HAVE A BLAST FINDING MOLAR MASS An Ideal Gas Experiment. Contents:

Similar documents
Gas Laws. The kinetic theory of matter states that particles which make up all types of matter are in constant motion.

Molar Mass of Butane

= atm. 760 mm Hg. = atm. d. 767 torr = 767 mm Hg. = 1.01 atm

The Molar Mass of a Gas

AS1 MOLES. oxygen molecules have the formula O 2 the relative mass will be 2 x 16 = 32 so the molar mass will be 32g mol -1

EXPERIMENT 13: THE IDEAL GAS LAW AND THE MOLECULAR WEIGHT OF GASES

F321 MOLES. Example If 1 atom has a mass of x g 1 mole of atoms will have a mass of x g x 6.02 x = 7.

CHEMISTRY. Matter and Change. Section 13.1 Section 13.2 Section The Gas Laws The Ideal Gas Law Gas Stoichiometry

atm = 760 torr = 760 mm Hg = kpa = psi. = atm. = atm. = 107 kpa 760 torr 1 atm 760 mm Hg = 790.

EXPERIMENT 15: Ideal Gas Law: Molecular Weight of a Vapor

Chemistry 13: States of Matter

Gases and Kinetic-Molecular Theory: Chapter 12. Chapter Outline. Chapter Outline

Determining Equivalent Weight by Copper Electrolysis

Calculations with Chemical Formulas and Equations

Chapter 1: Chemistry: Measurements and Methods

1 Introduction The Scientific Method (1 of 20) 1 Introduction Observations and Measurements Qualitative, Quantitative, Inferences (2 of 20)

Name Class Date. In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question.

Temperature. Number of moles. Constant Terms. Pressure. Answers Additional Questions 12.1

What s in a Mole? Molar Mass

Honors Chemistry: Unit 6 Test Stoichiometry PRACTICE TEST ANSWER KEY Page 1. A chemical equation. (C-4.4)

The Gas Laws. Our Atmosphere. Pressure = Units of Pressure. Barometer. Chapter 10

CHEMISTRY GAS LAW S WORKSHEET

CHAPTER 12. Gases and the Kinetic-Molecular Theory

EXPERIMENT 12: Empirical Formula of a Compound

Exam 4 Practice Problems false false

Simple vs. True. Simple vs. True. Calculating Empirical and Molecular Formulas

EXPERIMENT 2 EGG OBSERVATIONS. Contents: Pages 1-4: Teachers Guide Page 5: Student Worksheet. An Osmosis Eggsperiment ACKNOWLEDGEMENTS

ESSAY. Write your answer in the space provided or on a separate sheet of paper.

MOLAR MASS AND MOLECULAR WEIGHT Themolar mass of a molecule is the sum of the atomic weights of all atoms in the molecule. Molar Mass.

Kinetic Theory of Gases. 6.1 Properties of Gases 6.2 Gas Pressure. Properties That Describe a Gas. Gas Pressure. Learning Check.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

5. Which temperature is equal to +20 K? 1) 253ºC 2) 293ºC 3) 253 C 4) 293 C

Gases. States of Matter. Molecular Arrangement Solid Small Small Ordered Liquid Unity Unity Local Order Gas High Large Chaotic (random)

Unit 3: States of Matter Practice Exam

THE IDEAL GAS LAW AND KINETIC THEORY

Gas Laws. vacuum. 760 mm. air pressure. mercury

Other Stoich Calculations A. mole mass (mass mole) calculations. GIVEN mol A x CE mol B. PT g A CE mol A MOLE MASS :

Element of same atomic number, but different atomic mass o Example: Hydrogen

Gas Laws. Heat and Temperature

CHAPTER 8: CHEMICAL COMPOSITION

Name Date Class CHEMICAL QUANTITIES. SECTION 10.1 THE MOLE: A MEASUREMENT OF MATTER (pages )

The Mole. Chapter 10. Dimensional Analysis. The Mole. How much mass is in one atom of carbon-12? Molar Mass of Atoms 3/1/2015

Chemistry 101 Generating Hydrogen Gas

_CH06_p qxd 1/20/10 9:44 PM Page 69 GAS PROPERTIES PURPOSE

Lecture Notes: Gas Laws and Kinetic Molecular Theory (KMT).

