III. Chemical Kinetics



Similar documents
IODINE CLOCK. A Study of Reaction Rates.

Net ionic equation: 2I (aq) + 2H (aq) + H O (aq) I (s) + 2H O(l)

(1) Hydrochloric acid reacts with sodium hypochlorite to form hypochlorous acid: NaOCl(aq) + HCl(aq) HOCl(aq) + NaCl(aq) hypochlorous acid

Experiment 2 Kinetics II Concentration-Time Relationships and Activation Energy

A Volumetric Analysis (Redox Titration) of Hypochlorite in Bleach

Analysis of Vitamin C Using Iodine. Introduction

EXPERIMENT 2 THE HYDROLYSIS OF t-butyl CHLORIDE. PURPOSE: To verify a proposed mechanism for the hydrolysis of t-butyl Chloride.

Determining the Identity of an Unknown Weak Acid

To see how this data can be used, follow the titration of hydrofluoric acid against sodium hydroxide below. HF (aq) + NaOH (aq) H2O (l) + NaF (aq)

Chemical Kinetics. Reaction Rate: The change in the concentration of a reactant or a product with time (M/s). Reactant Products A B

Chemical Kinetics. 2. Using the kinetics of a given reaction a possible reaction mechanism

Stoichiometry Limiting Reagent Laboratory. Chemistry 118 Laboratory University of Massachusetts, Boston

Experiment 13H THE REACTION OF RED FOOD COLOR WITH BLEACH 1

SOLUBILITY, IONIC STRENGTH AND ACTIVITY COEFFICIENTS

9. Analysis of an Acid-Base Titration Curve: The Gran Plot

Stoichiometry Limiting Reagent Laboratory. Chemistry 118 Laboratory University of Massachusetts, Boston

Determination of Citric Acid in Powdered Drink Mixes

Reaction of Blue Food Dye with Bleach

Volumetric Analysis. Lecture 5 Experiment 9 in Beran page 109 Prelab = Page 115

CHEMICAL EQUILIBRIUM (ICE METHOD)

Reaction Stoichiometry and the Formation of a Metal Ion Complex

ph: Measurement and Uses

To determine the equivalence points of two titrations from plots of ph versus ml of titrant added.

18 Conductometric Titration

Experiment 3 Limiting Reactants

Juice Titration. Background. Acid/Base Titration

Liquid phase. Balance equation Moles A Stoic. coefficient. Aqueous phase

Practical Lesson No 4 TITRATIONS

ANALYSIS OF VITAMIN C

Acid Base Titrations

Apparatus error for each piece of equipment = 100 x margin of error quantity measured

EXPERIMENT 7 Reaction Stoichiometry and Percent Yield

The Determination of an Equilibrium Constant

Phenolphthalein-NaOH Kinetics

Determination of calcium by Standardized EDTA Solution

IB Chemistry 1 Mole. One atom of C-12 has a mass of 12 amu. One mole of C-12 has a mass of 12 g. Grams we can use more easily.

SOLVOLYSIS OF tert-butyl CHLORIDE: TESTING A MECHANISM

Upon completion of this lab, the student will be able to:

Calcium Analysis by EDTA Titration

Chem 1B Saddleback College Dr. White 1. Experiment 8 Titration Curve for a Monoprotic Acid

ACID-BASE TITRATIONS: DETERMINATION OF CARBONATE BY TITRATION WITH HYDROCHLORIC ACID BACKGROUND

Properties of Acids and Bases

15. Acid-Base Titration. Discover the concentration of an unknown acid solution using acid-base titration.

The Mole Concept. The Mole. Masses of molecules

Absorbance Spectrophotometry: Analysis of FD&C Red Food Dye #40

EXPERIMENT 7 Electrochemical Cells: A Discovery Exercise 1. Introduction. Discussion

Coordination Compounds with Copper (II) Prelab (Week 2)

SOLID STATE CHEMISTRY - SURFACE ADSORPTION

Determination of Ascorbic Acid in Vitamin C Tablets by Redox and Acid/Base Titrations

Chapter 12 - Chemical Kinetics

Calculating Atoms, Ions, or Molecules Using Moles

Lab 25. Acid-Base Titration and Neutralization Reactions: What Is the Concentration of Acetic Acid in Each Sample of Vinegar?

EXPERIMENT 12 A SOLUBILITY PRODUCT CONSTANT

Honors Chemistry: Unit 6 Test Stoichiometry PRACTICE TEST ANSWER KEY Page 1. A chemical equation. (C-4.4)

Acid-Base Titrations. Setup for a Typical Titration. Titration 1

Petri Dish Electrolysis Electrolysis Reactions

Direct ISE Method Method to 1000 mg/l Na + Sodium ISE

Name Date Class STOICHIOMETRY. SECTION 12.1 THE ARITHMETIC OF EQUATIONS (pages )

Understanding Analytical Chemistry (Weighing, Mixing, Measuring and Evaluating)

LIGHTSTICK KINETICS. INTRODUCTION: General background on rate, activation energy, absolute temperature, and graphing.

