fatigue Failure of Single Crystal Nickel Base Turbine Blade Superalloys

Bearing strength of stainless steel bolted plates in tension

Technical Report Example (1) Chartered (CEng) Membership

Investigation of Stress Intensity Factor of Axial Compressor Blade of Helicopter

CE591 Fall 2013 Lecture 26: Moment Connections

bi directional loading). Prototype ten story

Lecture 14. Chapter 8-1

EXPERIMENTAL AND NUMERICAL ANALYSIS OF THE COLLAR PRODUCTION ON THE PIERCED FLAT SHEET METAL USING LASER FORMING PROCESS

Back to Elements - Tetrahedra vs. Hexahedra

TRAVELING WAVE EFFECTS ON NONLINEAR SEISMIC BEHAVIOR OF CONCRETE GRAVITY DAMS

How To Determine The Fatigue Life Of An A380 Aluminum Alloy Casting

Finite Element Analysis on Burst Pressure of Defective Steel Pipes

CHAPTER 2: CONCRETE MATERIAL MODEL

Optimising plate girder design

Nonlinear Analysis Using Femap with NX Nastran

Characterization and Simulation of Processes

Transcription:

Multiaxial Fatigue Professor Darrell Socie 2008-2014 Darrell Socie, All Rights Reserved

Outline Stresses around holes Crack Nucleation Crack Growth MultiaxialFatigue 2008-2014 Darrell Socie, All Rights Reserved 1 of 85

Multiaxial Fatigue Problems Uniaxial loading that produces multi stressesund stress concentrators Multiaxial loading that produces uniaxial stresses around stress concentrators Multiaxial loading that produces multiaxial stresses around stress concentrators Multiaxial loading that causes mixed mode long crack growth MultiaxialFatigue 2008-2014 Darrell Socie, All Rights Reserved 2 of 85

3D stresses Longitudinal Tensile Strain 0 0.004 0.008 0.012 Transverse Compression Strain 0.001 0.002 0.003 0.004 0.005 Thickness 50 mm 30 mm 15 mm 7 mm y z x 100 MultiaxialFatigue 2008-2014 Darrell Socie, All Rights Reserved 3 of 85

Notch Stresses y z x t x z x z 7 0.01-0.005 63.5 0 15 0.01-0.003 70.6 14.1 30 0.01-0.002 73.0 21.8 50 0.01-0.001 75.1 29.3 MultiaxialFatigue 2008-2014 Darrell Socie, All Rights Reserved 4 of 85

Multiaxial Fatigue Problems Uniaxial loading that produces multi stressesund stress concentrators Multiaxial loading that produces uniaxial stresses around stress concentrators Multiaxial loading that produces multiaxial stresses around stress concentrators Multiaxial loading that causes mixed mode long crack growth MultiaxialFatigue 2008-2014 Darrell Socie, All Rights Reserved 5 of 85

Hole in a Plate a r r r r r MultiaxialFatigue 2008-2014 Darrell Socie, All Rights Reserved 6 of 85

Stresses at the Hole 4 3 2 = 1 1 0-1 -2-3 -4 30 60 90 120 150 180 Angle = -1 = 0 Stress concentration factor depends on type of loading MultiaxialFatigue 2008-2014 Darrell Socie, All Rights Reserved 7 of 85

Combined Loading = MultiaxialFatigue 2008-2014 Darrell Socie, All Rights Reserved 8 of 85

Maximum Tensile Stress Location 32 45 K t = 3 1 = K t = 3.41 1 = 1.72 K t = 4 1 = MultiaxialFatigue 2008-2014 Darrell Socie, All Rights Reserved 9 of 85

In and Out of Phase Loading In-phase Out-of-phase K t = 3 K t = 4 Damage location changes with load phasing MultiaxialFatigue 2008-2014 Darrell Socie, All Rights Reserved 10 of 85

Multiaxial Fatigue Problems Uniaxial loading that produces multiaxial stresses around stress concentrators Multiaxial loading that produces uniaxial stresses around stress concentrators Multiaxial loading that produces multiaxial stresses around stress concentrators Multiaxial loading that causes mixed mode long crack growth MultiaxialFatigue 2008-2014 Darrell Socie, All Rights Reserved 11 of 85

Notched Shaft Loading M T M X P M Y z z MultiaxialFatigue 2008-2014 Darrell Socie, All Rights Reserved 12 of 85

Torsion Loading M X t 1 T 1 t 3 M T z z M X T T T t 2 t 4 M T z t 1 t 2 t 3 t 4 T 1 T Out-of-phase shear loading is needed to produce nonproportional stressing MultiaxialFatigue 2008-2014 Darrell Socie, All Rights Reserved 13 of 85