IB Chemistry. DP Chemistry Review

Unit 2: Quantities in Chemistry

EXPERIMENT 9 Evaluation of the Universal Gas Constant, R

Gases. Macroscopic Properties. Petrucci, Harwood and Herring: Chapter 6

CHAPTER 3: MATTER. Active Learning Questions: 1-6, 9, 13-14; End-of-Chapter Questions: 1-18, 20, 24-32, 38-42, 44, 49-52, 55-56, 61-64

A. Kinetic Molecular Theory (KMT) = the idea that particles of matter are always in motion and that this motion has consequences.

Temperature Measure of KE At the same temperature, heavier molecules have less speed Absolute Zero -273 o C 0 K

CSUS Department of Chemistry Experiment 8 Chem.1A

Chapter Test B. Chapter: Measurements and Calculations

KINETIC MOLECULAR THEORY OF MATTER

1. What is the molecular formula of a compound with the empirical formula PO and a gram-molecular mass of 284 grams?

Experiment 12E LIQUID-VAPOR EQUILIBRIUM OF WATER 1

Boyles Law. At constant temperature the volume occupied by a fixed amount of gas is inversely proportional to the pressure on the gas 1 P = P

(1) The size of a gas particle is negligible as compared to the volume of the container in which the gas is placed.

Chemical Composition. Introductory Chemistry: A Foundation FOURTH EDITION. Atomic Masses. Atomic Masses. Atomic Masses. Chapter 8

Materials 10-mL graduated cylinder l or 2-L beaker, preferably tall-form Thermometer

Part One: Mass and Moles of Substance. Molecular Mass = sum of the Atomic Masses in a molecule

Name Date Class CHEMICAL QUANTITIES. SECTION 10.1 THE MOLE: A MEASUREMENT OF MATTER (pages )

CHEM 105 HOUR EXAM III 28-OCT-99. = -163 kj/mole determine H f 0 for Ni(CO) 4 (g) = -260 kj/mole determine H f 0 for Cr(CO) 6 (g)

Stoichiometry Exploring a Student-Friendly Method of Problem Solving

Dry Ice Color Show Dry Ice Demonstrations

Chapter 8: Gases and Gas Laws.

Chapter 3 Student Reading

The Mole and Molar Mass

(a) graph Y versus X (b) graph Y versus 1/X

Calculation of Molar Masses. Molar Mass. Solutions. Solutions

Practical 1: Measure the molar volume of a gas

MOLES, MOLECULES, FORMULAS. Part I: What Is a Mole And Why Are Chemists Interested in It?

Chemistry 110 Lecture Unit 5 Chapter 11-GASES

States of Matter CHAPTER 10 REVIEW SECTION 1. Name Date Class. Answer the following questions in the space provided.

CHEM 120 Online Chapter 7

Chemistry 212 VAPOR PRESSURE OF WATER LEARNING OBJECTIVES

Chemical Changes. Measuring a Chemical Reaction. Name(s)

Chemical Calculations: The Mole Concept and Chemical Formulas. AW Atomic weight (mass of the atom of an element) was determined by relative weights.

Experiment 8: Chemical Moles: Converting Baking Soda to Table Salt

2 The Structure of Atoms

Reaction of Magnesium with Hydrochloric Acid (Gas Laws) Chemicals Needed:

How much does a single atom weigh? Different elements weigh different amounts related to what makes them unique.

Chem 115 POGIL Worksheet - Week 4 Moles & Stoichiometry

Chapter 3. Chemical Reactions and Reaction Stoichiometry. Lecture Presentation. James F. Kirby Quinnipiac University Hamden, CT

Review - After School Matter Name: Review - After School Matter Tuesday, April 29, 2008

CHEMISTRY II FINAL EXAM REVIEW

Bomb Calorimetry. Electrical leads. Stirrer

Mole Notes.notebook. October 29, 2014

Calorimetry: Heat of Vaporization

The Mole Notes. There are many ways to or measure things. In Chemistry we also have special ways to count and measure things, one of which is the.

