Experiment 6 Coffee-cup Calorimetry



Similar documents
Transfer of heat energy often occurs during chemical reactions. A reaction

HEAT OF FORMATION OF AMMONIUM NITRATE

Experiment 2 Kinetics II Concentration-Time Relationships and Activation Energy

Experiment 3 Limiting Reactants

DETERMINING THE ENTHALPY OF FORMATION OF CaCO 3

Thermochemistry: Calorimetry and Hess s Law

PREPARATION FOR CHEMISTRY LAB: COMBUSTION

ENTHALPY CHANGES FOR A CHEMICAL REACTION scaling a rxn up or down (proportionality) quantity 1 from rxn heat 1 from Δ r H. = 32.

Experiment 6 Titration II Acid Dissociation Constant

Thermochemistry I: Endothermic & Exothermic Reactions

Neutralization Reactions. Evaluation copy

thermometer as simple as a styrofoam cup and a thermometer. In a calorimeter the reactants are placed into the

Pre-Lab Notebook Content: Your notebook should include the title, date, purpose, procedure; data tables.

6 H2O + 6 CO 2 (g) + energy

Experiment 7: Titration of an Antacid

DETERMINATION OF PHOSPHORIC ACID CONTENT IN SOFT DRINKS

Mixing Warm and Cold Water

Acid Base Titrations

Exp 13 Volumetric Analysis: Acid-Base titration

Experiment 9 Electrochemistry I Galvanic Cell

Determination of a Chemical Formula

Apparatus error for each piece of equipment = 100 x margin of error quantity measured

Ascorbic Acid Titration of Vitamin C Tablets This lab will be completed individually! Make sure you come prepared!

Electrical Conductivity of Aqueous Solutions

Solubility Product Constants

Where the exp subscripts refer to the experimental temperature and pressure acquired in the laboratory.

CHM 130LL: ph, Buffers, and Indicators

Bomb Calorimetry. Example 4. Energy and Enthalpy

Reaction of Magnesium with Hydrochloric Acid (Gas Laws) Chemicals Needed:

ph units constitute a scale which allows scientists to determine the acid or base content of a substance or solution. The ph 0

Determination of the Amount of Acid Neutralized by an Antacid Tablet Using Back Titration

TITRATION CURVES, INDICATORS, AND ACID DISSOCIATION CONSTANTS

To determine the equivalence points of two titrations from plots of ph versus ml of titrant added.

Chemistry 112 Laboratory Experiment 6: The Reaction of Aluminum and Zinc with Hydrochloric Acid

Physical Properties of a Pure Substance, Water

Experiment 8: Chemical Moles: Converting Baking Soda to Table Salt

CSUS Department of Chemistry Experiment 8 Chem.1A

Unit 5 Practice Test. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question.

Volumetric Analysis. Lecture 5 Experiment 9 in Beran page 109 Prelab = Page 115

ACID-BASE TITRATIONS: DETERMINATION OF CARBONATE BY TITRATION WITH HYDROCHLORIC ACID BACKGROUND

Coordination Compounds with Copper (II) Prelab (Week 2)

EXPERIMENT 12 A SOLUBILITY PRODUCT CONSTANT

stoichiometry = the numerical relationships between chemical amounts in a reaction.

Appendix C. Vernier Tutorial

CHEMICAL REACTIONS OF COPPER AND PERCENT YIELD KEY

Experiment 1: Colligative Properties

Mixtures and Pure Substances

Experiment 17: Potentiometric Titration

Evaluation copy. Energy Content of Foods. computer OBJECTIVES MATERIALS

Determining the Quantity of Iron in a Vitamin Tablet. Evaluation copy

Energy and Chemical Reactions. Characterizing Energy:

Endothermic and Exothermic Reactions. Evaluation copy. Mg(s) + 2 HCl(aq) H 2 (g) + MgCl 2 (aq)

COMMON LABORATORY APPARATUS

Determining the Identity of an Unknown Weak Acid

SEPARATION OF A MIXTURE OF SUBSTANCES LAB

Target Mole Lab. Mole Relationships and the Balanced Equation. For each student group Hydrochloric acid solution, HCl, 3 M, 30 ml

experiment5 Understanding and applying the concept of limiting reagents. Learning how to perform a vacuum filtration.

