CHEMICAL SIGNATURES OF ASTEROID IMPACTS



Similar documents
A: Planets. Q: Which of the following objects would NOT be described as a small body: asteroids, meteoroids, comets, planets?

Introduction and Origin of the Earth

Element Partitioning and Earth's Core Composition. Bernie J. Wood. Summary by: Dave Stegman

Geologic Time Scale Newcomer Academy Visualization Three

Unit 5: Formation of the Earth

CHAPTER 6 THE TERRESTRIAL PLANETS

The Next Generation Science Standards (NGSS) Correlation to. EarthComm, Second Edition. Project-Based Space and Earth System Science

Chapter 9 Asteroids, Comets, and Dwarf Planets. Their Nature, Orbits, and Impacts

Section 1 The Earth System

Lecture 23: Terrestrial Worlds in Comparison. This lecture compares and contrasts the properties and evolution of the 5 main terrestrial bodies.

1 Branches of Earth Science

1. Michigan Geological History Presentation (Michigan Natural Resources)

The Solar System. Source

The Earth System. The geosphere is the solid Earth that includes the continental and oceanic crust as well as the various layers of Earth s interior.

Rocks and Minerals What is right under your feet?

1. The diagram below shows a cross section of sedimentary rock layers.

7. Our Solar System. Planetary Orbits to Scale. The Eight Planetary Orbits

Earth & Space Voyage Content Unit Report. Grades: 8 States: Nevada Content Standards

Unit Study Guide: Rocks, Minerals, and the Rock Cycle

Earth Egg Model Teacher Notes

Unit 2 Lesson 4 The Geologic Time Scale. Copyright Houghton Mifflin Harcourt Publishing Company


Atoms and Elements. Atoms: Learning Goals. Chapter 3. Atoms and Elements; Isotopes and Ions; Minerals and Rocks. Clicker 1. Chemistry Background?

QUE 93148: A Part of the Mantle of Asteroid 4 Vesta?

Rocks and Plate Tectonics

Chapter 12 Asteroids, Comets, and Dwarf Planets. Asteroid Facts. What are asteroids like? Asteroids with Moons Asteroids and Meteorites

The Ice Age By: Sue Peterson

Rocks & Minerals. 10. Which rock type is most likely to be monomineralic? 1) rock salt 3) basalt 2) rhyolite 4) conglomerate

Science Standard 4 Earth in Space Grade Level Expectations

Geologic History Review

SGL 101 MATERIALS OF THE EARTH Lecture 1 C.M.NYAMAI LECTURE ORIGIN, STRUCTURE AND COMPOSITION OF THE EARTH

Essential Standards: Grade 4 Science Unpacked Content

Georgia Performance Standards Framework for Science Grade 6. Unit Organizer: Geology: Inside the Earth (Approximate Time: 7 Weeks)

ORANGE PUBLIC SCHOOLS OFFICE OF CURRICULUM AND INSTRUCTION OFFICE OF SCIENCE. GRADE 6 SCIENCE Post - Assessment

Lesson 5: The Rock Cycle: Making the Connection

Geologic Time Scale Notes

Lesson 13: Plate Tectonics I

Earth Science Grade 4 Minerals

Study Guide: Solar System

Match the term or person with the appropriate phrase. You may use each answer once, more than once or not at all.

Ch6&7 Test. Multiple Choice Identify the choice that best completes the statement or answers the question.

Igneous Geochemistry. What is magma? What is polymerization? Average compositions (% by weight) and liquidus temperatures of different magmas

How can you tell rocks apart?

Chapter 9: Earth s Past

Lecture 12: The Solar System Briefly

The Fossil Record and Geologic Time Scale

Greater Nanticoke Area School District Science/Technology Standards 5 th Grade

Name Class Date WHAT I KNOW. about how organisms have changed. grown in complexity over time.

Layers of the Earth s Interior

Name: Rocks & Minerals 1 Mark Place,

THE SOLAR SYSTEM - EXERCISES 1

Solar System Formation

Volcano in the lab: a wax volcano in action: teacher s notes

California Standards Grades 9 12 Boardworks 2009 Science Contents Standards Mapping

Radiometric Dating. Dating Methods for Igneous Rocks

Georgia Performance Standards Framework for Science Grade 6. Unit Organizer: UNIVERSE AND SOLAR SYSTEM (Approximate Time 3 Weeks)

The rock cycle. Introduction. What are rocks?