Multiaxial Fatigue Problems Uniaxial loading that produces multiaxial stresses around stress concentrators Multiaxial loading that produces uniaxial stresses around stress concentrators Multiaxial loading that produces multiaxial stresses around stress concentrators Multiaxial loading that causes mixed mode long crack growth MultiaxialFatigue 2008-2014 Darrell Socie, All Rights Reserved 14 of 85

Shear Stresses Around Hole = 0 1.5 = 0 r xy 1.0 0.5 0 1 2 r 3 4 5 a MultiaxialFatigue 2008-2014 Darrell Socie, All Rights Reserved 15 of 85

Torsion Experiments MultiaxialFatigue 2008-2014 Darrell Socie, All Rights Reserved 16 of 85

Shear Stresses Around Hole r = 1.33 = 0 r xy 1.4 1.0 0.6 r 1.33 a 0.2 0 20 40 60 80 100 120 140 160 180 Angle MultiaxialFatigue 2008-2014 Darrell Socie, All Rights Reserved 17 of 85

Stress Intensity Factors F 1.50 1.25 1.00 0.75 R 0.50 a 0.25 0.00 1.00 1.50 2.00 a 2.50 3.00 R da dn C K m eq K I F a MultiaxialFatigue 2008-2014 Darrell Socie, All Rights Reserved 18 of 85

Cracks from Holes Crack nucleates in shear Mixed mode growth? Tensile mode growth? MultiaxialFatigue 2008-2014 Darrell Socie, All Rights Reserved 19 of 85

Summary Cracks nucleate in a uniaxial stress field and then grow in a mixed tensile/shear stress field MultiaxialFatigue 2008-2014 Darrell Socie, All Rights Reserved 20 of 85

Outline Stresses around holes Crack Nucleation Stress Based Models Strain Based Models Crack Growth MultiaxialFatigue 2008-2014 Darrell Socie, All Rights Reserved 21 of 85

Fatigue Mechanisms Summary Fatigue cracks nucleate in shear Fatigue cracks grow in either shear or tension depending on material and state of stress MultiaxialFatigue 2008-2014 Darrell Socie, All Rights Reserved 22 of 85

Stress Based Models Sines Findley Dang Van MultiaxialFatigue 2008-2014 Darrell Socie, All Rights Reserved 23 of 85

Bending Torsion Correlation Shear stress in bending 1/2 Bending fatigue limit 1.0 0.5 0 Shear stress Octahedral stress Principal stress 0 0.5 1.0 1.5 2.0 Shear stress in torsion 1/2 Bending fatigue limit MultiaxialFatigue 2008-2014 Darrell Socie, All Rights Reserved 24 of 85

Test Results Cyclic tension with static tension Cyclic torsion with static torsion Cyclic tension with static torsion Cyclic torsion with static tension MultiaxialFatigue 2008-2014 Darrell Socie, All Rights Reserved 25 of 85

Cyclic Tension with Static Tension 1.5 Axial stress Fatigue strength 1.0 0.5-1.5-1.0-0.5 0 0.5 1.0 Mean stress Yield strength 1.5 MultiaxialFatigue 2008-2014 Darrell Socie, All Rights Reserved 26 of 85

Cyclic Torsion with Static Torsion 1.5 Shear Stress Amplitude Shear Fatigue Strength 1.0 0.5 0 0.5 1.0 Maximum Shear Stress Shear Yield Strength MultiaxialFatigue 2008-2014 Darrell Socie, All Rights Reserved 27 of 85 1.5

Cyclic Tension with Static Torsion 1.5 Bending Stress Bending Fatigue Strength 1.0 0.5 0 2.0 1.0 Static Torsion Stress Torsion Yield Strength 3.0 MultiaxialFatigue 2008-2014 Darrell Socie, All Rights Reserved 28 of 85

Cyclic Torsion with Static Tension 1.5 Torsion shear stress Shear fatigue strength 1.0 0.5-1.5-1.0-0.5 0 0.5 1.0 Axial mean stress 1.5 Yield strength MultiaxialFatigue 2008-2014 Darrell Socie, All Rights Reserved 29 of 85

Conclusions Tension mean stress affects both tension and torsion Torsion mean stress does not affect tension or torsion MultiaxialFatigue 2008-2014 Darrell Socie, All Rights Reserved 30 of 85

Sines 2 oct (3 h ) 1 6 ( x ( mean x y ) 2 ( mean y x z mean z ) 2 ) ( y z ) 2 6( 2 xy 2 xz 2 yz ) MultiaxialFatigue 2008-2014 Darrell Socie, All Rights Reserved 31 of 85

