CONVERTING A CLOSED-LOOP WATER SYSTEM TO A GLYCOL SYSTEM



Similar documents
2014 Service Technician Training Program Closed Loop Systems

Guidelines for Selecting and Maintaining Glycol Based Heat Transfer Fluids

Dispelling the Myths of Heat Transfer Fluids. Kevin Connor The Dow Chemical Company

ALS TRIBOLOGY Engine Coolant Reference Guide

DOWFROST GEO 20: Propylene Glycol-Based Heat Transfer Fluid for Geothermal Heat Pump Systems

NORKOOL Industrial Coolants

Calculating System Flow Requirements

EVERYTHING YOU WANTED TO KNOW ABOUT GLYCOL A Brewery Glycol System Guide. Updated

Best Practice in Boiler Water Treatment

Thermo Siphon Solar Systems

IMO Approved Tank Cleaning Chemicals

Domestic Chemical Water Treatment Manufacturers Association

A Guide to Trouble-Free Cooling Towers

Solar Hot Water Heaters

A discussion of condensate removal systems for clarifier and thickener drives for water and wastewater facilities.

GLYCOL CHILLER SYSTEM TROUBLESHOOTING 101

NALCO WT-1000 Closed System Corrosion Inhibitor

Safety Data Sheet Avesta Neutralization Agent 502

Delo XLI Corrosion Inhibitor

MAC-120HE-01 Air-Cooled Chiller

Aluminium as Construction Material in Ammonia Refrigeration Cycles

VACUUM REFRIGERATION SYSTEMS

DEF Q&A. A. SCR is a technology that uses a urea based diesel exhaust fluid (DEF) and a

How Ground/Water Source Heat Pumps Work

Reuse of Alternative Water Sources for Cooling Tower Systems Two Case Studies Using Non-Traditional Water Sources

PLBG/GAS SAFETY Information Bulletin

Water Fired Chiller/Chiller-Heater. WFC-S Series: 10, 20 and 30 RT Cooling

The main steam enters the building in the basement mechanical room; this is where the condensate line also leaves the building.

Healthy Drinking Waters

How To Use A Water Source Heat Pump

C. Provide temporary water treatment for chilled, hot and condenser water until facility has final connections.

Corrosivity of Water Supplies

CONTAMINANT REMOVAL FROM CENTRIFUGAL SYSTEMS

Pure Water. Isn t Hard to Find

How much do you know about HVAC? Try testing yourself with the following questions and then take a look at the answers on the following page.

THE USE OF OZONE IN COOLING TOWERS

Treatment options for hydrogen sulfide. Testing for hydrogen sulfide

Abrasive Solids Corrosion inhibitors and hard water components that have come out of the coolant solutions and may lead to premature water pump

WATER-SOLUBLE METALWORKING FLUIDS

Diesel Exhaust Fluid (DEF) Q & A

Solar Thermal TECHNOLOGY. Eric Buchanan Renewable Energy Scientist West Central Research and Outreach Center Wcroc.cfans.umn.edu

The National Board of Boiler and Pressure Vessel Inspectors 1055 Crupper Avenue Columbus, Ohio

CHAPTER 7 THE DEHYDRATION AND SWEETENING OF NATURAL GAS

ENERGY RETROFIT PROGRAM

WATER CHEMISTRY AND POOL WATER BALANCE

HOT WATER SYSTEMS CONTENTS

COMMERCIAL HVAC CHILLER EQUIPMENT. Air-Cooled Chillers

Link-Up. Solid Fuel Association Guide to Central Heating.

State of the Art Energy Efficient Data Centre Air Conditioning

Introducing an All New Line of Cleaning Chemicals

31 Tips on How to Apply Antifreeze to a Hydronic Heating System, and How to Maintain it Afterwards

Your drinking water. Your questions answered

A Comprehensive Laboratory Test to Analyze the Compatability of Leading Cleaners and Sanitizers on Today's Industrial Refrigeration Evaporator Coils.

