EXPERIMENT 7 Reaction Stoichiometry and Percent Yield



Similar documents
EXPERIMENT 12: Empirical Formula of a Compound

CHEMICAL REACTIONS OF COPPER AND PERCENT YIELD KEY

EXPERIMENT 8: Activity Series (Single Displacement Reactions)

The Empirical Formula of a Compound

Honors Chemistry: Unit 6 Test Stoichiometry PRACTICE TEST ANSWER KEY Page 1. A chemical equation. (C-4.4)

Recovery of Elemental Copper from Copper (II) Nitrate

General Chemistry I (FC, 09-10) Lab #3: The Empirical Formula of a Compound. Introduction

Chemistry B11 Chapter 4 Chemical reactions

Determination of a Chemical Formula

experiment5 Understanding and applying the concept of limiting reagents. Learning how to perform a vacuum filtration.

Chemical Equations & Stoichiometry

Experiment 5. Chemical Reactions A + X AX AX A + X A + BX AX + B AZ + BX AX + BZ

Unit 6 The Mole Concept

Experiment 8 - Double Displacement Reactions

DETERMINING THE ENTHALPY OF FORMATION OF CaCO 3

Appendix D. Reaction Stoichiometry D.1 INTRODUCTION

Chem 1100 Chapter Three Study Guide Answers Outline I. Molar Mass and Moles A. Calculations of Molar Masses

Reaction of Magnesium with Hydrochloric Acid (Gas Laws) Chemicals Needed:

Moles. Moles. Moles. Moles. Balancing Eqns. Balancing. Balancing Eqns. Symbols Yields or Produces. Like a recipe:

Electrochemistry Voltaic Cells

Stoichiometry Limiting Reagent Laboratory. Chemistry 118 Laboratory University of Massachusetts, Boston

Electrochemistry - ANSWERS

Experiment 3 Limiting Reactants

Chapter 8 - Chemical Equations and Reactions

Santa Monica College Chemistry 11

IB Chemistry. DP Chemistry Review

Chemical Calculations: Formula Masses, Moles, and Chemical Equations

Stoichiometry Limiting Reagent Laboratory. Chemistry 118 Laboratory University of Massachusetts, Boston

How To Calculate Mass In Chemical Reactions

SCH 4C1 Unit 2 Problem Set Questions taken from Frank Mustoe et all, "Chemistry 11", McGraw-Hill Ryerson, 2001

Chapter 8: Chemical Equations and Reactions

Formulae, stoichiometry and the mole concept

SYNTHESIS AND ANALYSIS OF A COORDINATION COMPOUND OF COPPER

PREPARATION AND PROPERTIES OF A SOAP

Building Electrochemical Cells

Austin Peay State University Department of Chemistry CHEM Empirical Formula of a Compound

What s in a Mole? Molar Mass

General Chemistry Lab Experiment 6 Types of Chemical Reaction

IB Chemistry 1 Mole. One atom of C-12 has a mass of 12 amu. One mole of C-12 has a mass of 12 g. Grams we can use more easily.

1. What is the molecular formula of a compound with the empirical formula PO and a gram-molecular mass of 284 grams?

EXPERIMENT 15: Ideal Gas Law: Molecular Weight of a Vapor

SUPPLEMENTARY MATERIAL

Properties of Acids and Bases

Mixtures and Pure Substances

Electrochemical Half Cells and Reactions

2. The percent yield is the maximum amount of product that can be produced from the given amount of limiting reactant.

Chem 115 POGIL Worksheet - Week 4 Moles & Stoichiometry

Stoichiometry. Unit Outline

Calculating Atoms, Ions, or Molecules Using Moles

Chapter 3 Stoichiometry

2. DECOMPOSITION REACTION ( A couple have a heated argument and break up )

Oxidation States of Copper Two forms of copper oxide are found in nature, copper(i) oxide and copper(ii) oxide.