Evaluation copy. Titration of a Diprotic Acid: Identifying an Unknown. Computer

The Determination of an Equilibrium Constant

Experiment 13: Determination of Molecular Weight by Freezing Point Depression

SOLUBILITY OF A SALT IN WATER AT VARIOUS TEMPERATURES LAB

ph: Measurement and Uses

EXPERIMENT 7 Reaction Stoichiometry and Percent Yield

Isolation of Caffeine from Tea

Neutralizing an Acid and a Base

Worksheet # How much heat is released when 143 g of ice is cooled from 14 C to 75 C, if the specific heat capacity of ice is J/(g C).

STANDARDIZATION OF A SODIUM HYDROXIDE SOLUTION EXPERIMENT 14

Chemistry 212 VAPOR PRESSURE OF WATER LEARNING OBJECTIVES

Acid Dissociation Constants and the Titration of a Weak Acid

UNIT 1 THERMOCHEMISTRY

EXPERIMENT 2 THE HYDROLYSIS OF t-butyl CHLORIDE. PURPOSE: To verify a proposed mechanism for the hydrolysis of t-butyl Chloride.

18 Conductometric Titration

Enzyme Action: Testing Catalase Activity

Hands-On Labs SM-1 Lab Manual

Experiment 13H THE REACTION OF RED FOOD COLOR WITH BLEACH 1

Experiment 8 Synthesis of Aspirin

CHM220 Nucleophilic Substitution Lab. Studying S N 1 and S N 2 Reactions: Nucloephilic Substitution at Saturated Carbon*

Determination of Molar Mass by Boiling Point Elevation of Urea Solution

DETERMINING THE MOLAR MASS OF CARBON DIOXIDE

The Determination of an Equilibrium Constant

Recovery of Elemental Copper from Copper (II) Nitrate

The Molar Mass of a Gas

Properties of Acids and Bases

15. Acid-Base Titration. Discover the concentration of an unknown acid solution using acid-base titration.

Determination of the Mass Percentage of Copper in a Penny. Introduction

Preparation of an Alum

Molar Mass and the Ideal Gas Law Prelab

To measure the solubility of a salt in water over a range of temperatures and to construct a graph representing the salt solubility.

Experiment 12- Classification of Matter Experiment

Experiment 12E LIQUID-VAPOR EQUILIBRIUM OF WATER 1

SUGGESTION ANSWER SCHEME CHAPTER 8: THERMOCHEMISTRY. 1 (a) Use the data in the table below to answer the following questions:

Adiabatic Bomb Calorimetry

EXPERIMENT 4 THE DETERMINATION OF THE CALORIC CONTENT OF A CASHEW NUT

Determination of Citric Acid in Powdered Drink Mixes

EXPERIMENT 10 Chemistry 110. Solutions Part 2 ACIDS, BASES, AND ELECTROLYTES

AN EXPERIMENT IN ALCHEMY: COPPER TO SILVER TO GOLD 2005, 2000, 1996 by David A. Katz. All rights reserved

Heat of Solution. Purpose To calculate the heat of solution for sodium hydroxide (NaOH) and ammonium nitrate (NH 4 NO 3 )

Stoichiometry Limiting Reagent Laboratory. Chemistry 118 Laboratory University of Massachusetts, Boston

CHEM 36 General Chemistry EXAM #1 February 13, 2002

Science 20. Unit A: Chemical Change. Assignment Booklet A1

Transcription:

