The Upward Lightning. FIELD PROJECT UPLIGHTS Upward Lightning Triggering Study



Similar documents
M components or cloud-to-ground subsequent strokes?

Abnormal Leader Processes in a Classically-Triggered Negative Discharge Observed with a Broadband VHF Interferometer and a Camera in 3D

DOES A STROKE BETWEEN CLOUD AND GROUND TRAVEL UPWARDS OR DOWNWARDS?

OPERATIONAL USE OF TOTAL LIGHTNING INFORMATION FOR WEATHER AND AVIATION AT DALLAS-FORT WORTH

Vaisala s NLDN U.S. National Lightning Detection Network / ADVANCED TOTAL LIGHTNING TM. SCIENTIFIC ACCURACY. PROVEN RELIABILITY.

POSITIVE POLARITY: MISCLASSIFICATION BETWEEN INTRACLOUD AND CLOUD-TO- GROUND DISCHARGES IN THE SOUTHERN AFRICAN LIGHTNING DETECTION NETWORK

RFP GP Clarifications to Bidders III

CHAPTER 6 INSTRUMENTATION AND MEASUREMENTS 6.1 MEASUREMENTS

DIFFERENT STROKES: RESEARCHING THE UNUSUAL LIGHTNING DISCHARGES ASSOCIATED WITH SPRITES AND JETS AND ATYPICAL METEOROLOGICAL REGIMES

DETAILED STORM SIMULATIONS BY A NUMERICAL CLOUD MODEL WITH ELECTRIFICATION AND LIGHTNING PARAMETERIZATIONS

A Propagative Model for Simulations of Electric Fields Produced by Downward Leaders

THERE has been a growing interest lately in locating cloud

MICROPHYSICS COMPLEXITY EFFECTS ON STORM EVOLUTION AND ELECTRIFICATION

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 115, D11102, doi: /2009jd012604, 2010

Authors and Affiliations Kristopher Bedka 1, Cecilia Wang 1, Ryan Rogers 2, Larry Carey 2, Wayne Feltz 3, and Jan Kanak 4

SIXTH GRADE WEATHER 1 WEEK LESSON PLANS AND ACTIVITIES

8B.6 A DETAILED ANALYSIS OF SPC HIGH RISK OUTLOOKS,

ABOUT SENSITIVITY OF CLOUD-TO-GROUND LIGHTNING ACTIVITY TO SURFACE AIR TEMPERATURE CHANGES AT DIFFERENT TIME SCALES IN THE CITY OF SAO PAULO, BRAZIL

CHAPTER 3 AVI TRAVEL TIME DATA COLLECTION

Tropical Cloud Population

Measurements of Compact Intracloud Discharges with a Dense Array of Ground-Based Sensors

Weather Radar Basics

WEATHER THEORY Temperature, Pressure And Moisture

Presentation. Lightning Protection practices in Bangladesh :An overview

Practice final for Basic Physics spring 2005 answers on the last page Name: Date:

Storms Short Study Guide

A Romanian Forecast and Training Experience, August 2002

Safe Work Procedure. Purpose To ensure all employees are educated and prepared in the event of a lightning storm.

How To Build A Field Mill

P3.8 INTEGRATING A DOPPLER SODAR WITH NUCLEAR POWER PLANT METEOROLOGICAL DATA. Thomas E. Bellinger

Climate Extremes Research: Recent Findings and New Direc8ons

DATA STORAGE SYSTEM FOR LS7001/LS8000 LIGHTNING DETECTION NETWORKS

SITE SPECIFIC WEATHER ANALYSIS REPORT

Estimating Firn Emissivity, from 1994 to1998, at the Ski Hi Automatic Weather Station on the West Antarctic Ice Sheet Using Passive Microwave Data

The Canadian Lightning Detection Network Novel Approaches for Performance Measurement and Network Management

Temporal variation in snow cover over sea ice in Antarctica using AMSR-E data product

ROAD WEATHER AND WINTER MAINTENANCE

THE LIGHTNING PROTECTION INTERNATIONAL STANDARD

SANS : 2008 CODE OF PRACTICE THE WIRING OF PREMISES Part 1 : Low Voltage Installation

WEATHER RADAR VELOCITY FIELD CONFIGURATIONS ASSOCIATED WITH SEVERE WEATHER SITUATIONS THAT OCCUR IN SOUTH-EASTERN ROMANIA

Ongoing Development and Testing of Generalized Cloud Analysis Package within GSI for Initializing Rapid Refresh