K + Cl - Metal M. Zinc 1.0 M M(NO

Lab #11: Determination of a Chemical Equilibrium Constant

KINETIC DETERMINATION OF SELENIUM BY VISIBLE SPECTROSCOPY (VERSION 1.8)

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Chemistry Laboratory Chemistry THE POTENTIOMETRIC TITRATION OF AN ACID MIXTURE 1

The introduction of your report should be written on the on the topic of the role of indicators on acid base titrations.

Environmental Chemistry of Boston Harbor IAP 2006 DETERMINATION OF DISSOLVED OXYGEN BY WINKLER TITRATION

Chemical Waves in the Belousov-Zhabotinsky Reaction: Determining a Rate Constant with a Ruler

Determination of the Amount of Acid Neutralized by an Antacid Tablet Using Back Titration

FAJANS DETERMINATION OF CHLORIDE

Reaction Rates and Chemical Kinetics. Factors Affecting Reaction Rate [O 2. CHAPTER 13 Page 1

Chapter 13 Chemical Kinetics

STANDARDIZATION OF A SODIUM HYDROXIDE SOLUTION EXPERIMENT 14

Tutorial 4 SOLUTION STOICHIOMETRY. Solution stoichiometry calculations involve chemical reactions taking place in solution.

Molar Mass of Polyvinyl Alcohol by Viscosity

Kinetics of Crystal Violet Fading AP* Chemistry Big Idea 4, Investigation 11 An Advanced Inquiry Lab

VAPOR PRESSURE AS A FUNCTION OF TEMPERATURE. This laboratory covers material presented in section 11.8 of the 9 th Ed. of the Chang text.

Mole Notes.notebook. October 29, 2014

Chapter 4: Chemical and Solution Stoichiometry

Solutions and Dilutions

Review of Chemical Equilibrium 7.51 September free [A] (µm)

The Molar Mass of a Gas

4.1 Stoichiometry. 3 Basic Steps. 4. Stoichiometry. Stoichiometry. Butane Lighter 2C 4 H O 2 10H 2 O + 8CO 2

Electrochemistry Revised 04/29/15

EXPERIMENT 10: TITRATION AND STANDARDIZATION

Cadmium Reduction Method Method to 30.0 mg/l NO 3 N (HR) Powder Pillows or AccuVac Ampuls

Precipitation Titration: Determination of Chloride by the Mohr Method by Dr. Deniz Korkmaz

To determine the mass of iron in one adult dose of either a ferrous sulfate or. ferrous gluconate iron supplement using a colorimetric technique.

Figure 1. A voltaic cell Cu,Cu 2+ Ag +, Ag. gas is, by convention, assigned a reduction potential of 0.00 V.

Human Physiology Lab (Biol 236L) Digestive Physiology: Amylase hydrolysis of starch

Vitamin C Content of Foods

Acid Dissociation Constants and the Titration of a Weak Acid

Using Excel (Microsoft Office 2007 Version) for Graphical Analysis of Data

COMMON LABORATORY APPARATUS

Solubility Product Constants

Estimation of Alcohol Content in Wine by Dichromate Oxidation followed by Redox Titration

4.0 EXPERIMENT ON DETERMINATION OF CHLORIDES

DETERMINING THE ENTHALPY OF FORMATION OF CaCO 3

Reaction of Magnesium with Hydrochloric Acid (Gas Laws) Chemicals Needed:

Evaluation copy. Case File 9. A Killer Cup of Coffee? GlobalTech manager dies

Related concepts Kohlrausch s law, equivalent conductivity, temperature dependence of conductivity, Ostwald s dilution law.

Transcription:

WARNING NOTICE: The experiments described in these materials are potentially hazardous and require a high level of safety training, special facilities and equipment, and supervision by appropriate individuals. You bear the sole responsibility, liability, and risk for the implementation of such safety procedures and measures. MIT shall have no responsibility, liability, or risk for the content or implementation of any of the material presented. Legal Notice III.1- The Iodine Clock Reaction III. Chemical Kinetics Introduction In this experiment, you will study a reaction that proceeds at an easily measured rate at room temperature: S O 8 - + I - SO 4 - + I persulfate iodide sulfate iodine In the first part of the experiment, the rate equation will be determined by investigating the effect of the concentration of the reactants on the rate of the persulfate-iodide reaction. In the second part, the activation energy will be calculated by studying the effects of temperature change and addition of a catalyst on the reaction system. Background Given the equation for a general reaction: aa + bb Products The dependence of the rate of the reaction on the concentration of the reactants may be expressed by a rate equation of the form: rate = k[a] l [B] m where, k is the rate constant (or rate coefficient); l and m are the orders of the reaction with respect to the reactants A and B, respectively; and the sum l + m is the overall reaction order. Unlike the stoichiometric coefficients determined by calculation, the orders of the reaction are based on the kinetics of the reaction. The orders of the reaction are defined by the mechanism of the reaction, which is an account of the actual steps by which the molecules combine. Orders can only be determined experimentally. The effect of temperature on reaction rate is given by the Arrhenius equation: k = A e -E a / RT where A is the Arrhenius constant, E a the activation energy of the reaction, T the absolute temperature, and R the universal constant of gases. Description of the Experiment In this experiment, we study the kinetics of the reaction between persulfate S O 8 - and iodide I - ions: 9