6-1 Experiment 6 Coffee-cup Calorimetry Introduction: Chemical reactions involve the release or consumption of energy, usually in the form of heat. Heat is measured in the energy units, Joules (J), defined as 1 kg m 2 /s 2. Another common heat unit is the calorie (cal). It is defined as the amount of heat required to raise the temperature of one gram of water by one degree Celsius, at a temperature of 4 C. One calorie is equal to 4.184 J. 1kg m J = s 1 2 2 and 1cal = 4.184 J Reactions that give off energy as heat are called exothermic heat exits the system, while reactions that absorb heat from their surroundings as they occur are called endothermic heat goes into the reaction system. Calorimetry is the study of heat transferred in a chemical reaction, and a calorimeter is the tool used to measure this heat. It is an insulated apparatus containing a liquid reservoir in which the reaction occurs. The reservoir s heat capacity relates the temperature change, ΔT, in the reservoir due to heat transferred into or out of it, q res, as shown in Equation (1). q res = (Heat capacity) ΔT (1) Heat capacity therefore has units of J/ C or J/K. Note that either o C or K can be used for the change in temperature, since the difference in a degree is the same for both scales. Thus if the heat capacity of the reservoir is known, q res can be calculated from the difference in the temperature of the reservoir measured before (T initial ) and after (T final ) the reaction occurs. ΔT = T final - T initial (2) The specific heat capacity (or just specific heat) is the heat capacity per gram of the reservoir liquid and is given the symbol, C. Thus the units for C are, J/g C or J/g K. Since the heat capacity of a given mass of liquid can be written as C (mass), Equation (1) becomes: q res = C mass ΔT (3) The specific heat of water has the relatively high value of 4.184 J/g K. The reservoir in a calorimeter used to study reactions occurring in water will be de-ionized water or a dilute aqueous solution, which has virtually the same value of C. A simple calorimeter can be made from two Styrofoam coffee cups, with one inside the other, and an insulating cover. Placing the cups in a 400 ml empty beaker to elevate the calorimeter off the counter top increases insulation from the outside environment. The

6-2 Vernier Temperature Probe is fitted through a rubber stopper and then inside a small hole at the top to measure the temperature of the reservoir. Figure 1 The inner cup is filled with a known volume of liquid, which serves as the reservoir. This volume is converted into mass by assuming that the reservoirs are either dilute aqueous solutions or pure DI water with a density of 1.00 g/ml. For example, 1.00 g 50.0 ml H2 O = 50.0 g H2O ml Knowing the mass and specific heat of the reservoir, and the measured temperature change, the heat transferred in to or out of the reservoir can be calculated using Equation (3). Note that the heat transferred by the reaction will be opposite in sign to the heat transferred into or out of the calorimeter reservoir. Heat given off during a reaction is absorbed by the reservoir, and heat absorbed in a reaction is given off by the reservoir. The heat of any chemical reaction measured with the calorimeter is therefore: q rxn = q res (4) In this experiment three processes involving heat transfer will be studied. Heat of Neutralization The transfer of heat that results from an acid/base neutralization reaction carried out at constant pressure is called the enthalpy of neutralization, ΔH neutralization, and is expressed in units of kj/mol. The reaction to be studied is: NaOH(aq) + HCl(aq) H 2 O(l) + NaCl(aq) As with any chemical reaction, the extent of the reaction is dependent on the amount of limiting reactant present. Given the moles of limiting reactant undergoing reaction and the

6-3 measured heat of the reaction, ΔH neutralization can be determined as shown below, keeping in mind that q rxn = q res. qrxn Δ H neutralization = moles reacted (5) Enthalpy of Solution of Salts When a salt dissolves in water at constant pressure, there is a transfer of heat associated with the reaction called the enthalpy of solution, ΔH solution. It is expressed in units of kj/mol of salt. qrxn Δ H solution = moles of salt (6) The solution process can be written as follows: NH 4 NO 3 (s) NH 4 + (aq) + NO 3 (aq) Heat may be given off or absorbed by the salt as it dissolves as ions in water. Specific Heat of a Metal You will find the specific heat of a metal by equating the heat lost by the metal (at high temperature) to the heat gained by the water reservoir at a lower temperature when they are mixed in the calorimeter. The metal must first be heated and its temperature measured, T initial (metal). The temperature of the water reservoir is measured prior to, T initial (water), and after, T final (water), adding the solid to it. The heat transferred to the water is the opposite sign of the heat lost by the metal. q metal = q water The formula for q given by Equation (3) can then be substituted on each side of the equation to give: C metal mass metal ΔT metal = [ C water mass water ΔT water ] (7) Rearranging this equation to solve for the specific heat of the metal, results in an experimentally determined specific heat of the metal that can be compared to the actual value of the specific heat of the metal. C metal - ( Cwater )(masswater )( ΔT = (mass )( ΔT ) metal metal water ) (8)