Transfer of heat energy often occurs during chemical reactions. A reaction

Balancing Chemical Equations Worksheet

Chapter 3: Stoichiometry

Chapter 5. Chemical Reactions and Equations. Introduction. Chapter 5 Topics. 5.1 What is a Chemical Reaction

PREPARATION FOR CHEMISTRY LAB: COMBUSTION

CHEM 110: CHAPTER 3: STOICHIOMETRY: CALCULATIONS WITH CHEMICAL FORMULAS AND EQUATIONS

stoichiometry = the numerical relationships between chemical amounts in a reaction.

Chapter 3. Chemical Reactions and Reaction Stoichiometry. Lecture Presentation. James F. Kirby Quinnipiac University Hamden, CT

Hands-On Labs SM-1 Lab Manual

EXPERIMENT 9 (Organic Chemistry II) Pahlavan - Cherif Synthesis of Aspirin - Esterification

Determination of the Empirical Formula of Magnesium Oxide

CHEMICAL REACTIONS. Chemistry 51 Chapter 6

SEPARATION OF A MIXTURE OF SUBSTANCES LAB

Unit 10A Stoichiometry Notes

CHEM 2423 Recrystallization of Benzoic Acid EXPERIMENT 4 - Purification - Recrystallization of Benzoic acid

Physical Changes and Chemical Reactions

Topic 4 National Chemistry Summary Notes. Formulae, Equations, Balancing Equations and The Mole

CP Chemistry Review for Stoichiometry Test

Experiment 12- Classification of Matter Experiment

Stoichiometry. Can You Make 2.00 Grams of a Compound?

Name Date Class STOICHIOMETRY. SECTION 12.1 THE ARITHMETIC OF EQUATIONS (pages )

Lab #13: Qualitative Analysis of Cations and Anions

Chemistry: Chemical Equations

APPENDIX B: EXERCISES

Unit 7 Stoichiometry. Chapter 12

ANALYSIS OF VITAMIN C

Chapter 1: Moles and equations. Learning outcomes. you should be able to:

Chemistry Themed. Types of Reactions

EXPERIMENT 7 Electrochemical Cells: A Discovery Exercise 1. Introduction. Discussion

OXIDATION-REDUCTION TITRATIONS-Permanganometry

11-1 Stoichiometry. Represents

Experiment 8: Chemical Moles: Converting Baking Soda to Table Salt

Coordination Compounds with Copper (II) Prelab (Week 2)

Stoichiometry Review

Stoichiometry. What is the atomic mass for carbon? For zinc?

Tutorial 4 SOLUTION STOICHIOMETRY. Solution stoichiometry calculations involve chemical reactions taking place in solution.

Experiment 8 Synthesis of Aspirin

Target Mole Lab. Mole Relationships and the Balanced Equation. For each student group Hydrochloric acid solution, HCl, 3 M, 30 ml

NET IONIC EQUATIONS. A balanced chemical equation can describe all chemical reactions, an example of such an equation is:

THE MOLE / COUNTING IN CHEMISTRY

CSUS Department of Chemistry Experiment 8 Chem.1A

Chemical Reactions 2 The Chemical Equation

Chem 31 Fall Chapter 3. Stoichiometry: Calculations with Chemical Formulas and Equations. Writing and Balancing Chemical Equations

Types of Reactions. CHM 130LL: Chemical Reactions. Introduction. General Information

MOLARITY = (moles solute) / (vol.solution in liter units)

Name Class Date. Section: Calculating Quantities in Reactions. Complete each statement below by writing the correct term or phrase.