PHYS-2010: General Physics I Course Lecture Notes Section XIII

EXAMPLE EXERCISE 4.1 Change of Physical State

Oxygen Give and Take. Correlation to National Science Education Standards

13.1 The Nature of Gases. What is Kinetic Theory? Kinetic Theory and a Model for Gases. Chapter 13: States of Matter. Principles of Kinetic Theory

THE HUMIDITY/MOISTURE HANDBOOK

Chapter 3: Stoichiometry

Popcorn Laboratory. Hypothesis : Materials:

CHEMICAL FORMULA COEFFICIENTS AND SUBSCRIPTS. Chapter 3: Molecular analysis 3O 2 2O 3

Unit 3 Notepack Chapter 7 Chemical Quantities Qualifier for Test

Transcription:

EXPERIMENT 4 HAVE A BLAST FINDING MOLAR MASS An Ideal Gas Experiment Contents: Pages 2-8: Teachers Guide Pages 9-11: Student Handout ACKNOWLEDGEMENTS The creation of this experiment and its support materials would not have been possible without the scientific and pedagogical expertise of dedicated educators active in the field. Adam Equipment extends both acknowledgement and appreciation to the following teachers for their assistance in making this classroom activity available to the education community: Penney Sconzo (Westminster High School, Atlanta, GA) project leader and experiment author Ken Gibson (Westminster High School, Atlanta, GA) peer reviewer and adviser PERMISSIONS AND ACCEPTABLE USAGE The content of this experiment is owned and copyrighted by Adam Equipment. Adam Experiment student worksheets may be copied and distributed for educational purposes only. No copying or distribution of either the student worksheets or the teacher support materials is allowed for commercial or any other purposes without prior written permission of Penney Sconzo and Adam Equipment. Adam Equipment education@adamequipment.com www.adamequipment.com

HAVE A BLAST FINDING MOLAR MASS An Ideal Gas Experiment GRADE LEVEL This experiment is designed for grades 9-12. It can be adapted for grades 6-8. 1Teacher Guide PURPOSES 1. To demonstrate the use of the Ideal Gas Law, Daltons Law of Partial Pressures, and the Kinetic Theory of Gases by: SUBJECTS Gases and the Kinetic-Molecular Theory, science as inquiry and data analysis. A. Measuring pressure, volume and temperature and using the ideal gas equation to calculate the amount of gas (moles). Then, using the measured mass of the gas and the calculated number of moles to determine the molar mass of the unknown gas (Ideal Gas Law). B. Considering how mixtures of gases behave and calculating the pressure of the unknown gas based on the composition of the mixture (Dalton s Law of Partial Pressures). C. Applying the Kinetic-Molecular Theory of gases to experimental observations and the gas laws. 2. To determine the molar mass and formula of a gas from the measured properties of gases. 3. To have students analyze data that has been collected using laboratory equipment (balances). TIME NEEDED One laboratory period. Additional time may be required for analysis of data and additional discussions. ACTIVITY OVERVIEW Students collect and measure a sample of the gas inside an AirDR can to determine the molar mass of the gas. With some additional information, students can determine the molecular formula of the gas and get some clue as to the identity of the gas. This lesson is designed to be easily and quickly integrated into existing curriculum. It comes complete with a threepage student handout, vocabulary lists, plus extensions and assessment tools with answer keys. This Adam Equipment experiment is appropriate for remedial, review, reinforcement or extension purposes. HELPFUL ADVICE TO MAXIMIZE SAFETY AND STUDENT SUCCESS 1. As always, students should be encouraged to wear safety goggles during any laboratory experiment. 2. Use the dust remover in a well-ventilated area and follow other safety instructions on the container. 3. Discuss the accuracy of centigram balances. Page 2