Vagabonds of the Solar System. Chapter 17

Lesson 3: The Big Rock Lesson: Introduction to Rocks. Scientific Process(es) Addressed: Observing, communicating, inferring and defining operationally

Regents Questions: Plate Tectonics

II. Earth Science (Geology) Section (9/18/2013)

Potassium-Argon (K-Ar) Dating

Unit 4: The Rock Cycle

Georgia Performance Standards for Science Grade 6. This Performance Standards document includes four major components. They are

Chapter 8 Formation of the Solar System. What theory best explains the features of our solar system? Close Encounter Hypothesis

Solar System Overview

The spectacular eruption of a volcano, the magnificent scenery of a

FORENSIC GEOLOGY GEOLOGIC TIME AND GEOLOGIC MAPS

Chapter 8 Welcome to the Solar System

Welcome to Class 4: Our Solar System (and a bit of cosmology at the start) Remember: sit only in the first 10 rows of the room

Lecture 5. elements (Figure 1). In addition, there are many ways of classifying trace elements.

The Dynamic Crust 2) EVIDENCE FOR CRUSTAL MOVEMENT

Foundations of Earth Science (Lutgens and Tarbuck, 5 th edition, 2008)

PS Chapter 1 Review. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question.

Curriculum Map Earth Science - High School

Probing for Information

FIFTH GRADE PLATE TECTONICS 1 WEEK LESSON PLANS AND ACTIVITIES

1. You are about to begin a unit on geology. Can anyone tell me what geology is? The study of the physical earth I.

Key Concepts in Science GEOLOGIC TIME TEACHER GUIDE Sally Ride Science

4 HOW OUR SOLAR SYSTEM FORMED 750L

Santillana Intensive English Levels 4-6

What are Rocks??? Rocks are the most common material on Earth. They are a naturally occurring collection of one or more minerals.

What is a rock? How are rocks classified? What does the texture of a rock reveal about how it was formed?

Lecture 10 Formation of the Solar System January 6c, 2014

Geologic Time. Relative Dating. Principle of Original Horizontality. Relative Time. Absolute Time. Geologic Column

Rock Cycle Part I Student Guide

Plate Tectonics Web-Quest

Prentice Hall Interactive Science Series 2011 Correlated to: Arizona Science Standards, Strands 1-6 (Grade 7)

6.E.2.2 Plate Tectonics, Earthquakes and Volcanoes

Earth Sciences -- Grades 9, 10, 11, and 12. California State Science Content Standards. Mobile Climate Science Labs

Study Guide due Friday, 1/29

Foundations of Earth Science (Lutgens and Tarbuck, 6 th edition, 2011)

ROCKS OF THE GRAND CANYON BACKGROUND INFORMATION FOR DOCENTS

3 The Mesozoic and Cenozoic Eras

[Geology Layers of the Earth] [Basic: Grade 2-3] [Advanced: Grade 5: Introduction to Plate Tectonics}

The Earth, Sun, and Moon

The Main Point. Lecture #34: Solar System Origin II. Chemical Condensation ( Lewis ) Model. How did the solar system form? Reading: Chapter 8.

Lesson Plan Title. Toilet Paper Tape Measure of Geologic Time

Transcription:

CHEMICAL SIGNATURES OF ASTEROID IMPACTS INTRODUCTION The film The Day the Mesozoic Died identifies the presence of high quantities of iridium (Ir) in the clay layer at the boundary between the Cretaceous (K) and Tertiary (T) periods as a key piece of evidence for the asteroid impact hypothesis. Because iridium is rare on Earth s crust and abundant in asteroids and comets (see figure), Dr. Walter Alvarez and colleagues thought the iridium in the K-T boundary came from space. There are, however, other possible sources of this element. For example, some scientists proposed that the iridium might have come from volcanic eruptions. This activity will guide you through an example of how scientists determine the source material for sedimentary deposits. Sedimentary rocks are formed by the deposition of material on Earth s surface over time. Depending on the original source of the sediment, a sample of rock will have a particular mixture of elements that matches that of the source it came from. For example, platinum-group elements, such as iridium, osmium, and palladium, are quite rare in the mantle, crust, and on Earth s surface so they can be used as indicators for the origin of sediments. During formation of the Earth, dense elements (including platinum-group elements) migrated to the core during a process called differentiation. In this activity, you will analyze the composition of platinum-group elements in different rock samples. The Columbia River basalt is a sample of volcanic rock located in Washington State. This type of rock contains about 27 atoms of palladium (Pd) and nine atoms of osmium (Os) for every one atom of iridium (Ir). The pattern of elements in a sample is known as its chemical signature, and this particular signature (27 Pd: 9 Os: 1 Ir) is typical of volcanic rocks that come from Earth s mantle. Asteroids have different chemical signatures compared to rocks that come from Earth s mantle or crust because these small planetary bodies did not differentiate. Scientists have analyzed meteorites that have struck Earth; based on the chemical composition of these meteorites, scientists can infer the composition of asteroids. A C1 chondrite is the type of meteorite originating from the type of asteroid described in the short film The Day the Mesozoic Died, which caused the mass extinction at the end of the Cretaceous period. C1 chondrites contain just a little bit less than one atom of osmium and one atom of palladium for every atom of iridium in them. In this type of rock, the three elements occur in almost equal proportions (1 Pd: 1 Os: 1 Ir) a striking difference from Earth s rocks. www.biointeractive.org Page 1 of 5

Your task will be to analyze the chemical signature of several samples of sediment and determine from that analysis the source that likely deposited them. For example, if an asteroid strikes Earth and vaporizes, its iridium will be scattered over a vast area and diluted in other sediments. While the original asteroid contained approximately 500 parts per billion of iridium in other words, 500 atoms of iridium per 1 billion atoms of all elements in the sample sediment deposited at some distant location after the impact might end up with a much lower concentration, say 30 ppb of iridium. In contrast, the concentration of iridium in Earth s crust is as low as 0.02 ppb, which is more than 25,000 times lower than what is found in a typical chondrite and still 1,500 times lower than sediment deposited after an asteroid impact might contain! (Note: words in bold are defined in a glossary at the end of this document.) PROCEDURE 1. Watch the HHMI short film The Day the Mesozoic Died. As you watch, pay special attention to the case presented for using the abundance of the element iridium as evidence of an asteroid impact. 2. Perform the calculations outlined below to determine the chemical signatures of rock samples. 3. Answer the questions following the calculations. CALCULATE CHEMICAL SIGNATURES OF DIFFERENT SAMPLES Examine the data in Table 1on the next page. It presents results from chemical analyses of a C1 chondrite, the Columbia River basalt, and two samples of clay. These clay samples were taken from a K-T boundary layer in Denmark. How can you tell from the data whether the Danish samples are connected to either the chondrite or the basalt as their original source of sediment? One way to do it is to measure the concentrations of different elements in the Denmark Clay samples and compare them to those in the C1 Chondrite or Columbia River Basalt to determine which samples are the more similar. The most diagnostic elements for identifying samples of chondrite origin are the platinum group elements (Ru, Rh, Pd, Os, Ir, and Pt). Platinum group elements www.biointeractive.org Page 2 of 6

To compare samples, the data in Table 1 have to be normalized. One way to normalize the data is to determine the ratios of all the elements in the meteorite to iridium and then compare those ratios to the ones calculated for the other samples. Table 1: of Selected s Denmark Clay 1 Denmark Clay 2 C1 Chondrite Columbia River Basalt Ir 47 55 500 0.0011 Os 40 49 480 0.01 Au 8.8 12.3 152 0.35 Pt 24 17 900 - Ni 310,000 322,000 10,300,000 7300 Co 38,000 46,000 483,000 28,000 Pd 45 53 460 0.03 Re 35 59 35 0.64 Ru 37-690 - Data adapted from Ganathapy, 1980. Table 2: Chemical Signature of C1 Chondrites (:Ir) Ir 500 1.00:1 Os 480 0.96:1 Au 152 Pt 900 Ni 10,300,000 Co 483,000 Pd 460 Re 35 Ru 690 Here is how it works: Calculate the ratio of abundance of each element to that of iridium for the C1 chondrite by completing Table 2. The first two ratios were calculated as follows: Ir / Ir = 500 ppb/500 ppb = 1.00 Os / Ir = 480 ppb/500 ppb = 0.96 Use the following template to calculate the abundance ratio of gold (Au) to iridium: Au / Ir = ppb / ppb = Now, calculate the abundance ratios of each of the remaining elements to iridium and fill in Table 2. Show your work on a separate sheet of paper and transcribe your answers into the table. Note: In chondrites of this type, we expect to find iridium and osmium in roughly equal proportions, but only about 1/3 as much gold and 1¾ times more platinum. If a sample of rock or clay has iridium and osmium in similar proportions, that s evidence that its original source might have been a C1 chondrite. Prepare chemical signatures for the Denmark clay 1, Denmark clay 2, and Columbia River basalt samples. Calculate the ratios using the same method as for the C1 chondrite (Table 2). Be sure to base the ratio of each element on the abundance of iridium in the sample. www.biointeractive.org Page 3 of 6