S O 8 + I SO 4 + I (1) persulfate iodide sulfate iodine Rates of reaction are measured by either following the appearance of a product or the disappearance of a reactant. In this experiment, the rate of consumption of the iodine will be measured to determine the rate of the reaction. As reaction (1) runs, the amount of iodine (I ) produced from it will be followed using reaction (): S O 3 + I S 4 O 6 + I () thiosulfate iodine tetrathionate iodide The iodine produced from the persulfate-iodide reaction (1) is immediately reduced back to iodide by thiosulfate ions (). A known amount of thiosulfate ions will be added to the reaction vessel which will in turn consume iodine as it is produced. This continues until all the thiosulfate has been converted to tetrathionate, whereupon free iodine will start to form in the solution via reaction (1). Because we know the amount of thiosulfate we added, we can determine the amount of iodine produced from reaction (1) stoichiometrically. When all the thiosulfate is consumed, free iodine starts to form in solution. By measuring the time taken for the known amount of thiosulfate to be consumed, the rate of production of iodine during that time can be calculated. The color of the iodine formed might be intense enough that it can act as its own indicator; however, for better results, you will add starch, which produces a deep blue starchiodine complex: I + (C 6 H 10 O 5 ) n H Oblue complex (3) iodine starch In summary, iodide (I - ) and persulfate ions (S O 8 - ) react to produce iodine (I ) and sulfate (SO 4 - ) in reaction (1). This iodine is immediately consumed by the thiosulfate ions (S O 3 - ) in a pathway described by reaction (). As soon as all of the S O 3 - ions are consumed, the excess iodine produced in (1) is free to react with starch, turning the solution blue (3). The amount of thiosulfate ions added tells us how much iodine had been produced in the time taken for the reaction to turn blue. Rate equation The rate of the reaction at constant temperature and ionic strength can be expressed as the change in concentration of a reagent or product over the change in time and can be equated to the rate law expression: rate = [S O 8 ] = [I ] = k[s O 8 ] m [I - ] n t t The variation in concentration of persulfate (a minus sign denotes consumption) and the variation in concentration of iodine (production) are given by: 30

[S O 8 ] = [S O 8 ] [S O 8 [S O final ] initial = 0 8 ] initial = [ S O 8 ] added [I ] = [I ] final [I ] initial, but at the beginning of the reaction [I ] initial = 0, so: Then: [I ] = [I ] final [I ] moles I rate = = t volume solution(l) time(sec) The number of moles of iodine produced is given by the amount of thiosulfate added to the reaction vessel: moles S O 3 = {volume of S O 3 added(l)} {concentration of S O 3 } The stoichiometry of reaction () gives: Thus we can calculate the rate by: [I ] moles S O rate = = 3 t volume solution(l) time(sec) vol. S O 3 added (L) conc. S O 3 (moles / L) rate = volume solution(l) time(sec) This reaction rate is a measure of how much iodine was produced in the time it took for the reaction to turn blue (i.e., time taken to react with all of the thiosulfate present). Reaction Orders In this experiment we use the initial rate method to find the order of the reaction with respect to persulfate (m) and the order of the reaction with respect to iodide (n). The method is based on the measurement of the rate of the reaction over a period of time. This time period is short enough for the reaction not to have proceeded significantly, but long enough to be unaffected by the time which the solutions take to mix at the start of the reaction. The rate law equation can be written as: rate = k[s O 8 ] m [I - ] n By taking the natural log of both sides, the equation becomes: ln rate = ln k + m ln[s O 8 ] + n ln[i ] For runs with different concentrations of persulfate and a constant concentration of iodide at a constant temperature, 31