Findley 2 k n max f tension torsion MultiaxialFatigue 2008-2014 Darrell Socie, All Rights Reserved 32 of 85

Bending Torsion Correlation Shear stress in bending 1/2 Bending fatigue limit 1.0 0.5 0 Shear stress Octahedral stress Principal stress 0 0.5 1.0 1.5 2.0 Shear stress in torsion 1/2 Bending fatigue limit MultiaxialFatigue 2008-2014 Darrell Socie, All Rights Reserved 33 of 85

Dang Van ij (M,t) E ij (M,t) () t a () t b h m ij (m,t) ij (m,t) V(M) MultiaxialFatigue 2008-2014 Darrell Socie, All Rights Reserved 34 of 85

Isotropic Hardening stabilized stress range Failure occurs when the stress range is not elastic MultiaxialFatigue 2008-2014 Darrell Socie, All Rights Reserved 35 of 85

Multiaxial Kinematic and Isotropic a) b) 3 3 Yield domain expands and translates C o O o O o 1 R o 2 2 1 c) d) Loading path 3 3 C L R L O L O o O o 1 2 2 1 * stabilized residual stress MultiaxialFatigue 2008-2014 Darrell Socie, All Rights Reserved 36 of 85

Dang Van ( continued ) ta h t= b Failure predicted h h Loading path MultiaxialFatigue 2008-2014 Darrell Socie, All Rights Reserved 37 of 85

Stress Based Models Summary Sines: Findley: 2 oct 2 (3 h ) k n max f Dang Van: () t a () t b h MultiaxialFatigue 2008-2014 Darrell Socie, All Rights Reserved 38 of 85

Model Comparison R = -1 10 Relative Fatigue Life 1 0.1 0.01 Goodman Findley Sines 0.001-1 -0.8-0.6-0.4-0.2 0 0.2 0.4 0.6 0.8 1 Torsion Tension Biaxial Tension Stress ratio, MultiaxialFatigue 2008-2014 Darrell Socie, All Rights Reserved 39 of 85

Outline Stresses around holes Crack Nucleation Stress Based Models Strain Based Models Crack Growth MultiaxialFatigue 2008-2014 Darrell Socie, All Rights Reserved 40 of 85

Strain Based Models Brown and Miller Fatemi and Socie Smith Watson and Topper MultiaxialFatigue 2008-2014 Darrell Socie, All Rights Reserved 41 of 85

Brown and Miller Fatigue Life, Cycles 2 x10 3 10 3 5 x10 2 2 x10 2 10 2 0.0 = 0.03 0.005 0.01 Normal Strain Amplitude, n MultiaxialFatigue 2008-2014 Darrell Socie, All Rights Reserved 42 of 85

Case A and B Growth along the surface Growth into the surface MultiaxialFatigue 2008-2014 Darrell Socie, All Rights Reserved 43 of 85

Brown and Miller ( continued ) Uniaxial Equibiaxial MultiaxialFatigue 2008-2014 Darrell Socie, All Rights Reserved 44 of 85

Brown and Miller ( continued ) 1 max S n max 2 S n A ' f 2 E n, mean b ' f f ( 2N ) B ( 2N ) f c MultiaxialFatigue 2008-2014 Darrell Socie, All Rights Reserved 45 of 85

Mohr s Circle max n x ˆ max S 1 n Brown and Miller - Cracks should be equally likely on two planes 90 apart y max n MultiaxialFatigue 2008-2014 Darrell Socie, All Rights Reserved 46 of 85

/ 3 Loading Histories C F G H I J MultiaxialFatigue 2008-2014 Darrell Socie, All Rights Reserved 47 of 85

Crack Directions MultiaxialFatigue 2008-2014 Darrell Socie, All Rights Reserved 48 of 85

Hypothesis Fatigue damage is planar in nature The material finds a critical plane for microcrack growth. % of applied stress 100 90 80-20 -10 0 10 20 Stresses are nearly the same over a 10 range of angles MultiaxialFatigue 2008-2014 Darrell Socie, All Rights Reserved 49 of 85

Stresses on the Planes Shear Tension MultiaxialFatigue 2008-2014 Darrell Socie, All Rights Reserved 50 of 85

Fatemi and Socie MultiaxialFatigue 2008-2014 Darrell Socie, All Rights Reserved 51 of 85

Fatigue Lives 12,899 12,121 3 9,500 5,963 3 14,117 16,062 3 C F G 3 3 3 7,676 8,020 7,419 9,139 H I J 5,149 3,488 MultiaxialFatigue 2008-2014 Darrell Socie, All Rights Reserved 52 of 85