Environmental Monitoring: Guide to Selecting Wireless Communication Solutions

In a majority of ice-crystal icing engine events, convective weather occurs in a very warm, moist, tropical-like environment. aero quarterly qtr_01 10

Project Title: Quantifying Uncertainties of High-Resolution WRF Modeling on Downslope Wind Forecasts in the Las Vegas Valley

Regional Forecast Center Timişoara 15. Gh. Adam St., Timişoara, Romania,

Chapter 3: Weather Map. Weather Maps. The Station Model. Weather Map on 7/7/2005 4/29/2011

Kresimir Bakic, CIGRE & ELES, Slovenia

Wind Resource Assessment for BETHEL, ALASKA Date last modified: 2/21/2006 Compiled by: Mia Devine

Air Coverage Test with SCANTER 4002 at Horns Rev Wind Farm I and II

General GPS Antenna Information APPLICATION NOTE

Thunderstorm warning alarms methodology using electric field mills and lightning location networks in mountainous regions

A Real Case Study of Using Cloud Analysis in Grid-point Statistical Interpolation Analysis and Advanced Research WRF Forecast System

U.S. Army Training and Doctrine Command. Guide for Lightning Protective Measures for Personnel. January 2002

Lightning-caused Deaths and Injuries Related to Agriculture

A comparison of radio direction-finding technologies. Paul Denisowski, Applications Engineer Rohde & Schwarz

THE SÃO PAULO LIGHTNING MAPPING ARRAY (SPLMA): PROSPECTS FOR GOES-R GLM AND CHUVA

IBM Big Green Innovations Environmental R&D and Services

COMPARISON OF VOLCANO ERUPTIONS IN KAMCHATKA WITH COORDINATES OF ATMOSPHERICS

German Test Station for Remote Wind Sensing Devices

Communication Links for Offshore Platforms. A User s Guide to Troposcatter Communications

STATUS OF THE AUTOMATIC OBSERVATION ON AERODROME AND ONGOING IMPROVEMENTS IN FRANCE

Fixed Wireless Fact Sheet

Physics: Principles and Applications, 6e Giancoli Chapter 2 Describing Motion: Kinematics in One Dimension

THE MINARET INCIDENTS AT PUTRAJAYA

Finnish Meteorological Institute s Services for Insurance Sector

Urban heat islands and summertime convective thunderstorms in Atlanta: three case studies

Climatology and Monitoring of Dust and Sand Storms in the Arabian Peninsula

THERE is a distinct class of lightning discharges that are referred

Characteristics of Lightning Discharges and Electric Structure of Thunderstorm

The data can be transmitted through a variety of different communications platforms such as:

Prof. Dr. Zahid A. Siddiqi, UET, Lahore WIND LOAD

barometer 1 of 5 For the complete encyclopedic entry with media resources, visit:

Chapter 3: Weather Map. Station Model and Weather Maps Pressure as a Vertical Coordinate Constant Pressure Maps Cross Sections

Wind resources map of Spain at mesoscale. Methodology and validation

Validation of SAFIR/FLITS lightning detection system with railway-damage reports

Amplification of the Radiation from Two Collocated Cellular System Antennas by the Ground Wave of an AM Broadcast Station

ADVENTURE ISLAND LIGHTNING INCIDENT AN IN-DEPTH REPORT ON THE DEADLY FAILURE OF AN EARLY STREAMER EMISSION LIGHTNING ROD

Severe Weather Information

Physics Section 3.2 Free Fall

Thomas Fiolleau Rémy Roca Frederico Carlos Angelis Nicolas Viltard.

Development of an Integrated Data Product for Hawaii Climate

Static electricity measurements for lightning warnings - an exploration

Summary Report on National and Regional Projects set-up in Russian Federation to integrate different Ground-based Observing Systems

SUSPENSION OF AN INTERCOLLEGIATE FOOTBALL GAME DUE TO LIGHTNING

ATMS 310 Jet Streams

6.4 THE SIERRA ROTORS PROJECT, OBSERVATIONS OF MOUNTAIN WAVES. William O. J. Brown 1 *, Stephen A. Cohn 1, Vanda Grubiši 2, and Brian Billings 2

Harvard wet deposition scheme for GMI

C B A T 3 T 2 T What is the magnitude of the force T 1? A) 37.5 N B) 75.0 N C) 113 N D) 157 N E) 192 N

COMPARISON OF LIDARS, GERMAN TEST STATION FOR REMOTE WIND SENSING DEVICES

USING SIMULATED WIND DATA FROM A MESOSCALE MODEL IN MCP. M. Taylor J. Freedman K. Waight M. Brower