UNDERSTANDING HOT WATER SYSTEMS IN THE HOME

BASIC WATER TREATMENT OF STEAM BOILERS

Some Criteria for Choosing a Steam Boiler for a Microbrewery

Modulex. Gas Fired Boiler Systems PIPING GUIDE GF-115-P. Modular, Condensing, Hot Water Boilers Models: 303, 454, 606, 757, 909, Instruction No.

Water Treatment Program Manual

PMI-IF-H High Efficiency Gas Heat Units

Winterizing Your Trailer and Storage Ideas

Vacuum. How It Relates to Refrigeration And Air Conditioning Service

HVAC: Cool Thermal Storage

The Worcester Greenstar System Filter. An innovative solution for reducing system contaminants

HYDRONIC DESIGNER / INSTALLER MODULE DESCRIPTIONS

Maximizing Boiler Plant Efficiency. Presenter: Dan Watkins, LEED BD+C Sales Engineer Bornquist, Inc.

Rental Services Temporary Cooling - Flexible Water Hose

INTAC PARTS & SERVICES ( H)

PEROXIDE SAFETY DATA SHEET (60% H2O2) Safety Data Sheet

What you can expect from your Solar Hot Water System

Innovent LASER Packaged Fresh Air Conditioning Units

WARNING: IMPROPER SERVICING AND START-UP OF THIS EQUIPMENT MAY CREATE A POTENTIAL HAZARD TO EQUIPMENT AND TO OPERATORS OR PERSONS IN THE BUILDING.

Making heating systems efficient and cost-effective: boilers, heating controls & more

Calcite PH Nutralizer System

A step-by-step guide Prevent freezing pipes and other damage by winterizing your RV.

4.0 EXPERIMENT ON DETERMINATION OF CHLORIDES

Defining Quality. Building Comfort. Heating and Cooling Coils

Drinking Water Problems: Corrosion

Glossary of Heating, Ventilation and Air Conditioning Terms

Air Conditioning. The opportunity for energy efficiency. Low cost actions to reduce energy usage now

Technical Information. High-performance Ultra Low Viscous Secondary Refrigerants for Applications down to -50 C TYFOXIT F15-F50.

B. ASTM C 533 Calcium Silicate Block and Pipe Thermal Insulation. C. ASTM C 547 Mineral Fiber Preformed Insulation

Case History Report The Dolphin Nonchemical Device Boilers and Cooling Tower

Sea Water Heat Pump Project

Chilled Water HVAC Systems

Steam System Best Practices Condensate System Piping

Max primary circuit temperature 90ºC Max primary circuit temp. 90ºC Max secondary circuit temperature 45ºC Max secondary circuit temp.

Installation & Operation Manual Models: STU

I N S T A L L A T I O N I N S T R U C T I O N S F O R T H E H i l k o i l Energy S aving Hot Water Kit

Corrosion Inhibitors in Antifreeze Coolants

Managing the Risk of Legionnaires Disease in Vehicle Wash Systems

EXPERIMENT #9 CORROSION OF METALS

Mechanical Seal Piping Plans

Anhydrous Fire Resistant Hydraulic Fluids using Polyalkylene Glycols

GOLD Plus 30/40/60/80

Serenbe Green Geothermal Solutions with Bosch Thermotechnology

HEAT RECOVERY FROM CHILLED WATER SYSTEMS. Applications for Heat Reclaim Chillers

INSTRUCTION MANUAL. Boil-Out TABLE OF CONTENTS SAFETY WARNINGS 2-3 RESPONSIBILITY 3 INTRODUCTION 3 PRE-BOIL OUT PROCEDURES 3-5 BOIL OUT PROCESS 5-9

Heating & Cooling Efficiency

BRAZED PLATE INSTALLATION MANUAL

Transcription:

CONVERTING A CLOSED-LOOP WATER SYSTEM TO A GLYCOL SYSTEM Presented at Alberta Public Works, Supply & Services Property Management Water Treatment Co-ordinators' Meeting #29 Roland Michener Recreation Centre Red Deer, Alberta April 21 st 1999 by G.F. Yuzwa, P.Eng. H2O ENGINEERING LTD. 539 Edgemont Bay N.W. Calgary, Alberta T3A 2K7