Table 3: Chemical Signature of Denmark Clay 1 Sample Table 4: Chemical Signature of Denmark Clay 2 Sample (:Ir) (:Ir) Ir 47 Os 40 Au 8.8 Pt 24 Ni 310,000 Co 38,000 Pd 45 Re 35 Ru 37 Ir 55 Os 49 Au 12.3 Pt 17 Ni 322,000 Co 46,000 Pd 53 Re 59 Ru - Table 5: Chemical Signature of Columbia River Basalt Ir 0.0011 Os 0.01 Au 0.35 Pt - Ni 7300 Co 28,000 Pd 0.03 Re 0.64 Ru - (:Ir) www.biointeractive.org Page 4 of 6

QUESTIONS 1. Examine the chemical signatures of the clay samples and compare them to those of the C1 chondrite and Columbia River basalt. Which of these two sources seem to provide the best match (meaning that they are more similar) to the Danish samples? Justify your answer in one or two sentences. 2. Considering the source rock you identified in Question 1, what are some of the ways that the Danish clay samples differ from the likely source material? 3. What could be some possible explanations for the differences you noted in your answer to Question 2? List one or two possible reasons. 4. Based on these data, discuss the source of material that produced the Danish clay deposits. Assume that the Columbia River basalt is typical of mantle and crustal sources of platinum-group elements on Earth. Discuss and support your conclusion, including any uncertainty you feel is warranted as a result of these data. www.biointeractive.org Page 5 of 6

GLOSSARY Asteroid: a large, rocky body in orbit around the sun. Basalt: a type of igneous rock rich in iron. Typically formed from magma that originates in the mantle. C1 chondrite or chondrite: a type of stony meteorite that formed without melting of the source material. C1 chondrites are a group of carbonaceous chondrites, which are thought to be some of the oldest materials in the solar system. Cretaceous: a geologic time period lasting from 145.5 million years ago to 65.5 million years ago. It was the last period of the age of the dinosaurs. Differentiation: the process by which a newly forming planet develops compositional layers according to the density of elements and minerals. K-T boundary: the boundary between the Cretaceous (K) and Tertiary (T) periods. It is characterized by a thin layer of clay found all over the world. The Tertiary has been recently reclassified as the Paleogene and Neogene. The K-T boundary is now known as the K-Pg boundary. Meteorite: an asteroid or other particle from space that does not burn up in Earth s atmosphere and lands on Earth s surface. Parts per notation: a dimensionless notation in which the abundance of something is measured as so many parts per the whole. Mathematically, this is the equivalent of a fraction in which the term that follows per in the notation acts as the denominator. Platinum-group elements: a group of six transition metals (ruthenium, rhenium, palladium, osmium, iridium, and platinum) that are among the rarest elements on Earth. Sedimentary rock: a kind of rock formed from the deposition of sediment at Earth s surface, which subsequently became consolidated and cemented together. It can form in both terrestrial and aquatic environments. Tertiary: a geologic period lasting from 65.5 million years ago to 2.6 million years ago. The Tertiary period was the beginning of the age of the mammals. AUTHORS Written by Scott Wahlstrom, M.Ed., BSME, Wachusett Regional School District Edited by Laura Bonetta, PhD, Mark Nielsen, PhD, and Eriko Clements, PhD, HHMI; and Susan Dodge Reviewed by Philippe Claeys, PhD, Vrije Universiteit Brussel Copyedited by Linda Felaco; Graphics by Fabian dekok-mercado FIELD TESTERS Leah Sarasohn, Science and Medicine Middle School MS366; Jite Lark, Foundations Academy; Erica Dosch, Connetquot High School www.biointeractive.org Page 6 of 6