Sample Problem: STOICHIOMETRY and percent yield calculations. How much H 2 O will be formed if 454 g of. decomposes? NH 4 NO 3 N 2 O + 2 H 2 O

Other Stoich Calculations A. mole mass (mass mole) calculations. GIVEN mol A x CE mol B. PT g A CE mol A MOLE MASS :

Transcription:

EXPERIMENT 7 Reaction Stoichiometry and Percent Yield INTRODUCTION Stoichiometry calculations are about calculating the amounts of substances that react and form in a chemical reaction. The word stoichiometry comes from the Greek stoikheion "element" and metriā "measure." Based on the balanced chemical equation, we can calculate the amount of a product substance that will form if we begin with a specific amount of one or more reactants. Or, you may have a target amount of product to prepare. How much starting compounds are needed to prepare this amount? These are practical calculations that are done frequently by chemists. In this experiment, you will prepare copper metal from the reaction of aluminum metal with a solution of copper(ii) sulfate (cupric sulfate). From the amounts of the reactants, you will determine which reactant is the limiting reactant, and from this amount, calculate the theoretical yield of copper metal. From the actual amount of copper obtained, you can then calculate your percent yield of copper. THE CALCULATION METHOD For practically all stoichiometry calculations, we want to use the.... Fabulous Four Steps Step 1: Write the balanced chemical equation for the reaction. Step 2: Calculate the moles of "given" substance. If more than one reactant amount is given, calculate the moles of each to determine which is the limiting reactant. Step 3: Calculate the moles of "desired" substance from your answer in Step 2 using the coefficients from the balanced chemical equation. If more than one reactant was given originally, you can calculate the moles of product twice, based on the moles of each reactant. The reactant that gives the smaller moles of product is the limiting reactant. Keep this answer for Step 4. Step 4: Convert your answer in Step 3 to the units the problem asks for. Usually this is grams, but it could be volume (for gases or liquid solutions) or concentration (such as molarity, for solutions). Again, in brief: 1. Balanced reaction. 2. Moles of "given" substance(s). 3. Moles of "desired" substance such as a product. 4. Convert Step 3 answer to the units asked for. CHEM 1105 Experiment 7 1

SAMPLE CALCULATIONS EXAMPLE 1. How many grams of iron(iii) oxide (ferric oxide), Fe 2 O 3, are formed from the reaction of 5.00 g of iron metal with excess oxygen gas? Step 1: Balanced reaction. 4 Fe (s) + 3 O 2 (g) 2 Fe 2 O 3 (s) Step 2: Moles of "given" substance. The given substance is the iron metal, since its amount is given. moles of Fe = grams of Fe / molar mass of Fe = 5.00 g / 55.845 g/mol = 0.08953353 mol (not rounding yet). Note that gram units cancel, leaving the unit of moles for the answer moles of Fe = 5.00 g Fe X 1 mol Fe = 0.08953353 mol Fe 1 55.847 g Fe Step 3: Moles of "desired" substance. This is the product, ferric oxide. Here is where the balanced reaction comes in. The coefficients in the balanced reaction represent the moles of the substances that react and form. As such, balanced reactions are "in" moles by default. This is why we always have to convert amounts to moles when working stoichiometry problems. moles of Fe 2 O 3 = 0.08953353 mol Fe X 2 mol Fe 2 O 3 = 0.044766765 mol Fe 2 O 3 1 4 mol Fe Step 4: Grams of Fe 2 O 3. Grams of Fe 2 O 3 = moles of Fe 2 O 3 X molar mass of Fe 2 O 3 = 0.044766765 mol X 159.6882 g/mol = 7.15 g rounded to 3 significant figures. And that's it! We can also do steps 2 through 4 like a conversion problem. Once you are familiar with the steps, you can work these problems more quickly this way: 5.00 g Fe X 1 mol Fe X 2 mol Fe 2 O 3 X 159.6882 g Fe 2 O 3 = 7.15 g of Fe 2 O 3 1 55.845 g Fe 4 mol Fe mol Fe 2 O 3 When working stoichiometry problems, always do the following: a) Write the units on all numbers. b) Check that the units cancel properly. c) Give the correct unit for the answer. d) Avoid rounding numbers too much during the calculation, or you will have roundoff error in your answer. e) Round your final answer to the correct number of significant figures. CHEM 1105 Experiment 7 2