INTRODUCTION In most cases, the primary reason for converting a closed loop hot water heating or chilled water system to a glycol system is to prevent freeze/burst damage of equipment that is exposed to sub-freezing ambient temperatures. However, the potential for reduced maintenance costs could also justify this conversion in some situations. That is, monthly testing is not required for glycol systems a benefit that may be especially important for remote locations, and seasonal drainage of chilled water coils is not required for glycol systems. The reasons for not converting a closed loop hot water heating or chilled water system to a glycol system include the capital cost of the glycol particularly for large systems, the reduced heat transfer for glycol, and the increased pump horsepower required for glycol. However, if the capital cost can be justified and if the design of the existing closed loop water system has enough excess capacity to absorb the extra energy that a glycol system requires (i.e., the heating/cooling load can be comfortably met with the existing water system), the system preparation for this conversion, the operation & maintenance activities, and the required control tests for glycol systems are contained herein. SYSTEM PREPARATION System Cleaning In order to improve the heat transfer efficiency and corrosion protection of the system, all lines and equipment of the system should be cleaned with a neutral ph cleaning solution, and the cleaning solution must be thoroughly flushed from the system prior to the glycol addition. Page 2 of 8

System Materials The standard materials of construction (i.e., steel, cast iron, copper, brass, bronze, solder, and most plastics) that are found in closed loop water systems are also acceptable for use in glycol systems. However, aluminum and zinc materials should be avoided because the corrosion inhibitor in the glycol will not fully protect aluminum at temperatures greater than 150 F (65 C), and zinc will react with the corrosion inhibitor, thus depleting it and causing corrosion. Fresh Make-up Water The use of automatic fresh water make-up for glycol systems must be avoided in order to prevent undetected dilution of glycol in the system and possible contamination of the domestic water system with glycol. Expansion tank In heating systems, the direct contact of glycol with air will decompose the glycol to form glycolic acid, which in turn reacts with and depletes the corrosion inhibitor. Therefore, the expansion tank for a glycol heating system should be a bladder type. Due to the higher density of glycol, the expansion tank for a glycol system must be capable of absorbing approximately 4% more volume than a water system in the same operating temperature range. Page 3 of 8

Type of Glycol The types of glycol that are commercially available in bulk include automotive grade ethylene glycol & propylene glycol the latter of which is also referred to as RV grade glycol, and industrial grade ethylene & propylene glycol. Industrial grades of ethylene glycol usually have product names that end with therm (e.g., Dowtherm), whereas industrial grades of propylene glycol usually have product names that end in frost (e.g., Dowfrost ). Automotive grade glycol and RV grade glycol must not be used in industrial glycol systems because these types of glycol contain corrosion inhibitors that are not compatible with the materials and operation of HVAC systems. The acute oral toxicity of industrial grade propylene glycol is much lower than that of industrial grade ethylene glycol; therefore, industrial grade propylene glycol is the preferred choice for use in systems where accidental ingestion may occur (Note: intentional consumption of propylene & ethylene glycol in thirst quenching quantities must be avoided). However, because of its higher heat transfer efficiency, industrial grade ethylene glycol should be used in systems where oral toxicity is not a concern. Concentration of Glycol In order to provide adequate freeze protection and pumpability (i.e., a glycol concentration which is sufficient to prevent the formation of ice crystals at the lowest temperature experienced by the fluid) down to 34 C to 40 C, the acceptable glycol concentration range for cooling systems which are operational year round and for heating systems is 48-52 vol% for ethylene glycol systems and 50-54 vol% for propylene glycol systems. Page 4 of 8