Crack Length Observations 2.5 F-495 H-491 Crack Length, mm 2 1.5 1 J-603 I-471 C-399 G-304 0.5 0 0 2000 4000 6000 8000 10000 12000 14000 Cycles MultiaxialFatigue 2008-2014 Darrell Socie, All Rights Reserved 53 of 85

Fatemi and Socie 1 k 2 n,max y ' f (2N f ) G bo ' f (2N ) f co MultiaxialFatigue 2008-2014 Darrell Socie, All Rights Reserved 54 of 85

Torsion Tests 3 1 2 1 = xy MultiaxialFatigue 2008-2014 Darrell Socie, All Rights Reserved 55 of 85

304 Stainless Steel 1 1 1 1 MultiaxialFatigue 2008-2014 Darrell Socie, All Rights Reserved 56 of 85

Smith Watson Topper MultiaxialFatigue 2008-2014 Darrell Socie, All Rights Reserved 57 of 85

SWT ' 2 1 f 2b ' ' bc n (2N f ) ff(2nf ) 2 E MultiaxialFatigue 2008-2014 Darrell Socie, All Rights Reserved 58 of 85

Loading Histories 0 1 2 3 4 5 6 7 8 9 10 11 12 13 MultiaxialFatigue 2008-2014 Darrell Socie, All Rights Reserved 59 of 85

Stress-Strain Response 300 150 Case 1 300 150 Case 2 300 150 Case 3 Shear Stress ( MPa ) 0 0 0-150 -150-150 -300-300 -300-600 -300 0 300 600-600 -300 0 300 600-600 -300 0 300 600 300 300 300 Case 4 Case 5 Case 6 150 150 150 0 0 0-150 -150-150 -300-300 -300-600 -300 0 300 600-600 -300 0 300 600-600 -300 0 300 600 MultiaxialFatigue 2008-2014 Darrell Socie, All Rights Reserved 60 of 85

Maximum Stress 2000 All tests have the same strain ranges Equivalent Stress, MPa 1000 200 10 2 10 3 10 4 Fatigue Life, N f Nonproportional hardening results in lower fatigue lives MultiaxialFatigue 2008-2014 Darrell Socie, All Rights Reserved 61 of 85

Summary Cracks nucleate in shear and then grow in either shear or tension depending on the material and state of stress MultiaxialFatigue 2008-2014 Darrell Socie, All Rights Reserved 62 of 85

Separate Tensile and Shear Models Cyclic shear strains Cyclic tensile strains Normal stresses open and close microcracks MultiaxialFatigue 2008-2014 Darrell Socie, All Rights Reserved 63 of 85

Shear Growth shear stress slip bands 10 m crack growth direction ( From Murakami ) MultiaxialFatigue 2008-2014 Darrell Socie, All Rights Reserved 64 of 85

Tensile Growth crack growth direction 5 m MultiaxialFatigue 2008-2014 Darrell Socie, All Rights Reserved 65 of 85

Cyclic Torsion Cyclic Shear Strain Cyclic Tensile Strain Cyclic Torsion Shear Damage Tensile Damage MultiaxialFatigue 2008-2014 Darrell Socie, All Rights Reserved 66 of 85

Cyclic Torsion with Static Tension Cyclic Shear Strain Cyclic Tensile Strain Cyclic Torsion Static Tension Shear Damage Tensile Damage MultiaxialFatigue 2008-2014 Darrell Socie, All Rights Reserved 67 of 85

Cyclic Torsion with Compression Cyclic Shear Strain Cyclic Tensile Strain Cyclic Torsion Static Compression Shear Damage Tensile Damage MultiaxialFatigue 2008-2014 Darrell Socie, All Rights Reserved 68 of 85

Cyclic Torsion with Tension and Compression Cyclic Shear Strain Cyclic Tensile Strain Cyclic Torsion Static Compression Hoop Tension Shear Damage Tensile Damage MultiaxialFatigue 2008-2014 Darrell Socie, All Rights Reserved 69 of 85

Test Results Load Case /2 hoop MPa axial MPa N f Torsion 0.0054 0 0 45,200 with tension 0.0054 0 450 10,300 with compression 0.0054 0-500 50,000 with tension and compression 0.0054 450-500 11,200 MultiaxialFatigue 2008-2014 Darrell Socie, All Rights Reserved 70 of 85

Conclusions All critical plane models correctly predict these results Hydrostatic stress models can not predict these results MultiaxialFatigue 2008-2014 Darrell Socie, All Rights Reserved 71 of 85