EXAMPLE 2. If 10.0 g of iron metal is reacted with 15.0 g of Cl 2 gas, how many grams of ferric chloride, FeCl 3, will form? In this problem, the amounts of both reactants are given, so we will have to determine which reactant is the limiting reactant (the one that "limits" the amount of product that is formed). The other reactant is in excess amount. We'll use the Fab Four Steps just as before. Step 1: Balanced reaction. 2 Fe (s) + 3 Cl 2 (g) 2 FeCl 3 (s) Step 2: Moles of given substances. moles of Fe = 10.0 g / 55.845 g/mol = 0.17906706 mol moles of Cl 2 = 15.0 g / 70.906 g/mol = 0.211547682 mol Step 3: Moles of desired substance, FeCl 3. Since we have two given amounts, a straightforward approach to this step is to calculate the moles of FeCl 3 twice, first based on the moles of Fe and second based on the moles of Cl 2. Keep the smaller answer. The reactant that gives this smaller answer is the limiting reactant. The other reactant is in excess amount. moles of FeCl 3 = 0.17906706 mol Fe X 2 mol FeCl 3 = 0.17906706 mol of FeCl 3 based on Fe 1 2 mol Fe moles of FeCl 3 = 0.211547682 mol Cl 2 X 2 mol FeCl 3 = 0.141031788 mol of FeCl 3 based on Cl 2 1 3 mol Cl 2 Keep this answer! Since the moles of FeCl 3 based on moles of Cl 2 is the smaller answer, Cl 2 is the limiting reactant. Iron metal is therefore in excess amount, so there will be some Fe left over as unreacted excess. Note that we might have reasonably assumed that iron metal was the limiting reactant since it was present in lesser amount in grams initially (10.0 g of Fe and 15.0 g of Cl 2 ). But it turned out that Cl 2 was the limiting reactant. The molar masses of the substances and the reaction stoichiometry come into play also, so we can't automatically assume which substance is the limiting reactant until we go through the steps as we did above. Step 4: Finally! Convert moles of FeCl 3 to grams. Grams of FeCl 3 = 0.141031788 mol X 162.204 g/mol = 22.9 g rounded to 3 significant figures. Practice makes perfect! Working stoichiometry problems properly will strengthen your skills in working many other types of chemistry problems as well. CHEM 1105 Experiment 7 3

PERCENT YIELD The percent yield of a reaction tells us how well the reaction worked in terms of forming a desired product. Percent Yield = Actual (Experimental) Yield of Product X 100 Theoretical (Calculated) Yield of Product Remember, Actual Over Theoretical Times 100. The unit of the amounts may be in grams or moles. Usually we use grams, since we will have weighed the product on a balance in gram units. EXAMPLE. In Example 1 above, let s say that the student obtained 6.75 g of ferric oxide product. The theoretical yield of ferric oxide calculated with the Fabulous Four Steps was 7.15 g. The percent yield of ferric oxide from the reaction is therefore, Percent Yield of Fe 2 O 3 = 6.75 g X 100 = 94.4% 7.15 g Generally, less than 100% yields are obtained. The reaction may not have sufficient time to go to completion, and if the product is transferred from on container to another, or is filtered, there is always some small loss. Therefore, the less handling, the better the yield will be. If undesired side reactions occur in addition to the desired reaction, the yield will be affected. The use of impure reactants can adversely affect the percent yield also. On the other hand, it is impossible to obtain more than a 100% yield! If your calculated percent yield is more than 100%, then, aside from weighing errors, there is some additional substance present in your product making it weigh more than it should. If a solid product is prepared in aqueous solution, incomplete drying is the usual culprit, since the wet solid, which may appear dry, will weigh more than the dry solid product. Chemists use the method of heating to constant weight to avoid this error. If other impurities are present in the product, other methods must be used to remove them, such as extraction, recrystallization, distillation, and chromatography. These techniques are often used by chemists to isolate and purify the desired product from the reaction mixture as effectively and efficiently as possible. CHEM 1105 Experiment 7 4