Agenda Northeast Regional Operational Workshop XIV Albany, New York Tuesday, December 10, 2013

Validation n 2 of the Wind Data Generator (WDG) software performance. Comparison with measured mast data - Flat site in Northern France

Monitoring of Natural Hazards With the ImpactSentinel Alarming System An Intelligent Solution

Weather Merit Badge Workbook

WxFUSION. A. Tafferner. Folie 1. iport Meeting DLR OP

ELECTROMAGNETIC FIELDS AND PUBLIC HEALTH HEALTH AND SAFETY GUIDELINES #1

Coexistence of Automatic Weather Station (AWS) System in harsh environmental conditions at National Meteorological Centre (NMC) Colombo, Sri Lanka.

CASE STUDY LANDSLIDE MONITORING

UAV Road Surface Monitoring and Traffic Information

Financing Community Wind

Transcription:

FIELD PROJECT UPLIGHTS Upward Lightning Triggering Study by Tom A. Warner, John H. Helsdon Jr., Matthew J. Bunkers, Marcelo M. F. Saba, and Richard E. Orville The Upward Lightning Triggering Study (UP- LIGHTS) is a three-year National Science Foundation-funded field project that is taking place in Rapid City, South Dakota, from April 2012 to September 2014. Since 2004, GPS timesynchronized optical observations of upward lightning have been conducted from 10 towers in Rapid City. These towers range in height from 91 to 191 m and are situated along an elevated ridge line that runs north south through Rapid City (Table 1, Figs. 1 2). The height of the ridge reaches approximately 180 m above the surrounding terrain. The natural conditions around Rapid City (open-sky country, low-height urban area, and tower locations) are favorable for optical observations of multiple towers. The working hypothesis of UPLIGHTS is that upward leaders from the towers are primarily triggered by 1) the approach of horizontally propagating negative stepped leaders associated with either intracloud AFFILIATIONS: Warner and Helsdon Jr. Department of Atmospheric Sciences, South Dakota School of Mines and Technology, Rapid City, South Dakota; Bunkers NOAA/ National Weather Service, Rapid City, South Dakota; Saba National Institute for Space Research, S. José dos Campos, Brazil; Orville Department of Atmospheric Sciences, NOAA/NWS Cooperative Institute for Applied Meteorological Studies, Texas A&M University, College Station, Texas CORRESPONDING AUTHOR: John H. Helsdon Jr., Department of Atmospheric Sciences, South Dakota School of Mines and Technology, 501 East St. Joseph, Rapid City, SD 57701 E-mail: John.Helsdon@sdsmt.edu DOI:10.1175/BAMS-D-11-00252.1 2013 American Meteorological Society Fig. 1. View of six of the 10 towers located in Rapid City, SD. View is looking east-northeast from West Rapid City. Towers are located along a ridgeline that runs north south through Rapid City (see Fig. 2). Rolling plains are visible beyond the ridge. development or following a positive cloud-to-ground (+CG) return stroke, and/or 2) a +CG return stroke as it propagates through a previously formed leader network that is near the towers, and that specific storm types (discussed below) are favorable for the occurrence of upward lightning. This short paper describes the background and observational elements for UPLIGHTS. GENERAL BACKGROUND. Observations of upward lightning from tall objects have been reported since 1939. Interest in this subject has grown in recent years, partially because of the rapid expansion of wind-power generation. Impulse corona observed at the tips of towers concurrent with distant flashes led investigators in the 1960s to speculate that these distant flashes may trigger upward leaders. Even though this notion was raised four decades ago, the initiation of upward lightning (e.g., Figs. 3 and 4) is an issue that has yet to be fully investigated. Reports from recent field observations have begun to address the formation of upward lightning initiation and suggest various initiation mechanisms. For example, as part of a sprite research effort, two instances of negative cloud-to-ground ( CG) strokes were recorded by the National Light- AMERICAN METEOROLOGICAL SOCIETY MAY 2013 631