6-4 Pre-Lab Notebook: Provide a title, purpose, list of chemical reactions (neutralization and both salt dissolutions), procedure, and table of reagents (as shown below) in your notebook before coming to lab. Reagents FM Specific heat Hazards (J/g K) NaOH HCl MgSO 4 NH 4 NO 3 Cu Cr Pb Equipment: Vernier LabPro 50.0 ml Graduated cylinder TI -84 calculator 400 ml Beaker, with boiling chips Vernier Temperature Probe Large test tube Coffee cup calorimeter Hot plate 100 ml Beaker Test tube holder In-Lab Experimental Procedure: Note: Work in pairs. Part A: Heat of Neutralization 1. Set up the calorimeter in a 400-mL beaker as shown in Figure 1. Measure 50 ml of 1.0 M NaOH using a graduated cylinder, add it to the calorimeter and record the exact volume and molarity of the solution (as indicated on the bottle containing the NaOH solution) in your laboratory notebook. 2. Measure 50 ml of 1.1 M HCl using a graduated cylinder and place it in a 100 ml beaker, NOT in the calorimeter. Record the exact volume and molarity of this solution. Note that the molarity and volumes of both reactants must be known in order to determine which is the limiting reactant. 3. Set up the Vernier equipment as directed in the first section of the Vernier tutorial. Connect the temperature probe to channel 1. Use the Vernier temperature probe to measure and record the temperature of both solutions in your notebook. First set up the data collection mode. Select 1:SETUP from the main screen. To select MODE, press or until the cursor is to the left of MODE and press ENTER. Select TIME GRAPH from the SELECT MODE menu. Select CHANGE TIME SETTINGS. Type 1 for the time between samples in seconds, and press ENTER. Type 10 for the number of samples, and press ENTER. Select OK twice to return to the Main screen. Insert the temperature probe into the solution and select START to begin the 10 second measurement. A few seconds after the end of the measurement, the temperature curve will appear. Scanning the curve allows you to determine that the temperature of the solution is constant and

6-5 gives you a temperature value (the value at the end of the scan) with 3 places past the decimal point to record in your notebook. Press ENTER and select 2:START to repeat the process for the other solution. You will use the average temperature of the two solutions as the initial temperature of the reservoir of the calorimeter, T initial. 4. Select 1:SETUP from the main screen. Select MODE and then select TIME GRAPH. Select CHANGE TIME SETTINGS. Type 3 for the time between samples in seconds, and press ENTER. Type 60 for the number of samples, and press ENTER. Select 1:OK twice to return to the Main screen. 5. Slide the temperature probe through the holes of the stopper and insulating cover gently, making sure not to poke holes in the Styrofoam and keeping the tip of the probe about 3 cm from the bottom of the cup. 6. Hit 2:START and wait 15 seconds before mixing the reagents. Then, keeping the insulating cover open at a slant with the temperature probe still in contact with the NaOH solution in the calorimeter add the HCl solution to the calorimeter. Immediately secure the insulating cover and carefully (so as not to cause spillage!) swirl the calorimeter for about 30 seconds to mix the solutions. 7. Listen for the LabPro beep to signify the end of data collection. After the temperature curve appears, scan the curve to determine and record the final temperature, T final, of the reservoir. This is the temperature reading which corresponds to the largest change from the initial temperature. 8. Dispose of the solution down the sink and rinse the calorimeter with tap water and then DI water. Press ENTER to return to the Datamate main screen. NOTE: The net ionic equation for this neutralization reaction is: H + + OH H 2 O(l). In the Post-Lab, you will calculate the H neutralization in kj/mol for this net ionic reaction from the H f o data in the appendix in your textbook and compare it to your experimental value. Part B: Heat of Solution of Two Salts: NH 4 NO 3 and MgSO 4 1. Weigh out approximately 2 grams of NH 4 NO 3 and record the exact amount. Measure 50 ml of de-ionized water and place it in the clean calorimeter, after recording the exact volume. Measure the initial temperature of the water as you did in Part A, and record this to 3 decimal places in your laboratory notebook. Note that in calculating the mass of the reservoir needed for calculation of q res, you must add the mass of the salt to the mass of water. 2. Set the Datamate program to the time graph mode with the time between samples set at 3 and number of samples set at 60. Before going on to the next step make sure the probe is in contact with the reservoir, and that you re back on the main screen ready to hit the START button. 3. Hit START to begin collecting data. Quickly add the salt to the calorimeter, replace the lid, and begin swirling while holding the temperature probe in the solution, keeping the tip of the probe about 3 cm from the bottom of the cup. Continue to stir for at least 1 minute to ensure that all the salt has dissolved and to avoid faulty temperature readings. 4. At the end of data collection, the temperature curve appears. Scan the curve to determine and record the final temperature, T final, of the reservoir. This is the temperature reading