EXPERIMENTAL PROCEDURE Safety Note: Hydrochloric acid is a strong acid that is harmful to the skin and especially to your eyes. Wear your safety glasses or goggles during the entire procedure. The reaction also produces flammable hydrogen gas (H 2 ), so Bunsen burners should not be used while the reaction is in progress. Also see the procedural notes on the next page. 1) Weigh a clean, dry 150 ml beaker and record its weight on the report form. 2) Carefully add copper(ii) sulfate pentahydrate, CuSO 4 5 H 2 O, until 2.00 g have been added. 3) Measure 10 ml of deionized water in a small graduated cylinder and add the water to the beaker to dissolve the copper(ii) sulfate pentahydrate with the aid of a glass stirring rod. Record the color of the solution on the report sheet. 4) Measure 2.0 ml of 6 M HCl in your graduated cylinder, add it to the solution, and mix well. 5) Weigh 0.25 g of dry aluminum foil in small pieces and record the weight on the report sheet. 6) Add the pieces of Al foil a little at a time. Use the stirring rod to mix the solution during the reaction. (CAUTION: Exothermic reaction!) Note the color of the solution after the added piece of aluminum no longer darkens on its surface. Add the remaining few pieces of aluminum foil, and add an additional 5 ml of 6 M HCl to facilitate the reaction of any excess aluminum with the hydrochloric acid. 7) After all of the aluminum foil has reacted, allow the solid particles of copper product to settle, and carefully decant the solution from the solid (leaving the copper behind in the beaker). Add 20 ml of deionized water to the solid, stir well with the stirring rod, and decant again. Repeat this washing with 20 ml of water once more. Finally, add 10 ml of methanol to the solid, stir, and decant. 8) Heat the beaker on a electric hot plate at medium heat (a setting of about 4 out of 10) until the solid and beaker are thoroughly dry. Allow the beaker and its contents to cool, and then weigh and record the weight on the report form. If time allows, you may re-heat the beaker for an additional 10 minutes and reweigh the beaker and contents to ensure that drying is complete (heating to constant weight). 9) On the report sheet, record the moles of Al and CuSO 4 5 H 2 O used, and determine which is the limiting reactant. Based on the limiting reactant, calculate the theoretical yield of copper metal product. From your actual yield of copper, calculate the percent yield of copper product obtained from the reaction. 10) Place your copper metal in the collection container on the front desk (do not wash it down the sink!), rinse your glassware well, and return it and your other equipment to their proper storage locations. CHEM 1105 Experiment 7 5

PROCEDURAL NOTES Step 2. A hydrate is a solid compound that contains trapped water molecules in the solid. In copper(ii) sulfate pentahydrate, one mole of the solid CuSO 4 has 5 moles of water molecules trapped in it. The water molecules are included in the molar mass of CuSO 4 5 H 2 O, which is 249.69 g/mol. Step 4. Chloride ion facilitates the reaction of Al with CuSO 4 5 H 2 O. A convenient source of chloride ion is from hydrochloric acid, and in addition, the hydrochloric acid will react with any excess aluminum, allowing it to be separated from the solid copper product. The relevant reactions are, a) The reaction of aluminum with copper(ii) sulfate in aqueous solution. This reaction ordinarily occurs rather slowly, but when chloride ion is present, the reaction rate increases dramatically. 2 Al (s) + 3 CuSO 4 (aq) 3 Cu (s) + Al 2 (SO 4 ) 3 (aq) b) The competing reaction of aluminum with hydrochloric acid. This reaction still occurs more slowly than the above chloride-aided reaction with the reactant concentrations that are used. This reaction thus has a minimal effect on the percent yield, so the maximum amount of copper should be able to form if excess aluminum is used. 2 Al (s) + 6 HCl (aq) 3 H 2 (g) + 2 AlCl 3 (aq) Both of these reactions are single replacement reactions. Al is a more active element than Cu in the first reaction, and in the second reaction, Al is more active than the element H 2 (recall the activity series: Li > K > Ba > Sr > Ca > Na > Mg > Al > Mn > Zn > Fe > Cd > Co > Ni > Sn > Pb > H 2 > Cu > Ag > Hg > Au). On the other hand, as seen from the series, the element Cu is less active than H 2, so the copper metal product will not react with the hydrochloric acid that is present: Cu (s) + 2 HCl (aq) H 2 (g) + CuCl 2 (aq) Step 7. The methanol (methyl alcohol) wash removes additional water, facilitating complete drying of the product. Step 8. Heating the copper particles at too high of a temperature in air results in an undesirable darkening and a gain in weight, apparently due to the formation of black cupric oxide, CuO. During heating, the dry particles of copper should remain loose when stirred and should not darken in color. CHEM 1105 Experiment 7 6