Table 1. Towers located along a ridge that runs north south through Rapid City, SD. Tower #/Name Type Height AGL (m) Height MSL (m) ning Detection Network (NLDN) at the location of a 457-m tall tower, and in each case, these strokes occurred within 1 second of a preceding +CG flash that was detected within 20 km of the tower. Subsequent analysis of 405 CG flashes that followed within 1 second and within 40 km of preceding +CG Upward leaders observed (2004 10) 1 / KNBN Guyed 163.1 1,309.1 34 2 / Cellular Inc. Free-standing 91.1 1,215.2 0 3 / KCLO Guyed 121.6 1,273.6 3 4 / KOTA-N Guyed 184.7 1,341.4 40 5 / KOTA-S Guyed 175.3 1,330.8 1 6 / KEVN Guyed 190.8 1,323.4 26 7 / SDPB Guyed 143.3 1,312.2 13 8 / Rushmore Guyed 153.5 1,323.0 6 9 / WWC Free- standing 115.8 1,260.9 3 10 / Haugo Guy wire 154.4 1,306.3 16 flashes revealed that CGs that follow +CGs do not show a statistically enhanced probability of striking structures less than 400 m tall, but do show a more than threefold enhanced probability of striking tall structures greater than 400 m. More recent research published by Wang and colleagues in 2008 described two types of the electric field changes associated with upward lightning from a windmill and its lightning-protection tower. The first type of change results from a self-initiated upward positive leader from a tall object (i.e., not triggered by preceding flash activity). The second type is associated with a lightning discharge occurring in clouds followed by an opposite change resulting from the development of an upward positive leader, which supports the notion that a preceding discharge rapidly changes the ambient electric field over a tall object and triggers an upward leader from that object. Fig. 2. Digital elevation maps showing (a) the location of 10 towers on a ridge that runs north south through Rapid City, SD, and (b) clustered locations of Towers 2 6. RELEVANT WORK PRE- CEDING UPLIGHTS. From 2004 to 2010, 81 upward lightning flashes were recorded (11 12 yr 1 ) from 9 of the 10 Rapid City towers, with 32 of those observed with high-speed cameras at recording rates between 1,000 and 67,000 images per second (ips). Figure 3 shows some of the upward flashes captured by the high-speed cameras. In all but one of the 81 cases, there was visible flash activity immediately prior to the initiation of an upward leader, suggesting the upward leaders were triggered by the preceding activity (i.e., lightning-triggered upward lightning). In 69% of 632 MAY 2013

Fig. 3. (a) High-speed video image of a nonbranched upward positive leader. (b) Time-integrated high-speed video image of branched upward positive leaders from four towers. (c) High-speed video image showing three upward positive leaders developing following a nearby +CG return stroke. (d) Time-integrated high-speed video image of a branched upward positive leader. the cases, visible brightening due to in-cloud leader development propagated toward the towers before an upward leader initiated. Comparison of the optical observations with NLDN data showed there was a preceding NLDN-indicated flash within 0.5 s and within 50 km of the towers for 83% of the cases. Of the remaining 17% (14/81), all but one had visually observed preceding flash activity, but no associated preceding NLDN-indicated event. Three upward flashes that occurred within a 20-min period were all triggered by a preceding +CG flash. In each case, in-cloud brightening following the +CG propagated toward the towers prior to upward leader initiation. Supporting electric-field data suggested that the approaching in-cloud brightening was horizontally propagating negative-leader development occurring during the +CG continuing current, and that the electric-field change created by the approaching negative leaders caused the initiation of upward positive leaders from the towers. Figure 4 shows a digital still image of an upward leader that developed from Tower 1, 129±17 ms after a +CG return stroke occurred 15.3 km away. Video showed in-cloud brightening propagating from the return stroke location over the tower prior to the initiation of the upward leader. Although none of the 10 towers had current sensing instrumentation, it is likely that a large majority of the upward flashes were upward negative lightning (i.e., upward-propagating positive leaders). Support AMERICAN METEOROLOGICAL SOCIETY MAY 2013 633