CONNECTIONS TO NATIONAL SCIENCE AND MATH EDUCATION STANDARDS SCIENCE CONTENT STANDARD - UNIFYING CONCEPTS AND PROCESSES The experiment should facilitate and enhance the learning of scientific concepts and principles, providing a big picture of scientific ideas by examining: Evidence, models, and explanation (grades 9-12). Change, constancy, and measurement (grades 5-12). SCIENCE CONTENT STANDARD A - SCIENCE AS INQUIRY Concept 1 - Abilities necessary to do scientific inquiry: Develop descriptions, explanations, predictions and models using evidence and explanations (grades 5-8). Formulate scientific explanations and models using logic and evidence (grades 9-12). Using mathematics in scientific inquiry (grades 5-12). SCIENCE CONTENT STANDARD B - PHYSICAL SCIENCE Concept 2 - Understanding the structure and property of matter (grades 9-12). SCIENCE CONTENT STANDARD G - HISTORY AND THE NATURE OF SCIENCE Concept 2 - Nature of scientific knowledge (grades 9-12). MATH CONTENT STRAND 2 - DATA ANALYSIS, PROBABILITY AND DISCRETE MATHEMATICS Concept 1 - Understand and apply data collection, organization and representation to analyze and sort data (grades 5-12). MATH CONTENT STRAND 4 - GEOMETRY AND MEASUREMENT Concept 4 - Understand and apply appropriate units of measure, measurement techniques, and formulas to determine measurements (grades 5-12). Page 3

KEY VOCABULARY BAROMETRIC PRESSURE: The pressure of the atmosphere often expressed in terms of atmospheres, or mm of Hg (the height of a supported column of mercury). DALTON S LAW OF PARTIAL PRESSURE: The pressure of a gas mixture is the sum of the partial pressures of the individual components of the gas mixture. DISPLACEMENT: When one object/substance takes the place of another object/substance. EMPIRICAL FORMULA: The smallest whole-number ratio of atoms present in a compound. IDEAL GAS: A hypothetical gas that strictly obeys the postulates of the Kinetic Theory. IDEAL GAS LAW: PV = nrt The product of the pressure and volume of a gas is directly proportional to the number of moles of the gas and the absolute temperature. KINETIC THEORY OF GASES: Theory that explains macroscopic observations of gases in microscopic terms. This theory has 3 basic assumptions: 1. The size of the gas molecules are infinitely small compared to the volume occupied by the gas. 2. Gas molecules undergo elastic collisions (no energy loss) with the container and other gas molecules. 3. Gas molecules are in constant motion and are governed by the laws of motion including KE = ½ mv 2. GRAM: A fundamental unit of mass used in the metric system (equal to the weight of one cubic centimeter of distilled water at 4 C) 1 gram = 100 centigrams. MASS: A measurement that reflects the amount of matter (more precisely, the sample s weight divided by acceleration due to gravity). MOLAR MASS: The mass of one mole of a substance, usually expressed in grams or kilograms. Molar mass is a characteristic commonly used to help identify a gas. MOLECULAR FORMULA: The chemical formula that indicates the actual type and number of atoms in a molecule of a molecular substance. MOLECULE: The smallest particle of an element or compound that retains the chemical properties of the element or compound and is capable of independent existence. PNEUMATIC TROUGH: A trough with a perforated shelf that is used, when filled with water or mercury, to collect gases. VAPOR PRESSURE: The partial pressure of a gas in equilibrium with a condensed form (solid or liquid) of the same substance. VOLUME: 1. The amount of space an object takes up. 2. The amount of space a container can hold. Page 4