ln rate = m ln[s O 8 ] + constant The constant term in this equation is lnk + n ln [I - ]. The slope of the best fit line of a plot of ln rate versus ln[s O 8 - ] will be equal to m, the order of reaction with respect to persulfate. Similarly, for runs where persulfate concentration and temperature are kept constant and the amount of iodide is varied, ln rate = n ln[i ] + constant The constant term is lnk + m ln[s O 8 - ]. The slope of the best fit line of a plot of ln rate versus ln[i - ] will be equal to n, the order of reaction with respect to iodide. Activation energy (E a ) Recall the Arrhenius equation: k = A e -E a / RT Taking natural logarithm of both sides of this equation we obtain: E a 1 ln k = + ln A R T A plot of ln k versus 1/T yields a straight line whose slope is -E a /R and whose y-intercept is ln A, the natural logarithm of the Arrhenius constant. Procedure Effect of Persulfate and Iodide Concentrations on Rate You will be provided with the following solutions: (i) Standardized Na S O 3 solution (about 0.1 M, BE SURE TO RECORD EXACT VALUE); (ii) 0.1M potassium persulfate, K S O 8 ; (iii) 0.M potassium iodide, KI; (iv) 0.M potassium chloride, KCl; (v) 0.1M potassium sulfate, K SO 4. The rate coefficient (k) of ionic reactions depends on the ionic strength or salinity of the solution. Potassium chloride (KCl) and potassium sulfate (K SO 4 ) are used to maintain the ionic strength of the solutions. 1. Prepare a 4.0x10-3 M solution of sodium thiosulfate as follows: Rinse a clean 50mL volumetric flask with distilled water. Pipette an aliquot of 10 ml of the standardized thiosulfate solution into the volumetric flask and add distilled water to the mark on the neck of the flask. Stopper and invert the flask a few times to mix its contents. Transfer the diluted thiosulfate solution into a clean labeled plastic bottle. This diluted solution will be used along the experiment. 3

. Label a 50mL Erlenmeyer flask "A" and a 50mL beaker "R", the reaction beaker. For each run of the reaction, make up glassware as shown in the chart below. Between runs, rinse the flasks THOROUGHLY with distilled water. Erlenmeyer A Reaction Beaker "R" (+ drops fresh starch solution + magnetic bar) Runs 0.M KI 0.M KCl 0.1M K S O 8 0.1M K SO 4 4.0x10-3 M*** S O 3 -. 1 10 0 5 5 5 5 5 5 5 5 3.5 7.5 5 5 5 4 5 5 7.5.5 5 5 5 5 10 0 5 3. For each run, start stirring the reaction beaker. Then, dump the contents of flask "A" into it and immediately begin timing. Record the "Blue Time" (the time in seconds needed for the solution to turn blue) for each run. Deposit all waste in the liquid waste container. ***Do not add the S O 3 - solution until you are ready to mix mixtures A and R together. Discussion and Calculations Prepare the folowing graphs: 1. ln rate versus ln[s O 8 - ], for runs where [I - ] is constant (runs, 4 and 5).. ln rate versus ln[i - ], for runs where [S O 8 - ] is constant (runs 1, and 3). 3. ln k versus 1/T for runs at constant concentrations but variable temperature. For these graphs draw a best-fit line. The slopes of graph 1 and graph will give you m and n, respectively (round them to their nearest integer values). The slope of graph 3 will give you -E a /R and the intercept lna. In your calculations, you should keep in mind that the starting concentration in the reaction vessel for each reagent is not simply what was printed on the bottle. For instance, for the first run in Part One, you used 0 ml of the 0.M KI solution; however, when the reaction is run, the actual concentration of iodide, at start, is not 0.M. Find the concentration of the two reagents (iodide and persulfate) used in each run (Hint: what dilutions have occurred?). The rate for every run in this experiment can be calculated by: rate = [S O 3 ] diluted 5 4.0 10 4 = Ms 1 5 time time 33

Since the total volume in every reaction is 5 ml and 5 ml of the dilute thiosulfate solution is used in every reaction, the only quantity in this equation that will change is the time. Be sure to account for all dilutions in the sodium thiosulfate solution concentration. Once you have determined m and n, the rate constant k is calculated from: rate k = [S O 8 ] m [I ] n Your final k value (at room temperature) should be the average of the k values obtained for runs 1 through 5 in Part One. Make sure to give the units for k. Goals 1) Determine the experimental rate law ) Propose a mechanism consistent with the experimental rate law. (Do not worry if it is the correct mechanism, only that the experimental rate law can be derived from it) 3) Determine the activation energy and Arrhenius constant for the reaction. 34

Data Sheet Effect of Reagent Concentration Temperature of solution: KI KCl K S O 8 K SO 4 S O 3 - Time (sec) 1 10 0 5 5 5 5 5 5 5 5 3.5 7.5 5 5 5 4 5 5 7.5.5 5 5 5 5 10 0 5 Effect of Temperature(note: pick a run from above to use as room temperature run) KI KCl K S O 8 K SO 4 S O 3 - Temperature (K) Time (sec) 1 3 4 5 35