6-6 which corresponds to the largest change from the initial temperature. Dispose of the solution down the sink and rinse the calorimeter with tap water and then DI water. Then. Clean the calorimeter and repeat this procedure with MgSO 4. Part C: Specific Heat of a Metal 1. Prepare a hot water bath by filling a 400 ml beaker with tap water, adding about 10 boiling chips to ensure smooth boiling, placing it on a hot plate, and bringing it to a boil. Measure about 20 grams of the metal assigned by your Instructor. Record the exact mass and identity of the metal used in your laboratory notebook. Measure 50 ml of deionized water and place it in the clean calorimeter. Record the exact volume in your laboratory notebook 2. Transfer the metal to a large test tube and place it in the boiling water bath to raise the metal temperature to about that of the bath. This should take about fifteen minutes. With the Vernier set up on the main screen of the DATAMATE program, measure and record the temperature of the metal by placing the temperature probe into the test tube in contact with the metal and wait for the temperature reading to stabilize (less than 1 C change in two minutes). This will serve as the initial temperature of the metal, T initial (metal). Keep the metal in the test tube in the hot water bath until just before mixing. 3. Cool the temperature probe to room temperature by placing it in a cold water bath and then measure and record the initial temperature of the water, T initial (water), in the calorimeter, again using the reading on the main screen. 4. Set up the DATAMATE program in time graph mode with the time between samples set at 3 and number of samples set at 60. Before going on to the next step make sure the calculator is in the correct mode, the probe is in contact with the reservoir with the tip at least three cm from the bottom, and that you re back on the main screen ready to hit the 2:START button. 5. Hit START to begin collecting data in the calculator. Using a test tube holder, carefully remove the hot test tube containing the metal from the bath. Quickly, dry the outside of the test tube and pour the metal out of the test tube into the calorimeter. Replace the lid and immediately begin swirling the calorimeter contents. 6. At the end of data collection the temperature curve appears. Scan the curve to determine and record the final temperature, T final, of both the reservoir and the metal. This is the temperature reading which corresponds to the largest change from the initial temperature.

6-7 Lab Report Outline for Coffee Cup Calorimetry Graded Sections Percent of grade Pre Lab 5 In Lab 5 Report Part A: DATA: M(NaOH):, Volume(NaOH):, M(HCl):, Volume(HCl):, T initial (NaOH): ; T initial (HCl): ; T final (reservoir) 1. Calculate moles of NaOH and HCl and determine Limiting Reactant LR is 5 2. Calculate initial temperature of reservoir (average of NaOH and HCl solutions) 3 3. Calculate T of the reservoir 3 4. Calculate mass of reservoir (combined solutions!) from density and volume 5 5. Calculate heat transferred between reactants and reservoir, q reservoir = m C T 5 6. Calculate H neutralization in kj/mol from Equations (4) and (5) 5 7. Calculate H neutralization in kj/mol for the reaction (Note that all species are aqueous): NaOH(aq) + HCl(aq) H 2 O(l) + NaCl(aq) from the H o f data in the appendix in your textbook. 5 Part B: DATA: For each of the two salts: NH 4 NO 3 : Volume(H 2 O):, mass(salt):, T initial : ; T final : MgSO 4 : Volume(H 2 O):, mass(salt):, T initial : ; T final : 1. Calculate mass of H 2 O in reservoir from density and volume 2 2. Calculate mass of reservoir (= g H 2 O + g salt) 2 3. Calculate T of H 2 O reservoir 3 4. Calculate heat transferred to or from reservoir, q res = m res C T 3 5. Calculate H solution in kj/mol from Equations (4) and (6) 5 Repeat steps 1-5 for MgSO 4 15 Part C: DATA: Volume(H 2 O reservoir):, mass(metal):, T initial (metal): ; T initial (H 2 O reservoir): ; T final (H 2 O reservoir and metal): 1. Calculate mass of H 2 O in reservoir from density and volume 3 2. Calculate T(metal) and T(water) 6 3. Calculate C(metal) in J/g K Equation (8) and state C for (state which metal!) is 8 4. Calculate % error in C(metal) 2

6-8 Discussion of Parts A, B and C. (summary of results in parts A, B and C: are the salt solution processes endothermic or exothermic? comparison of experimental and calculated values of H neutralization in part A, sources of error) 10