SAMPLE DATA DATA LOG Original mass of can 390.45 g Final mass of can 389.66 g Mass of gas collected 0.79 g Volume of gas collected 246 ml 0.246 L Temperature of water 18.7 C 297.7 K Barometric pressure 1.012 atm Water vapor pressure 16.2 mm Hg 0.0213 atm CALCULATIONS OF MOLAR MASS (M): PV = mrt M (0.991 atm) ( 0.246L) = 0.79 g (0.0821 atm L/mol K) (291.7K) M M = 77 EMPIRICAL FORMULA CALCULATIONS: (given percent composition of C,H and F) 36.36g C 1 mol C = 3.03 mol C 3.03 = 1 12 g C 6.06g H 1 mol H = 6.06 mol H 3.03 = 2 1 g H 57.58g F 1 mol F = 3.03 mol F 3.03 = 1 19 g F Empirical formula is CH 2 F; empirical mass = 33 g MOLECULAR FORMULA CALCULATIONS: Molar mass = 77 = 2.3 Rounding to a whole number (considering Empirical mass 33 laboratory errors), this number is 2. Molecular Formula = C 2 H 4 F 2 difluoroethane Page 5

ANSWER KEY FOR STUDENT ASSESSMENT SHEET ANALYSIS 1. PV = mrt (0.991 atm) ( 0.246L) = 0.79 g (0.0821 atm L/mol K) (291.7K) M M M = 77 g 2. 36.36g C 1 mol C = 3.03 mol C 3.03 = 1 12 g C 6.06g H 1 mol H = 6.06 mol H 3.03 = 2 1 g H 57.58g F 1 mol F = 3.03 mol F 3.03 = 1 19 g F Empirical formula is CH 2 F; empirical mass = 33 g Molar mass = 77 = 2.3 Rounding to a whole number (considering laboratory errors), Empirical mass 33 this number is 2. Molecular Formula = C 2 H 4 F 2 difluoroethane CONCLUSIONS 1. In the can, the gas is pressurized. Under increased pressure, the difluoroethane experiences strong enough forces of attraction to condense the gas into a liquid. The pressure drops back to atmospheric pressure when the gas is released from the can. The sample being released then expands and vaporizes into a gas. 2. If any air remains in the graduated cylinder, the volume of that air would be incorporated into the lab measurement of the volume of gas collected. The recorded measurement for the volume of the gas would be larger than the true volume of the gas. Error in this measurement would cause additional errors as laboratory calculations are performed. 3. Gases are characterized as having low densities due to a small mass per unit volume. Our sample of gas released has a small mass compared to the total mass of the gas in the can. The gas released from the pressurized can expands to occupy a much larger volume under normal atmospheric conditions. So, to get a measurable amount of gas in grams, with any degree of accuracy, a rather large volume of gas should be collected. 4. The graduated cylinder is initially filled with water. Both water and the gas being collected are forms of matter. Matter is defined as having mass and occupying space. The matter being collected is a gas with a lower density than the water in the graduated cylinder, so the gas will rise to the top of the graduated cylinder. Needing space to occupy, the gas will displace the water in the graduated cylinder, pushing the water out of the graduated cylinder as the gas takes over the space once occupied by the water. For a gas to be collected by water displacement, the gas should not be soluble in the water or react with the water. 5. When a gas is collected by water displacement, the gas collected is not a pure gas but a mixture of gas plus some water vapor. Depending on the temperature of the water in the graduated cylinder, some molecules of liquid water can go into the vapor phase. The water vapor would be measured along with the gas being collected. To accurately measure the pressure of the gas being collected, the pressure of the water vapor molecules must be subtracted from the total pressure. Before recording the volume of gas collected, the height of the graduated cylinder needs to be adjusted so the level of the water inside the graduated cylinder is the same as the level of water in the pneumatic trough or bucket being used. The pressure of the gas or gases inside the graduated cylinder is then equal to the atmospheric pressure in the room. Atmospheric pressure can be recorded from a barometer. Page 6