As stated previously, the heat transfer rate for a glycol system is substantially less than for an equivalent water system. For example, the heat transfer rate for a heating system that contains 50 vol% ethylene glycol will be 54% less than an equivalent water system, and with an ethylene glycol concentration of 70 vol%, this difference increases to 67%. If 50 vol% propylene glycol is used, the heat transfer rate will be 60% less than an equivalent water system. Therefore, in order to maximise the heat transfer rate, excessive glycol concentrations should be avoided, and ethylene glycol is the preferred choice for glycol heating systems. In order to provide adequate burst protection (i.e., a glycol concentration which is high enough to prevent bursting of pipes and other mechanical damage), but not necessarily high enough to be pumpable down to less than 50 C, the acceptable ethylene glycol concentration range for cooling systems which are operational only during the summer months is 30-35 vol%. Similarly, the acceptable propylene glycol concentration range is 35-40 vol% for burst protection down to less than 40 C. Although the heat transfer rate for a glycol cooling system is substantially less than for an equivalent water system, it is not as excessive as for a heating system because the glycol concentration is lower for cooling systems. For example, the heat transfer rate for a cooling system that contains 30 vol% ethylene glycol will be 40% less than an equivalent water system, and with an ethylene glycol concentration of 50 vol%, this difference increases to 60%. If 30 vol% propylene glycol is used, the heat transfer rate will be 51% less than an equivalent water system. Therefore, as stated for the heating systems, in order to maximise the heat transfer rate, excessive glycol concentrations should be avoided, and ethylene glycol is the preferred choice for glycol cooling systems. Page 5 of 8

Glycol concentrations less than approximately 20 vol% must be avoided since glycol is a nutrient source for bacteria at these low concentrations. Volume of Glycol The following equation may be used to calculate the approximate amount of glycol that must be added to the system: G = V x (CD-CP)/(100-CP) Where G: volume of fresh concentrated glycol to be added to the system, litres V: volume of the system, litres (determined by lithium test) CD: desired glycol concentration, vol% CP: present glycol concentration, vol% Dilution Water The water which is used to mix and/or dilute glycol must be of the highest possible quality (i.e., softened, demineralised, deionised, boiler condensate), otherwise the minerals in some domestic water supplies will deplete the inhibitor concentration in the glycol, thus making it corrosive. The following limits are recommended by the glycol supplier: Chloride: 25 ppm, maximum Sulphate: 25 ppm maximum Calcium: 50 ppm maximum Magnesium: 50 ppm maximum Page 6 of 8

OPERATION and MAINTENANCE Once the system is filled with the glycol solution, the following operating and maintenance activities must be performed in order to minimise corrosion in the system: 1. Ensure that there is a positive pressure at the top of the system at all times by maintaining a minimum static system pressure according to the following equation by the addition of air to the expansion tank: P = (H/2.31) + 5 Where P: pressure at the circulating pumps with the circulating pumps shut off, psig; H: elevation of the system piping above the circulating pumps, feet 2. Ensure that there is glycol solution in the expansion tank at all times; 3. Replace faulty automatic vents as required; 4. Replace the by-pass filter element with a fresh cartridge as required. CONTROL TESTS In order to ensure that the glycol solution in the system will provide adequate freeze/burst & corrosion protection, the following control tests must be performed: Page 7 of 8

1. Test & document the ph level of the glycol solution in the system at least once per year it should be greater than 8.5; 2. Test & document the glycol concentration of the glycol solution in the system at least once per year for ethylene glycol, it should be 48-52 vol% for heating & cooling systems that are operated year round, and 30-35 vol% for cooling systems that are operated only during the cooling season; for propylene glycol, it should be 50-54 vol% for heating & cooling systems that are operated year round, and 35-40 vol% for cooling systems that are operated only during the cooling season; 3. Determine & document the corresponding freeze temperature of the glycol solution in the system at least once per year it should be 34 to 40 C for heating & cooling systems that are operated year round & -16 to 19 C for cooling systems that are operated only during the cooling season; 4. Determine & document the corresponding burst temperature of the glycol solution in the system at least once per year for ethylene glycol, it should be less than 50 C; for propylene glycol, it should be less than -40 C; 5. Determine & document the reserve alkalinity level of the glycol solution in the system at least once per year add dipotassium hydrogen phosphate corrosion inhibitor solution as required in order to maintain a reserve alkalinity level, based on 100% glycol, greater than 9.0; 6. Determine & document the iron & copper corrosion rates of the system if excessive corrosion is suspected the iron corrosion rate should be less than 0.50 mpy, whereas the copper corrosion rate should be less than 0.20 mpy. Page 8 of 8