EXPERIMENT 7 Reaction Stoichiometry and Percent Yield REPORT FORM Name Instructor Date 1. Mass of empty 150 ml beaker g 2. Mass of beaker plus CuSO 4 5 H 2 O g 3. Color of solution 4. Mass of CuSO 4 5 H 2 O [2] [1] g 5. Mass of Al foil used (small pieces) g 6. Color of solution after reaction is complete 7. Mass of beaker and copper product First weighing g (after heating and cooling) Second weighing g 8. Mass of copper metal product [7] [1] g 9. Moles of Al used mol 10. Moles of CuSO 4 5 H 2 O used mol 11. Moles of copper product based on moles of Al mol 12. Moles of copper product based on moles of CuSO 4 5 H 2 O mol 13. Limiting reactant 14. Grams of Cu product based on the limiting reactant (theoretical yield) g 15. Percent yield of Cu (2 to 3 significant figures) % CHEM 1105 Experiment 7 7

EXPERIMENT 7 Name Pre-Laboratory Questions and Exercises Due before lab begins. Answer in the space provided. 1. What safety precautions are cited in this experiment? 2. What it the purpose of adding hydrochloric acid to the reaction mixture? 3. A student combusted 0.500 g of purified aluminum powder with excess oxygen in an oxygen atmosphere according to the reaction, 4 Al (s) + 3 O 2 (g) 2 Al 2 O 3 (s) a) What is the limiting reactant? b) How many moles of Al were used? mol of Al c) How many moles of Al 2 O 3 would form, based mol of Al 2 O 3 on the moles of the limiting reactant? d) How many moles of O 2 are required to react mol of O 2 completely with the aluminum? e) How many grams of O 2 are required to react g of O 2 completely with the aluminum? f) What is the theoretical yield of Al 2 O 3 in grams? g of Al 2 O 3 g) If the student collected 0.918 grams of Al 2 O 3 product, % what was the percent yield of Al 2 O 3 obtained? CHEM 1105 Experiment 7 8

EXPERIMENT 7 Name Post-Laboratory Questions and Exercises Due after completing the lab. Answer in the space provided. 1. Heating the copper product at too high a temperature in an oxygen atmosphere results in the formation of copper (II) oxide, or cupric oxide, CuO. Write the balanced chemical equation for this reaction. 2. What are some reasons for obtaining a percent yield of less than 100 percent? 3. A student reacted 0.500 g of Pb(NO 3 ) 2 with 0.750 g of KI according to the reaction, Pb(NO 3 ) 2 (aq) + 2 KI (aq) PbI 2 (s) + 2 KNO 3 (aq) a) How many moles of Pb(NO 3 ) 2 were used? mol of Pb(NO 3 ) 2 b) How many moles of KI were used? mol of KI c) How many moles of PbI 2 would form, based on mol of PbI 2 the moles of Pb(NO 3 ) 2 used? d) How many moles of PbI 2 would form, based on mol of PbI 2 the moles of KI used? e) Which is the limiting reactant? f) What is the theoretical yield of PbI 2 in grams? g of PbI 2 g) If the student obtained 0.583 grams of PbI 2 product after collecting it by filtration and drying it, what was the percent yield of PbI 2 obtained? % CHEM 1105 Experiment 7 9