component (e.g., return stroke, horizontal negative leader development) responsible for this triggering, the following questions will be addressed: Fig. 4. Digital still image of a +CG flash that triggered a subsequent upward leader from a television broadcast tower. for this comes in the NLDN s recording of CG and negative cloud flash events ( IC) at the tower locations subsequent to initial upward leader development for 36/81 (44%) of the upward flashes. Upward leaders initiated from more than one tower during 46% (37/81) of the upward flashes. Analysis of one multiple case suggested that upward positive leaders developed nearly simultaneously from four towers after being triggered by a nearby downward +CG flash. JUSTIFICATION AND OBJECTIVES. There are a number of reasons why it is important to understand how upward lightning is triggered by nearby flashes and to quantify the types and components of flashes responsible for this triggering. With the increasing number of tall structures being built, there will be a corresponding increase in the number of upward lightning flashes from these structures. Quantifying the contribution of upward lightning to the total flash production in the vicinity of a tower will show how anthropogenic activity likely is increasing the total number of lightning flashes to ground in the vicinity of tall towers and to what scale. A better understanding of how nearby flashes trigger upward lightning will help to quantify the increased rates of lightning events and the increased exposure of these objects to lightning current. It may also result in methods to reduce or eliminate the initiation of upward leaders from tall structures or in improved lightning protection standards, since existing protection standards are based on attachment of downward, CG lightning. In order to understand the conditions for triggering upward leaders from tall objects by nearby lightning flashes and to determine a quantifiable flash What types of flashes (intracloud or CG) and their properties (spatial development relative to the towers, electrical potential, polarity, and current) affect or are critical for the initiation of upward leaders from tall towers? What types of storms (e.g., mesoscale convective systems, supercells, multicells), region of storms (e.g., anvil region, convective core, trailing stratiform area), and storm development stage (e.g., mature, dissipating) are present when upward lightning occurs? What conditions are required for triggering upward leaders on multiple tall objects during the same flash? OBSERVATIONS DURING UPLIGHTS. As in the past, optical observations will be obtained using GPS time-synchronized high-speed cameras operating from 1,000 to 100,000 ips, along with standardspeed video and digital still-image camera systems. The electric field environment will be sampled using sensors measuring the ambient electric field (electricfield meter) and electric-field change (fast and slow antennae). Furthermore, two VHF interferometers will be used to locate three-dimensional leader development. These electromagnetic data will be time-correlated with optical observations along with NLDN data, which will provide flash type, timing, location, polarity, and peak current for those flashes detected by the network. Meteorological data will allow quantification of storm attributes and meteorological conditions present when upward lightning occurs. These data will include radar and satellite information that shows storm coverage, intensity, and type, along with thermodynamic sounding and meteorological surface parameters. RELEVANCE OF UPLIGHTS. UPLIGHTS and the resulting findings may benefit society by increasing understanding of, and safety from, upward lightning from tall buildings, which may contain people, and tall structures that provide services to society such as telecommunications and energy production (in the case of wind turbines). Since extant lightning-protection standards are based on downward lightning, this research may 634 MAY 2013

identify unique hazards associated with upward lightning that presently are not known or are not being addressed by the standards. This research may allow for the quantification of upward lightning as a percentage of total lightning and determination of whether there is a meaningful increase in upward lightning by anthropogenic activity. It will help visualization of all types of lightning and therefore improve safety through public education and outreach. The research may result in improved detection of upward lightning by lightning location systems. These improvements would directly benefit lightning location system data users such as power companies, fire managers, and meteorologists, and therefore improve the services they provide to society. Furthermore, high-speed video segments have already been provided to National Weather Service forecast offices for public outreach and education. This collaboration will continue during this proposed research project. Interested readers can see high-speed videos at www.ztresearch.com. ACKNOWLEDGMENTS. This study is funded by the National Science Foundation AGS-1048103 and ATM 0813672, and we thank Bradley F. Smull for his interest and support. We also thank Vaisala, Inc. for the loan of the interferometers. FOR FURTHER READING Berger, K., 1967: Novel observations on lightning discharges: Results of research on Mount San Salvatore. J. Franklin Inst., 283, 478 525. McEachron, K. B., 1939: Lightning to the Empire State Building. J. Franklin Inst., 227, 149 217. Rakov, V. A., and M. A. Uman, 2003: Lightning: Physics and Effects. Cambridge University Press, 687 pp. Stanley, M. A., and M. J. Heavner, 2003: Tall structure lightning induced by sprite-producing discharges. Proc. 12th Int. Conf. on Atmospheric Electricity, Versailles, France, Int. Comm. on Atmos. Electr. Wang, D., N. Takagi, T. Watanabe, H. Sakurano, and M. Hashimoto, 2008: Observed characteristics of upward leaders that are initiated from a windmill and its lightning protection tower. Geophys. Res. Lett., 35, L02803, doi:10.1029/2007gl032136. Warner, T. A., 2012: Observations of simultaneous upward lightning leaders from multiple tall structures. Atmos. Res., 117, 45 54, doi:10.1016/j. atmosres.2011.07.004., K. L. Cummins, and R. E. Orville, 2012: Upward lightning observations from towers in Rapid City, South Dakota and comparison with National Lightning Detection Network Data, 2004 2010. J. Geophys. Res., 117, doi:10.1029/2012jd018346. AMERICAN METEOROLOGICAL SOCIETY MAY 2013 635