REAL WORLD APPLICATIONS 1. A tank of propane is under increased pressure and the molecules of the gas are compressed with less space between the particles. There is an increased number of molecules in the volume of the propane tank. Opening the valve to the propane tank releases small masses of propane, but the volume of the propane really increases when the propane is no longer under pressure. One tank of propane might last through the entire summer of grilling! 2. Under the same conditions of temperature and pressure, a certain volume of hydrogen in a balloon will contain the same number of molecules as the same volume of carbon dioxide in a balloon. So why does the hydrogen balloon rise while the carbon dioxide balloon sinks, if the number of molecules are identical? Obviously, it is the molecules themselves that are different. A molecule of hydrogen (2.0 grams/mole of hydrogen) is more than 20 times lighter than a molecule of carbon dioxide (44.0 grams/mole of carbon dioxide). Air, which is primarily nitrogen and oxygen, has an approximate mass of 29 grams/mole. Therefore, the balloon filled with hydrogen would rise. The balloon does not weigh as much as the equivalent volume of air. The balloon filled with carbon dioxide would sink because the carbon dioxide weighs more than the air displaced by the balloon. POSSIBLE EXTENSIONS This experiment can be repeated using other gas samples that have low solubility in water. Try collecting a sample of gas from a small butane fuel cylinder used to refill butane lighters. These can be purchased in the cigarette/cigar section of a local supermarket. Repeat the laboratory procedure and collect data. Calculate the molar mass of the gas by using the ideal gas equation. Use the following data to calculate the empirical formula: carbon, 82.76%; hydrogen, 17.24%. Find the empirical formula and the empirical mass. Then, use the molar mass and the empirical mass of the gas to calculate the molecular formula of butane. TEACHER PREPARATION No advance preparation needed, except for buying the cans of gas and getting out the equipment for students to use. Page 7

ADDITIONAL RESOURCES Visit adamequipment.com/education regularly for new classroom resources. ABOUT ADAM EQUIPMENT Adam Equipment s world headquarters is located in Milton Keynes, United Kingdom, with facilities in the United States, Australia, South Africa and China. The company s balances have been trusted by professionals worldwide for 40 years. Contact Adam Equipment at education@adamequipment.com or online at www.adamequipment.com/education. ADAM EQUIPMENT BALANCES RECOMMENDED FOR THIS EXPERIMENT Highland Portable Precision Balance Models recommended for this experiment: HCB 602H or HCB 1002 (600g or 1000g capacity x 0.01g readability) Complete with more features and accessories than any other in its class, Adam Equipment s Highland Portable Precision Balances have what it takes for school and college applications. The reliable Highland provides the latest in weighing technology, 15 weighing units with four weighing modes and it is easy enough for novice students. It features Adam s unique patented ShockProtect overload protection to withstand up to 200kg, and HandiCal internal calibration with built-in mass. Calibrate whenever you want without external masses or use your own masses. USB and RS-232 interfaces are both included with cables. The rechargeable battery (adapter/charger included), removable draft shield and brilliant backlit display with capacity tracking make Highland the most complete portable precision balance available. Available in seven models from 150g x 0.001g to 3000g x 0.1g. For complete product details, visit www.adamequipment.com/education. GETTING INVOLVED IN ADAM EQUIPMENT S EXPERIMENTS Feedback On This Adam Experiment If you have feedback on this Adam Experiment that would be valuable to other teachers, we encourage you to share your thoughts. Please email your comments to Adam s education division at education@adamequipment.com. Submitting Your Own Experiment If you have an idea for a useful educational resource that you would like to share with other teachers, Adam Equipment is interested in hearing from you. Initial submissions need to include only a simple description of the activity with the activity s purpose, subject, and grade level. Please contact Adam s education division by e-mail at education@adamequipment.com to determine if your particular activity will fit into our experiment library. Adam Equipment will respond promptly to all inquiries. Page 8