Loading History 0.003 Shear strain Axial strain 0.006-0.003 MultiaxialFatigue 2008-2014 Darrell Socie, All Rights Reserved 72 of 85

Model Comparison Summary of calculated fatigue lives Model Equation Life Epsilon 6.5 14,060 Garud 6.7 5,210 Ellyin 6.17 4,450 Brown-Miller 6.22 3,980 SWT 6.24 9,930 Liu I 6.41 4,280 Liu II 6.42 5,420 Chu 6.37 3,040 Gamma 26,775 Fatemi-Socie 6.23 10,350 Glinka 6.39 33,220 MultiaxialFatigue 2008-2014 Darrell Socie, All Rights Reserved 73 of 85

Outline Stresses around holes Crack Nucleation Crack Growth MultiaxialFatigue 2008-2014 Darrell Socie, All Rights Reserved 74 of 85

Mode I and Mode II Surface Cracks Mode II Mode I MultiaxialFatigue 2008-2014 Darrell Socie, All Rights Reserved 75 of 85

Biaxial Mode I Growth 10-3 = 193 MPa = -1 0 = 1 10-3 = 386 MPa = -1 0 = 1 da/dn mm/cycle 10-4 10-5 da/dn mm/cycle 10-4 10-5 10-6 10-6 10 20 50 100 200 10 20 50 100 200 K, MPa m K, MPa m MultiaxialFatigue 2008-2014 Darrell Socie, All Rights Reserved 76 of 85

Mode I and Mode III Growth 10-3 da/dn, mm/cycle 10-4 10-5 K I K III 10-6 5 10 20 50 100 K I, K III MPa m MultiaxialFatigue 2008-2014 Darrell Socie, All Rights Reserved 77 of 85

Mode I and Mode II Growth 10-2 10-3 7075 T6 Aluminum Mode I R = 0 Mode II R = -1 da/dn, mm/cycle 10-4 10-5 10-6 10-7 SNCM Steel Mode I R = -1 Mode II R = -1 1 10 100 K I, K II MPa m MultiaxialFatigue 2008-2014 Darrell Socie, All Rights Reserved 78 of 85

Fracture Surfaces Bending Torsion MultiaxialFatigue 2008-2014 Darrell Socie, All Rights Reserved 79 of 85

Mode III Growth Crack growth rate, mm/cycle 10-4 10-5 10-6 10-7 10-8 K = 14.9 K = 12.0 K = 11.0 K = 10.0 K = 8.2 10-9 0.2 0.4 0.6 0.8 1.0 Crack length, mm MultiaxialFatigue 2008-2014 Darrell Socie, All Rights Reserved 80 of 85

Fracture Mechanics Models K da dn C K m eq 4 4 4 K 8K 8K (1 0. 25 eq I II III ) K K eq eq 2 2 2 K K (1 ) K 0. 5 I II 2 2 K K K K 0. 5 I I II III II K eq ( ) (F K eq II E ) 2(1 ) 2 FG 1 k (FE) I n,max ys 2 0.5 a a MultiaxialFatigue 2008-2014 Darrell Socie, All Rights Reserved 81 of 85

Growth of Inclined Cracks 25 1010 Steel 20 tensile growth K II 15 10 5 K no growth K shear growth Cracks grow in either tension or shear 0 5 10 15 20 25 K I From: Otsuka et.al. Engineering Fracture Mechanics, Vol 7, 1975 MultiaxialFatigue 2008-2014 Darrell Socie, All Rights Reserved 82 of 85

Otsuka Tensile growth: K cos 2 K I cos 2 2 3 2 K II sin Shear growth: 1 K cos KI sin KII 3cos 1 2 2 2 MultiaxialFatigue 2008-2014 Darrell Socie, All Rights Reserved 83 of 85

Strain Energy Density Strain energy density at the crack tip: S a 2 2 2 11K I 2a12KIK II a22kii a33kiii Necessary and sufficient conditions for crack growth: S 0 at o 2 S 0 at 2 o Cyclic strain energy density: [ S a ( ) K K a ( )( K K K K ) 2 o I mean I o II mean I I mean 11 12 II a o KII mean mean 22 ( ) KII a33( o ) KIII KIII ] Sih, G.C and Barthelemy, B.M. Mixed Mode Fatigue Crack Growth Predictions Engineering Fracture Mechanics, Vol. 13, 1980 MultiaxialFatigue 2008-2014 Darrell Socie, All Rights Reserved 84 of 85

Summary Many models but no experimental verification for out-of-phase spectrum loads MultiaxialFatigue 2008-2014 Darrell Socie, All Rights Reserved 85 of 85

Multiaxial Fatigue