HAVE A BLAST FINDING MOLAR MASS An Ideal Gas Experiment 2Student Section INTRODUCTION You can easily identify some common gases based on their unique characteristics and behavior. For example, a laboratory test for oxygen involves combustion. A glowing splint or any other burning substance will burn better in pure oxygen than it does in air (oxygen supports combustion). Carbon dioxide will extinguish a glowing splint or a flame (carbon dioxide does not support combustion). When a burning splint is brought to the mouth of a test tube filled with hydrogen gas, there is a characteristic hydrogen bark. Hydrogen is flammable. When hydrogen burns, the only product formed is water. How are other gases identified? Take two identical balloons and fill one with hydrogen, the other with carbon dioxide gas. Both balloons will contain the same number of molecules of gas (mole concept); however, the hydrogen balloon will rise while the CO 2 balloon will sink if released in the air (density concept). Earth s gravity acts on the gas in each balloon. Since the number of gas molecules in each balloon is the same, it must be the mass of those gas particles which causes one balloon to rise (lighter gas particles) and the other balloon to sink (heavier gas particles). If the mass of the particles in the two balloons differs, molar mass is a unique characteristic of the gas in each balloon. The molar mass is a characteristic that can be used to identify the gas. How would you determine the molar mass if you did NOT know the identity of the gas and you had no formula for the gas? Emile Clapeyron Author of the Ideal Gas Law A French engineer and physicist who is one of the founders of thermodynamics. In recognition of his many contributions, his is one of the 72 names engraved on the Eiffel Tower. PURPOSE How are gases identified? Solid and liquid substances can often be identified by physical properties such as appearance, density, melting point and boiling point. Identifying a gas is not as easy unless it has a characteristic odor, color, or behavior. By conducting this experiment, you ll have a blast using the Ideal Gas Law to calculate the molar mass of an unknown gas to identify it. WHAT YOU NEED Full can of AirDR or similar product 30-40 cm of rubber tubing Pneumatic trough or small plastic bucket 250 ml graduated cylinder Room temperature tap water, for trough & cylinder Thermometer Metric ruler Barometer Safety goggles HCB 602H or 1002 balance Page 9

STUDENT PROCEDURE 1. Record the mass of a can of AirDR using a centigram balance. 2. Attach rubber tubing to the nozzle on the can. 3. Fill a 250 ml graduated cylinder completely full of water, invert it and place it inside a pneumatic trough which is filled at least half-way with water. Be sure the cylinder contains no air bubbles (This can also be done in a small plastic bucket). 4. Hold the rubber tubing from the can under the water and below the mouth of the inverted cylinder and press the release button on the can. Make sure all the bubbles of the gas are going up into the cylinder. 5. Collect approximately 250 ml of gas in the graduated cylinder. Remove rubber tubing then re-mass the can of AirDR. Record. 6. Measure the height difference, if any, between the water in the trough and that remaining in the graduated cylinder. If possible, adjust the position of the cylinder in the water so that the water levels inside and outside the cylinder are the same. Record the volume of gas collected. 7. Measure the temperature of the water (it will be assumed that the gas will be at the same temperature) and read the atmospheric pressure from a barometer. Page 10

STUDENT WORKSHEET NAME: CLASS: DATE: Hypothesis: Data Log: Original mass of can g Final mass of can g Volume of gas collected ml Temperature of water C Barometric pressure Water vapor pressure Ideal Gas Equation PV = nrt P = absolute pressure V = absolute volume n = number of moles R = universal gas constant T = absolute temperature Analysis: 1. Calculate the molar mass of the gas using the ideal gas equation. 2. The percentage composition of the gas in the can is as follows: carbon, 36.36%, hydrogen, 6.06%, and fluorine, 57.58%. Calculate the empirical formula and then using the calculated molar mass, see if you can get a wholenumber multiple of the empirical formula for the molecular formula of the gas. Conclusions: 1. How do you explain the fact that the gas is a liquid in the can, but a gas when it is collected? 2. Why is it important that the graduated cylinder used to collect the gas be completely filled with water? 3. Why is it necessary to collect a large volume of gas if the balance being used only measures to the nearest 0.01g? 4. What is water displacement and why can this gas be collected in this manner? 5. Why did you have to consider water vapor pressure, and possibly a height difference between the water levels inside and outside the graduated cylinder? Real World Application: 1. How can a grill tank hold enough propane to cook all summer long? 2. If you fill one balloon with a certain amount of hydrogen and another with the same amount of carbon dioxide, why does the hydrogen balloon rise while the CO 2 balloon sinks? Page 11